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Abstract

More and more people are concerned by the risk of unexpected side effects observed in the later steps of the development
of new drugs, either in late clinical development or after marketing approval. In order to reduce the risk of the side effects, it
is important to look out for the possible xenobiotic responses at an early stage. We attempt such an effort through a
prediction by assuming that similarities in microarray profiles indicate shared mechanisms of action and/or toxicological
responses among the chemicals being compared. A large time course microarray database derived from livers of
compound-treated rats with thirty-four distinct pharmacological and toxicological responses were studied. The mRMR
(Minimum-Redundancy-Maximum-Relevance) method and IFS (Incremental Feature Selection) were used to select a
compact feature set (141 features) for the reduction of feature dimension and improvement of prediction performance.
With these 141 features, the Leave-one-out cross-validation prediction accuracy of first order response using NNA (Nearest
Neighbor Algorithm) was 63.9%. Our method can be used for pharmacological and xenobiotic responses prediction of new
compounds and accelerate drug development.
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Introduction

With drug discovery now being driven primarily by bio-chemistry

and high-throughput screening, the biological effects and, in

particular, the pharmacology and toxicity of new compounds are

required to be studied and evaluated properly before they are

released. However, it is impossible to test every detail of a new

compound in vitro. It is necessary to predict the possible effects of

new drugs, and then experimental examinations can be initiated

and orientated, resulting in a new subject of study – toