
Tissue-Specific Increases in 11b-Hydroxysteroid
Dehydrogenase Type 1 in Normal Weight
Postmenopausal Women
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Abstract

With age and menopause there is a shift in adipose distribution from gluteo-femoral to abdominal depots in women.
Associated with this redistribution of fat are increased risks of type 2 diabetes and cardiovascular disease. Glucocorticoids
influence body composition, and 11b-hydroxysteroid dehydrogenase type 1 (11bHSD1) which converts inert cortisone to
active cortisol is a putative key mediator of metabolic complications in obesity. Increased 11bHSD1 in adipose tissue may
contribute to postmenopausal central obesity. We hypothesized that tissue-specific 11bHSD1 gene expression and activity
are up-regulated in the older, postmenopausal women compared to young, premenopausal women. Twenty-three pre- and
23 postmenopausal, healthy, normal weight women were recruited. The participants underwent a urine collection, a
subcutaneous adipose tissue biopsy and the hepatic 11bHSD1 activity was estimated by the serum cortisol response after
an oral dose of cortisone. Urinary (5a-tetrahydrocortisol+5b-tetrahydrocortisol)/tetrahydrocortisone ratios were higher in
postmenopausal women versus premenopausal women in luteal phase (P,0.05), indicating an increased whole-body
11bHSD1 activity. Postmenopausal women had higher 11bHSD1 gene expression in subcutaneous fat (P,0.05). Hepatic first
pass conversion of oral cortisone to cortisol was also increased in postmenopausal women versus premenopausal women in
follicular phase of the menstrual cycle (P,0.01, at 30 min post cortisone ingestion), suggesting higher hepatic 11bHSD1
activity. In conclusion, our results indicate that postmenopausal normal weight women have increased 11bHSD1 activity in
adipose tissue and liver. This may contribute to metabolic dysfunctions with menopause and ageing in women.
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Introduction

With age, and menopause, in women there is a shift in adipose

distribution from gluteo-femoral to abdominal depots [1,2].

Abdominal fat accumulation, and menopause per se, links to an

increased risk of insulin resistance, type 2 diabetes, and future

cardiovascular disease [3,4]. The decrease in estradiol (E2) levels

that occur with menopause might be an underlying factor of these

dysmetabolic features [5]. However, other steroid hormones,

notably glucocorticoids, may directly or indirectly influence body

composition and the risk of cardiovascular disease [6].

Circulating cortisol levels are tightly controlled by forward drive

through hypothalamic-pituitary factors and negative feedback by

cortisol[7]. Glucocorticoid excess due to tumours producing ACTH

or cortisol, as occurs in Cushing’s syndrome, causes central obesity,

type 2 diabetes, and cardiovascular disease. In idiopathic obesity,

circulating cortisol levels are essentially normal, although there may

be a subtle impairment in the negative feedback by endogenous

cortisol [8]. However, it has been suggested that changes in

glucocorticoid metabolism may contribute to a Cushing’s-like

phenotype linked to abdominal obesity [6].

The availability of active glucocorticoid in different tissues is

modulated through enzymatic interconversion between cortisone

and cortisol by 11b-hydroxysteroid dehydrogenase type 1 and 2

(11bHSD1/2) [7]. 11bHSD1 activates cortisone to cortisol and is

widely expressed with high expression in liver, adipose tissue and

lung. 11bHSD2 perform the opposite reaction and is present in

mineralocorticoid target tissues e.g. the kidney [7]. In idiopathic

obesity, 11bHSD1 levels are increased in subcutaneous adipose

tissue and reduced in liver [6,9]. The physiological relevance of

alterations in the activity of this enzyme has been demonstrated in

several animal models. 11bHSD1 knockout mice are protected

from visceral fat accumulation when fed a high-fat diet [10], while

selective over-expression of 11bHSD1 in adipose tissue results in

abdominal obesity, insulin resistance, and hypertension [11,12].

Liver-specific over-expression of the enzyme results in a non-obese

phenotype with increased hepatic fat content linked to mild insulin

resistance, dyslipidemia, and hypertension [13].

Circulating cortisol levels are unaltered in post- versus

premenopausal women [14]. Although not confirmed in humans

[15], E2 attenuates 11bHSD1 expression and enzyme activity in

the liver and testis of rodents, [16–18]. This suggest that the
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dysmetabolic features including fat redistribution, elevated blood

pressure, and dyslipidemia commonly seen after menopause may

at least partly be mediated through tissue-specific alterations in

cortisol levels via increased 11bHSD1.

We hypothesized that 11bHSD1 expression and activity are

increased in adipose tissue and/or liver in postmenopausal versus

premenopausal normal weight women.

Materials and Methods

Subjects
Twenty-three premenopausal and 23 postmenopausal, healthy,

normal weight women were recruited by advertisements in the

local newspapers and within the Umeå University Hospital and

campus areas. Exclusion criteria were: diabetes, thyroid dysfunc-

tion, hepatic and renal disease, use of tobacco, hormonal

contraceptives, systemic gonadal hormone replacement therapy,

or oral glucocorticoid medication. None of the postmenopausal

women reported menstrual periods within the last 12 months. One

premenopausal woman used inhaled steroids for asthma (budeso-

nide, 400 mg/24 h). Three postmenopausal women had well-

controlled hypertension treated with b-blockers, diuretics, or

calcium antagonist, one took tolterodine for urinary incontinence

and bisphosphonates for osteoporosis, and two used topical E2 or

estriol treatment.

Ethics Statement
The study was approved by the Umeå University Ethical

Committee and all subjects gave written, informed consent before

entering the study.

Clinical protocol
Premenopausal women were evaluated during both follicular

and luteal phases of the menstrual cycle to investigate the possible

effects of hormonal fluctuations. Menstrual phase or postmeno-

pausal status was confirmed by measuring serum E2 and

progesterone levels. Anthropometric measurements, urine collec-

tions, adipose tissue biopsies, and hepatic cortisone conversion

tests were performed on separate days.

Weight to the nearest 0.1 kg (with subjects wearing light clothes)

and height and waist circumference to the nearest 0.5 cm was

measured. Blood pressure was measured in the sitting position

after 5 minutes rest with a mercury sphygmomanometer.

Urine was collected for 24 h, measured to the nearest ml, and

aliquots stored without preservatives at 220uC until analyzed.

Approximately 2 g of periumbilical superficial subcutaneous

adipose tissue was excised under local anaesthesia with lidocaine

(XylocaineH without adrenaline, AstraZeneca, Sweden) after an

overnight fast. Tissue was snap frozen in liquid nitrogen within 5

minutes after removal, and stored at 280uC until further analyses.

For the hepatic cortisone conversion test, the subjects took an

oral dose of 1 mg dexamethasone (2 tablets of 0.5 mg Decadro-

neH, Merck & Co., Sweden) at 2300 h in order to suppress

endogenous cortisol production and fasted overnight. Venous

blood samples for baseline cortisol levels were drawn at

approximately 0800–0900 h, followed by 25 mg oral cortisone

acetate (CortalH 25 mg, N.V. Organon Oss Holland). Blood

samples for serum cortisol analyses were then drawn every 30

minutes during the following four hours.

Venous blood samples for routine laboratory tests were drawn

at the time of anthropometric measurements. Venous blood

samples for serum analyses (described below) were drawn in the

mornings of the adipose tissue biopsies and cortisone conversion

tests after at least eight hours of fasting.

Laboratory Methods
RNA extraction and quantification. Total RNA was

extracted according to the manufacturer’s instructions from

approximately 450 mg of adipose tissue using the RNeasyH lipid

tissue midi kit (Qiagen Nordic, Qiagen House, West Sussex, UK).

RNA concentrations were measured on a ND-1000 Spectro-

photometer (NanoDrop Technologies, Bancroft Building,

Wilmington, DE, USA) and integrity was evaluated on a 1%

agarose electrophoretic gel and visualized with ethidium bromide

under UV-light.

SpectrophotometerTwo micrograms of RNA was reverse

transcribed using TaqManH Reverse Transcription Reagents

(Roche Molecular Systems, Inc., Branchburg, NJ, USA). Real-

time PCR was carried out on an ABI PrismH 7000 Sequence

Detection System (Applied Biosystems) according to manufactur-

er’s instructions using Universal PCR Master Mix 2X (Roche

Molecular Systems, Inc., Branchburg, NJ, USA) and TaqMan

Gene expression assays for target genes 11bHSD1 (assay

No. Hs00194153_m1), aromatase (assay No. Hs00240671_m1),

and the endogenous control Cyclophilin A (PPIA) (assay

No. Hs99999904_m1) (Applied Biosystems, Foster City, CA,

USA). All reactions were performed in triplicate and non-template

controls were included on every plate. A standard curve was

included on each plate for relative quantification. Data were

normalized against PPIA, which had the lowest coefficient of

variation and the best stability value, based on the Normfinder

algorithm (http://www.mdl.dk/publicationsnormfinder.htm) out

of three tested endogenous controls (PPIA, LRP10 and RPLP0,

data not shown), previously found to be suitable for human

adipose tissue analyses [19].

In vitro adipose 11bHSD1 enzyme activity assay. 11b-

HSD1 protein in adipose tissue was quantified by measuring

enzyme activity in the dehydrogenase direction, which is the

preferred reaction in tissue homogenates with excess cofactor

[20,21]. Adipose tissue (300 mg) was homogenized in 900 ml ice-

cold buffer (10% glycerol, 300 mM NaCl, 1 mM EDTA, 50 mM

Tris, pH 7.4) and 0.1 mM dithiothreitol and centrifuged at

12,0006g for 15 min at 4uC. Total protein concentrations were

determined using the Bradford technique (Bio-Rad protein assay,

Bio-Rad Laboratories Inc., Herculus, CA, USA). Duplicate

samples of 3 mg/ml of protein were incubated at 37uC with

10 mM NADP and 50 nM [1,2,6,7-3H]4-cortisol for 24 h.

Samples were withdrawn at 12, 16, 20, and 24 h and frozen at

280uC. Subsequently, glucocorticoids were extracted with

dichloromethane, the organic phase evaporated, extracts

dissolved in ethanol and separated by thin layer chromatography

(on TLC aluminium sheets, 20620 cm, Silica gel 60 F254, Merck

KGaA, Darmstadt, Germany, mobile phase; chloroform and

ethanol (92:8)). Radio-labelled glucocorticoids were detected by

exposure of the TLC sheet to a tritium storage phosphor screen,

subsequently scanned in a TyphoonTM 9400 scanner (both GE

Healthcare Europe GmbH, Germany). 11bHSD1 activity was

expressed as percent conversion of cortisol to cortisone.

Urinary corticosteroid metabolites. Cortisol, cortisone, 5a-

tetrahydrocortisol (5a-THF), 5b-THF, and 5b-tetrahydrocortisone

(THE) concentrations were analyzed by gas chromatography and

electron impact mass spectrometry as previously described [22].

Serum analyses. Liver transaminases were measured in the

samples drawn at the time of anthropometric measurements

(menstrual phase not determined). Estradiol, progesterone and

cortisol were measured in samples drawn both at the biopsy and at

the cortisone conversion test. All other analyses were made in

samples drawn on the morning of the adipose tissue biopsy to avoid

interference with the dexamethasone suppression administered in
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advance of the cortisol conversion test. Serum cortisol,

progesterone, sex hormone-binding globulin (SHBG), and insulin

were analyzed by electrochemiluminescence immunoassays, on a

Modular Analytics E170 (all from Roche AB, Stockholm, Sweden).

Serum free testosterone was measured using a radioimmunoassay,

Coat-a-countH, (Siemens Healthcare Diagnostics, Deerfield, IL,

USA). Glucose, alanine aminotransferase (ALT), aspartate

aminotransferase (AST), cholesterol, triglycerides, and HDL and

LDL cholesterol were analyzed on a VITROSH Ektachem 950 IRC

(Johnson & Johnson, Langhorne, PA, USA) using colorimetric

assays. Apolipoprotein A1 (ApoA1) and Apo B was analyzed with

immunoturbidimetric technique on a Hitachi 911 analyzer (Roche

AB, Stockholm, Sweden). HOMA-IR (Homeostasis Model

Assessment for Insulin Resistance) was calculated using the

HOMA calculator v2.2 available at www.dtu.ox.ac.uk. E2 was

measured using an ultra sensitive radioimmunoassay (ESTR-US-

CT, CIS bio international, Gif-sur-Yvette, Cedex, France) (intra-

and interassay coefficients of variation (CV); 2.8–18.1% and 5.8–

17.6%, respectively).

Statistical Analyses
Data are shown as mean6SD, unless otherwise indicated, and

were natural log-transformed when necessary to achieve normal

distribution. Student’s t-tests were used to compare means

between the groups and paired Student’s t-tests to compare

follicular and luteal phase samples in the premenopausal group.

Associations between variables, including follicular phase pre-

menopasual and postmenopausal women, were examined with

Pearson correlation tests with adjustments for waist circumference,

BMI, and menopausal status in partial correlation analyses. The

effect of, and possible interaction between, waist circumference or

BMI and menopausal status was tested with linear regression.

Repeated-measures ANOVA was employed to test the effect of

menopausal status on adipose enzyme activity. Statistical calcula-

tions were carried out using the SPSS software (release 14.0.1,

SPSS Inc., 233 S. Wacker Drive, Chicago, IL). Premenopausal

women found not to be in the anticipated menstrual phase were

excluded in the statistical calculations for that particular test.

Results

Subject Characteristics (Tables 1 and 2)
BMI and waist circumference did not differ between the

menopausal groups. E2, progesterone, and free testosterone levels

were significantly lower in postmenopausal vs. premenopausal

women regardless of menstrual phase. Systolic blood pressure,

serum total cholesterol and cholesterol sub-fractions (except HDL;

only vs. luteal phase), triglyceride levels, and liver transaminases

were higher in postmenopausal women, while HOMA-IR was

lower, mainly due to lower fasting insulin levels among

postmenopausal women. Within the menstrual cycle, LDL,

apolipoprotein B, and cholesterol levels were increased in the

follicular vs. luteal phase.

Urinary Corticosteroid Metabolites (Table 3)
Total glucocorticoid urinary metabolite excretion did not differ

between groups, indicative of unaltered glucocorticoid production

rate with menopause. The (5a-THF+5b-THF)/THE ratio was

significantly higher in postmenopausal vs. premenopausal women

in luteal phase, indicating a higher total body 11bHSD1 activity in

postmenopausal women; this difference remained after adjustment

for BMI and waist circumference. The (5a-THF+5b-THF)/THE

ratio correlated positively with diastolic blood pressure (R = 0.34,

P,0.05) and serum LDL (R = 0.31, P,0.05) and negatively with

serum E2 (R = 20.34, P,0.05); these associations did not remain

after adjustment for BMI, waist circumference, and menopausal

group (Table 4). Postmenopausal women had higher urinary 5b-

THF excretion than premenopausal women regardless of

menstrual phase, with lower 5a-THF/5b-THF ratio compared

to premenopausal women in the follicular phase; these differences

persisted after adjustment for waist circumference and BMI.

11bHSD1 in Subcutaneous Adipose Tissue
Among premenopausal women 11bHSD1 expression was

higher in luteal vs. follicular phase of the menstrual cycle

(Fig. 1A). Postmenopausal women had a higher adipose 11bHSD1

expression vs. follicular phase premenopausal women. 11bHSD1

expression in adipose tissue correlated with waist circumference

(R = 0.56, P,0.001) but not BMI (Table 4). Linear regression

analysis showed that waist circumference and menopausal group

both independently affect the 11bHSD1 expression in adipose

tissue; b = 0.493, P,0.001 and b = 20.298, P,0.05, respectively.

11bHSD1 enzyme activity showed a close correlation with

11bHSD1 mRNA expression (Fig. 1B) but did not differ

significantly between groups (Fig. 1C). Enzyme activity was

positively associated with waist circumference (R = 0.66,

P,0.001), this remained after adjustment for BMI and meno-

pausal group (Table 4).

11bHSD1 expression correlated positively with systolic blood

pressure, cholesterol, LDL cholesterol, triglycerides, and adipose

aromatase expression (Table 4). In addition there was a negative

correlation with HDL cholesterol (Table 4). Of these correlations,

only the associations with aromatase and HDL cholesterol

remained after adjustment for BMI, waist circumference, and

menopausal group. A similar pattern was shown for adipose

11bHSD1 activity which correlated positively with LDL choles-

terol and aromatase and negatively with HDL cholesterol

(Table 4); only the latter remained after adjustments.

In Vivo Hepatic 11bHSD1 Activity
At 30 minutes post oral cortisone ingestion, serum cortisol levels

were higher in postmenopausal women than premenopausal

women in the follicular phase of the menstrual cycle (P,0.01,

Fig. 2); the difference remained after adjustment for BMI and waist

Table 1. Subject characteristics.

Premenopausal Postmenopausal

N 23 23

Age (yrs) 2765 6364***

BMI (kg/m2) 23.361.8 23.461.9

Waist circumference (cm) 79.767.3 82.865.5

SBP (mmHg) 112611 127614***

DBP (mmHg) 6969 7469

AST (ukat/L) 0.3260.06 0.4160.07***

ALT (ukat/L) 0.3160.09 0.4360.07***

HOMA-IR 0.9360.34 0.6660.18**

Glucose (mmol/L) 4.6260.35 4.7260.40

Insulin (mIU/L) 7.362.4 5.161.7***

SBP, systolic blood pressure; DBP, diastolic blood pressure; AST, aspartate
aminotransferase; ALT alanine aminotransferase; HOMA-IR, Homeostasis Model
Assessment for Insulin Resistance.
**P,0.01 and ***P,0.001 vs. premenopausal women.
doi:10.1371/journal.pone.0008475.t001
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circumference. This indicates a faster conversion of cortisone to

cortisol on first pass through the liver, suggesting increased hepatic

11bHSD1 reductase activity in the postmenopausal women.

Similar to the measures of adipose 11bHSD1, serum cortisol

levels at 30 min post cortisone ingestion, correlated positively with

systolic blood pressure, serum cholesterol, and LDL cholesterol.

The associations to serum cholesterol and LDL cholesterol

remained after adjustment for BMI, waist circumference, and

menopausal group (Table 4). There were also negative correlations

with serum estradiol and testosterone levels before adjustments

(Table 4).

Discussion

The postmenopausal women in this study had a higher urinary

cortisol/cortisone metabolites ratio suggestive of increased total

body 11bHSD1 activity. Importantly, we found higher transcript

levels of the glucocorticoid-generating enzyme 11bHSD1 in

Table 3. Urinary corticosteroid metabolites.

Premenopausal (follicular phase) Premenopausal (luteal phase) Postmenopausal

N 18 18 23

THE (mg/day) 2,48061319 2,65361988 2,5076698

5bTHF (mg/day) 1,0106522 9866643 1,5866432***{{

5aTHF (mg/day) 1,1176750 1,0236886 9756427

Cortisone (mg/day) 116636 110645 113634

Cortisol (mg/day) 117649 93642 91632*

(5bTHF+5aTHF)/THE 0.9660.59 0.8760.47 1.0860.28{

5aTHF/5bTHF 1.4161.48 1.0760.70 0.6960.44*

5a-THF/cortisol 9.4965.23 10.6168.57 11.5966.24

5b-THF/cortisol 9.1765.17 11.5967.68 19.6968.18***{{

THE/cortisone 21.3669.79 23.16613.29 24.12611.43

Cortisol/cortisone 1.0160.24 0.8960.26 0.8660.34*

Total urinary metabolites 4,84062,341 4,86563,193 5,27361,002

Three women in each premenopausal group were found not to be in the anticipated phase of the menstrual cycle, one woman in follicular phase did not comply with
the instructions of the urine collection and two women in luteal and one woman in follicular phase of the menstrual cycle did not collect urine. *P,0.05 and ***P,0.001
vs. follicular phase.
{P,0.05 and {{P,0.01 vs. luteal phase. THF, tetrahydrocortisol; THE, tetrahydrocortisone.
doi:10.1371/journal.pone.0008475.t003

Table 2. Circulating levels of steroids and lipids and adipose aromatase transcript levels.

Premenopausal (follicular phase) Premenopausal (luteal phase) Postmenopausal

N 19 17 23

Circulating steroids

Estradiol (pmol/L) 2006142{ 3486141 2066***{{{

Progesterone (nmol/L) 2.3060.79{{{ 32.53616.44 1.3260.47***{{{

Testosterone/SHBG 0.02360.02 0.02160.019 0.01160.006*{

Cortisol (nmol/L) 4766184 7386207 4726141

Blood lipids

Cholesterol (mmol/L) 4.160.8{ 3.961.0 6.261.1***{{{

HDL cholesterol (mmol/L) 1.6660.39 1.5460.38 1.8360.31{

LDL cholesterol (mmol/L) 2.1360.62{{ 2.0860.72 3.9161.02***{{{

Triglycerides (mmol/L) 0.7160.17 0.6660.14 1.0860.34***{{{

ApoA1 (mg/L) 1,3916211 1,3016219 1,5766176**{{{

ApoB (mg/L) 7356156{{{ 7176200 1,2126262**{{{

Adipose gene expression

Aromatase 11,20367565 11,52267454 11,86365506

One woman in follicular phase and three in the luteal phase of the menstrual cycle did not have the biopsy and three women in each premenopausal group were found
not to be in the correct menstrual phase. 11bHSD1, 11b-hydroxyteroid dehydrogenase type 1; PPIA, Cyclophilin A; SHBG, Sex hormone-binding globulin; HDL, high-
density lipoprotein; LDL low-density lipoprotein; ApoA1, Apolipoprotein A-1; ApoB, Apolipoprotein B. N = 16 for luteal phase blood lipid data.
*P,0.05, **P,0.01 and ***P,0.001 vs. follicular phase.
{P,0.05, {{P,0.01 and {{{P,0.001 vs. luteal phase.
doi:10.1371/journal.pone.0008475.t002
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subcutaneous fat with concomitantly increased first-pass conver-

sion of cortisone to cortisol, suggesting increased hepatic

11bHSD1 activity. These findings support an elevation in

11bHSD1 activity in older menopausal women in both adipose

tissue and liver, resulting in a tissue-specific increase in

glucocorticoid exposure despite unaltered circulating cortisol

levels. Waist circumference was closely linked with increased

adipose tissue 11bHSD1 transcript levels and enzyme activity.

However, 11bHSD1 transcript levels in adipose tissue were also

independently affected by menopausal/age group. Additionally,

the differences in hepatic and whole-body 11bHSD1 activity

between premenopausal and postmenopausal women were

independent of waist circumference, suggesting an effect of age/

menopausal group over and above the associations between

centralization of body fat and 11bHSD1.

Whether these changes are related to age and/or menopause

per se cannot be determined from this cross-sectional study.

Notably, decreased circulating estrogen levels due to ovariectomy

or menopause in rodents and/or humans results in increased body

fat mass with central distribution [23,24]. This change in body

composition, linked to insulin resistance and increased risk of

cardiovascular disease in postmenopausal women, can be reversed

by estrogen replacement therapy [23,24]. However, data from

studies of the effects of estrogen on 11bHSD1 in adipose tissue are

sparse and partly conflicting, and included mixed cohorts of both

pre- and postmenopausal women, with varying BMI, and/or a

limited number of samples [25–27]. In our study serum E2 levels

correlated negatively with measures of both whole body and

hepatic 11bHSD1 activity, supporting a down-regulatory effect of

E2. However, this is confounded by putative effects of age/

menopausal status and body composition. Notably, we did not find

an association between serum E2 levels and adipose 11bHSD1

expression or activity, which may suggest tissue-specific differences

in the interaction between estrogen and 11bHSD1.

In contrast, we found a positive association between aromatase

and 11bHSD1 gene expression in adipose tissue, independent of

adiposity and menopausal group. In postmenopausal women,

aromatase activity is the main source of E2, and aromatase

expression has been shown to increase after menopause [25,28].

The positive correlation with aromatase hence suggests an up-

regulatory effect of E2 on 11bHSD1 expression in adipose tissue,

but this may also be related to glucocorticoids driving the

promoter activity of the aromatase gene [29]. Therefore, our

observations regarding E2 and 11bHSD1 are inconsistent and

need further investigation to elucidate whether estrogen deficiency

underpins elevated 11bHSD1 in the postmenopausal state.

There are alterations in cytokines and other hormones with age

and menopause which may influence 11bHSD1 levels [30]. With

menopause there is an increased immune activation with increased

serum levels of proinflammatory cytokines [31]. Interestingly,

cytokines such as TNF-a influence 11bHSD1 expression and

activity [32], and it would therefore be of interest to study possible

associations between immune responses and glucocorticoid

activation in these subjects. An alternative explanation related to

Table 4. Bivariate correlations for adipose 11bHSD1 expression and activity, urinary THFs/THE and hepatic 11bHSD1 activity versus
anthropometric data, sex steroids, hormones and gene expression of aromatase.

Correlation coefficients (Pearson correlation)

Adipose 11bHSD1mRNA Adipose 11bHSD1-EA Urinary THFs/THE Hepatic 11bHSD1-EA

N 42 33 41 40

11bHSD-EA 0.85*** n.a. n.a. n.a.

Anthropometric variables

Waist circumference 0.56*** 0.66*** 0.31 20.01

BMI 0.10 0.25 0.07 20.15

SBP 0.44** 0.30 0.27 0.38*

DBP 0.22 0.17 0.34* 0.16

Blood analyses

Insulin 20.13 0.07 20.17 20.09

Glucose 0.04 0.07 20.08 20.01

Cholesterol 0.39* 0.20 0.29 0.58***, {

HDL cholesterol 20.35*, { 20.48**, { 20.01 0.18

LDL cholesterol 0.50** 0.35* 0.31* 0.58***, {

Triglycerides 0.34* 0.21 0.17 0.29

Sex steroids

Aromatase mRNA 0.58***, { 0.44* n.a. n.a.

Estradiol 20.30 20.16 20.34* 20.48**

Progesterone 20.21 20.09 20.20 20.08

Testosterone/SHBG 0.02 0.10 20.18 20.33*

Premenopausal women in follicular phase of the menstrual cycle and postmenopausal women were included. Enzyme activity was measured as percent conversion of
cortisol to cortisone after 24 h incubation. Urinary THFs/THE gives a measure of whole body 11bHSD1 activity. Hepatic 11bHSD1 activity was measured as serum cortisol
30 minutes after oral cortisone. 11bHSD1, 11b-hydroxysteroid dehydrogenase type 1; EA, Enzyme activity; THFs/THE, (5a-tetrahydrocortisol+5b-tetrahydrocortisol)/5b-
tetrahydrocortione; SBP, systolic blood pressure; DBP, diastolic blood pressure, n.a., not applicable. Data are correlation coefficients (Pearson correlation).
*P,0.05, **P,0.01, and ***P,0.001.
{Association significant after adjusting for waist circumference, BMI, and menopausal group (partial correlation).
doi:10.1371/journal.pone.0008475.t004
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menopausal status is progesterone deficiency, which has not been

studied in detail. Notably, we did not find any associations

between serum progesterone levels and measures of 11bHSD1

expression/activity. However, among premenopausal women

adipose 11bHSD1 expression was higher in the luteal phase of

the menstrual cycle, which is characterized by high serum estrogen

and progesterone levels, compared to the follicular phase. On the

other hand, consistent with previous studies [15] we did not find

differences in urinary steroid ratios, or liver 11bHSD1 activity

within the menstrual cycle. Further experimental analyses of the

role of progesterone in tissue-specific glucocorticoid activation

therefore seem warranted.

11bHSD1 activity and mRNA expression in adipose tissue were

strongly correlated but there was no significant difference in

11bHSD1 activity between groups. The lack of a statistically

significant difference may at least partly be due to low power as

there were fewer samples available for these analyses due to lack of

tissue homogenate. Importantly, 11bHSD1 activity is relatively

low in this BMI range (compared to levels seen in obese subjects,

[21]) and in line with this, the previously reported association

between 11bHSD1 activity/expression and BMI [9,21] was not

detected in this study cohort.

Our results from the hepatic cortisone-to-cortisol conversion test

indicate higher 11bHSD1 activity in the liver of postmenopausal

women. This contrast with previous observations in overweight

individuals, where we and others have suggested a reduced

11bHSD1 activity in liver in combination with up-regulation of

activity/expression in adipose tissue [9,20,21]. Interestingly,

gonadal dysfunction and increased body fat percentage with

normal body weight is linked to increased hepatic cortisone

conversion in patients with myotonic dystrophy [33]. These

patients develop fatty livers and, although liver fat content was not

estimated in the present study, the postmenopausal women of our

study had significantly higher serum levels of liver enzymes (AST,

ALT), which is linked to increased liver fat content.

The balance between cortisol and cortisone and their

metabolites in urine has often been used as an estimation of the

whole body activity of 11bHSD1. We found a higher THFs/THE

ratio in postmenopausal women, which is in part explained by

their higher 5bTHF levels. This is consistent with an overall

increase in 11bHSD1 activity with menopause/older age, and

similar to what we have previously observed with increasing BMI

in pre-/perimenopausal women, but contrary to the findings in a

Figure 1. Subcutaneous adipose tissue 11bHSD1. A 11bHSD1
transcript levels were normalized to endogenous control Cyclophilin A.
*P,0.05, ** P,0.01, N = 19, 17, and 23 for the premenopausal follicular
(%), luteal (&), and postmenopausal (m) groups, respectively. One
woman in follicular phase and three in the luteal phase of the menstrual
cycle did not have the biopsy and three women in each premenopausal
group were found not to be in the correct phase. Data were natural log-
transformed to achieve normal distribution. B Correlation between
adipose 11bHSD1 activity after 24 hr incubation (percent conversion) and
adipose 11bHSD1 mRNA expression (relative to Cyclophilin A). Premen-
opausal follicular (%), luteal (&), and postmenopausal women (m). Linear
regression line is shown for the postmenopausal group, dotted lines
denotes the 95% confidence interval. C Subcutaneous adipose tissue
11bHSD1 activity was measured as percent conversion of cortisol to
cortisone over time in tissue homogenates, protein concentration 3 mg/
ml. N = 13, 10, and 20 for premenopausal follicular (%), luteal (&), and
postmenopausal women (m), respectively. There were no significant
differences between the groups. Data were ln-transformed to achieve
normal distribution and are shown as means6SEM.
doi:10.1371/journal.pone.0008475.g001

Figure 2. Hepatic 11bHSD1 activity. Serum cortisol levels after
overnight dexamethasone suppression and oral cortisone intake
(25 mg). Postmenopausal women (m, N = 23) had higher serum cortisol
levels at 30 min post cortisone intake than premenopausal women in
follicular phase of the menstrual cycle (%, N = 17). *P,0.05 and
**P,0.01 for postmenopausal vs. premenopausal follicular phase.
Luteal phase, &, N = 16. Data are means6SEM.
doi:10.1371/journal.pone.0008475.g002
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parallel study in men [9,21]. However, we did not find an

association between the THFs/THE ratio and BMI and we only

saw a trend towards a positive correlation with waist circumfer-

ence. Notably, the urinary THFs/THE ratio does not distinguish

the activities of 11bHSD type 1 and 2, the latter which catalyses

the deactivation of cortisol to cortisone. Moreover, the changes in

5a-THF/5b-THF ratio and of 5b-THF/cortisol ratio in post-

menopausal women raise the possibility of confounding effects due

to variation in 5b-reductase activity. Increased 5b-reductase would

be expected to decrease, rather than increase, the plasma cortisol

values after oral cortisone. With the hepatic cortisone-to-cortisol

conversion-test data in mind we therefore conclude that there is

increased liver 11bHSD1 activity after the menopause but this

may not be the only reason for alterations in urinary cortisol

metabolite ratios. There is thus a need for further studies using

isotopically labelled cortisol to evaluate whole body 11bHSD1

enzyme activity [34].

Unfortunately we did not have the opportunity to assess visceral

adipose tissue expression and activity of 11bHSD1. This would

have been most interesting especially with regard to the

redistribution of adipose tissue commonly seen with menopause

with increased abdominal depots. Although animal studies

indicate higher 11bHSD1 levels in the visceral adipose tissue, at

least with obesity, some human studies have shown higher

expression in the subcutaneous depot [20,35–41].

In accordance with previous studies in transgenic mice [11–13]

we found that, overall, higher 11bHSD1 was associated with

higher blood pressure and a less beneficial blood lipid profile;

higher total cholesterol, low-density lipoprotein, and triglycerides

and lower high-density lipoprotein, which links to increased risk of

cardiovascular disease. However, we did not find any associations

with insulin or glucose. Rather, the lower HOMA-IR indices

found in postmenopausal women was mainly due to lower fasting

insulin levels in this group. Interestingly, insulin secretion is lower

in postmenopausal vs. premenopausal women and this may

contribute to our finding [42]. However, this observation may also

be explained by genetic factors, diet and/or exercise habits, since

the older women have managed to remain lean past the

menopause. It should thus be considered that by recruiting

normal weight postmenopausal women we may have introduced a

bias in this cohort.

In conclusion, we suggest that menopause/older age linked to

central fat distribution in normal weight women is associated with

increased tissue-specific glucocorticoid exposure via 11bHSD1.

This may contribute to dysmetabolic changes linked to the

increased risk of cardiovascular disease in postmenopausal women.
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recruiting the subjects and the clinical measurements, and Jill Harrison for

excellent technical assistance with gas chromatographic mass spectrometric

analyses.

Author Contributions

Conceived and designed the experiments: TCA MS CM TO. Performed

the experiments: TCA KS RA MS CM. Analyzed the data: TCA KS RA

JB BRW CM TO. Contributed reagents/materials/analysis tools: RA

BRW CM TO. Wrote the paper: TCA KS RA JB BRW CM TO.

References

1. Bjorkelund C, Lissner L, Andersson S, Lapidus L, Bengtsson C (1996)

Reproductive history in relation to relative weight and fat distribution.

Int J Obes Relat Metab Disord 20: 213–219.

2. Shen W, Punyanitya M, Silva AM, Chen J, Gallagher D, et al. (2009) Sexual

dimorphism of adipose tissue distribution across the lifespan: a cross-sectional

whole-body magnetic resonance imaging study. Nutr Metab (Lond) 6: 17.

3. Carr MC (2003) The emergence of the metabolic syndrome with menopause.

J Clin Endocrinol Metab 88: 2404–2411.

4. Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi MG, et al. (2005) Obesity

and the risk of myocardial infarction in 27,000 participants from 52 countries: a

case-control study. Lancet 366: 1640–1649.

5. Mendelsohn ME, Karas RH (2005) Molecular and cellular basis of

cardiovascular gender differences. Science 308: 1583–1587.

6. Walker BR, Andrew R (2006) Tissue production of cortisol by 11beta-

hydroxysteroid dehydrogenase type 1 and metabolic disease. Ann N Y Acad

Sci 1083: 165–184.

7. Seckl JR, Morton NM, Chapman KE, Walker BR (2004) Glucocorticoids and

11beta-hydroxysteroid dehydrogenase in adipose tissue. Recent Prog Horm Res

59: 359–393.

8. Mattsson C, Reynolds RM, Simonyte K, Olsson T, Walker BR (2009)

Combined receptor antagonist stimulation of the hypothalamic-pituitary-adrenal

axis test identifies impaired negative feedback sensitivity to cortisol in obese men.

J Clin Endocrinol Metab 94: 1347–1352.

9. Rask E, Walker BR, Soderberg S, Livingstone DE, Eliasson M, et al. (2002)

Tissue-specific changes in peripheral cortisol metabolism in obese women:

increased adipose 11beta-hydroxysteroid dehydrogenase type 1 activity. J Clin

Endocrinol Metab 87: 3330–3336.

10. Morton NM, Paterson JM, Masuzaki H, Holmes MC, Staels B, et al. (2004)

Novel adipose tissue-mediated resistance to diet-induced visceral obesity in 11

beta-hydroxysteroid dehydrogenase type 1-deficient mice. Diabetes 53:

931–938.

11. Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, et al. (2001) A

transgenic model of visceral obesity and the metabolic syndrome. Science 294:

2166–2170.

12. Masuzaki H, Yamamoto H, Kenyon CJ, Elmquist JK, Morton NM, et al. (2003)

Transgenic amplification of glucocorticoid action in adipose tissue causes high

blood pressure in mice. J Clin Invest 112: 83–90.

13. Paterson JM, Morton NM, Fievet C, Kenyon CJ, Holmes MC, et al. (2004)

Metabolic syndrome without obesity: Hepatic overexpression of 11

beta-hydroxysteroid dehydrogenase type 1 in transgenic mice. Proc Natl Acad

Sci U S A 101: 7088–7093.

14. Kalleinen N, Polo-Kantola P, Irjala K, Porkka-Heiskanen T, Vahlberg T, et al.

(2008) 24-hour serum levels of growth hormone, prolactin, and cortisol in pre-

and postmenopausal women: the effect of combined estrogen and progestin

treatment. J Clin Endocrinol Metab 93: 1655–1661.

15. Finken MJ, Andrews RC, Andrew R, Walker BR (1999) Cortisol metabolism in

healthy young adults: sexual dimorphism in activities of A-ring reductases, but

not 11beta-hydroxysteroid dehydrogenases. J Clin Endocrinol Metab 84:

3316–3321.

16. Jamieson PM, Nyirenda MJ, Walker BR, Chapman KE, Seckl JR (1999)

Interactions between oestradiol and glucocorticoid regulatory effects on liver-

specific glucocorticoid-inducible genes: possible evidence for a role of hepatic

11beta-hydroxysteroid dehydrogenase type 1. J Endocrinol 160: 103–109.

17. Low SC, Chapman KE, Edwards CR, Wells T, Robinson IC, et al. (1994)

Sexual dimorphism of hepatic 11 beta-hydroxysteroid dehydrogenase in the rat:

the role of growth hormone patterns. J Endocrinol 143: 541–548.

18. Nwe KH, Hamid A, Morat PB, Khalid BA (2000) Differential regulation of the

oxidative 11beta-hydroxysteroid dehydrogenase activity in testis and liver.

Steroids 65: 40–45.

19. Gabrielsson BG, Olofsson LE, Sjogren A, Jernas M, Elander A, et al. (2005)

Evaluation of reference genes for studies of gene expression in human adipose

tissue. Obes Res 13: 649–652.

20. Livingstone DE, Jones GC, Smith K, Jamieson PM, Andrew R, et al. (2000)

Understanding the role of glucocorticoids in obesity: tissue-specific alterations of

corticosterone metabolism in obese Zucker rats. Endocrinology 141: 560–563.

21. Rask E, Olsson T, Soderberg S, Andrew R, Livingstone DE, et al. (2001) Tissue-

specific dysregulation of cortisol metabolism in human obesity. J Clin Endocrinol

Metab 86: 1418–1421.

22. Best R, Nelson SM, Walker BR (1997) Dexamethasone and 11-dehydrodex-

amethasone as tools to investigate the isozymes of 11 beta-hydroxysteroid

dehydrogenase in vitro and in vivo. J Endocrinol 153: 41–48.

23. Dubuc PU (1974) Effects of estradiol implants on body weight regulation in

castrated and intact female rats. Endocrinology 95: 1733–1736.

24. Genazzani AR, Gambacciani M (2006) Effect of climacteric transition and

hormone replacement therapy on body weight and body fat distribution.

Gynecol Endocrinol 22: 145–150.

25. Dieudonne MN, Sammari A, Dos Santos E, Leneveu MC, Giudicelli Y, et al.

(2006) Sex steroids and leptin regulate 11beta-hydroxysteroid dehydrogenase I

11bHSD in Normal Weight Women

PLoS ONE | www.plosone.org 7 December 2009 | Volume 4 | Issue 12 | e8475



and P450 aromatase expressions in human preadipocytes: Sex specificities.

J Steroid Biochem Mol Biol 99: 189–196.

26. Engeli S, Bohnke J, Feldpausch M, Gorzelniak K, Heintze U, et al. (2004)

Regulation of 11beta-HSD genes in human adipose tissue: influence of central

obesity and weight loss. Obes Res 12: 9–17.

27. Paulsen SK, Nielsen MP, Richelsen B, Bruun JM, Flyvbjerg A, et al. (2008)

Upregulation of adipose 11-beta-hydroxysteroid dehydrogenase type 1 expres-

sion in ovariectomized rats is due to obesity rather than lack of estrogen. Obesity

(Silver Spring) 16: 731–735.

28. Misso ML, Jang C, Adams J, Tran J, Murata Y, et al. (2005) Adipose aromatase

gene expression is greater in older women and is unaffected by postmenopausal

estrogen therapy. Menopause 12: 210–215.

29. Zhao Y, Mendelson CR, Simpson ER (1995) Characterization of the sequences

of the human CYP19 (aromatase) gene that mediate regulation by glucocorti-

coids in adipose stromal cells and fetal hepatocytes. Mol Endocrinol 9: 340–349.

30. Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GG, et al. (2004)

11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of

glucocorticoid response. Endocr Rev 25: 831–866.

31. Pfeilschifter J, Koditz R, Pfohl M, Schatz H (2002) Changes in proinflammatory

cytokine activity after menopause. Endocr Rev 23: 90–119.

32. Tomlinson JW, Moore J, Cooper MS, Bujalska I, Shahmanesh M, et al. (2001)

Regulation of expression of 11beta-hydroxysteroid dehydrogenase type 1 in

adipose tissue: tissue-specific induction by cytokines. Endocrinology 142:

1982–1989.

33. Johansson A, Andrew R, Forsberg H, Cederquist K, Walker BR, et al. (2001)

Glucocorticoid metabolism and adrenocortical reactivity to ACTH in myotonic

dystrophy. J Clin Endocrinol Metab 86: 4276–4283.

34. Andrew R, Smith K, Jones GC, Walker BR (2002) Distinguishing the activities

of 11beta-hydroxysteroid dehydrogenases in vivo using isotopically labeled
cortisol. J Clin Endocrinol Metab 87: 277–285.

35. Andersson T, Soderstrom I, Simonyte K, Olsson T (2009) Estrogen Reduces

11beta-Hydroxysteroid Dehydrogenase Type 1 in Liver and Visceral, but Not
Subcutaneous, Adipose Tissue in Rats. Obesity (Silver Spring) in press.

36. Lee MJ, Fried SK, Mundt SS, Wang Y, Sullivan S, et al. (2008) Depot-specific
regulation of the conversion of cortisone to cortisol in human adipose tissue.

Obesity (Silver Spring) 16: 1178–1185.

37. Li X, Lindquist S, Chen R, Myrnas T, Angsten G, et al. (2007) Depot-specific
messenger RNA expression of 11 beta-hydroxysteroid dehydrogenase type 1 and

leptin in adipose tissue of children and adults. Int J Obes (Lond) 31: 820–828.
38. McKenzie J, Fisher BM, Jaap AJ, Stanley A, Paterson K, et al. (2006) Effects of

HRT on liver enzyme levels in women with type 2 diabetes: a randomized
placebo-controlled trial. Clin Endocrinol (Oxf) 65: 40–44.

39. Simonyte K, Rask E, Naslund I, Angelhed JE, Lonn L, et al. (2009) Obesity Is

Accompanied by Disturbances in Peripheral Glucocorticoid Metabolism and
Changes in FA Recycling. Obesity (Silver Spring) 17: 1982–1987.

40. Walker GE, Verti B, Marzullo P, Savia G, Mencarelli M, et al. (2007) Deep
subcutaneous adipose tissue: a distinct abdominal adipose depot. Obesity (Silver

Spring) 15: 1933–1943.

41. Veilleux A, Rheaume C, Daris M, Luu-The V, Tchernof A (2009) Omental
adipose tissue type 1 11 beta-hydroxysteroid dehydrogenase oxoreductase

activity, body fat distribution, and metabolic alterations in women. J Clin
Endocrinol Metab 94: 3550–3557.

42. Walton C, Godsland IF, Proudler AJ, Wynn V, Stevenson JC (1993) The effects
of the menopause on insulin sensitivity, secretion and elimination in non-obese,

healthy women. Eur J Clin Invest 23: 466–473.

11bHSD in Normal Weight Women

PLoS ONE | www.plosone.org 8 December 2009 | Volume 4 | Issue 12 | e8475


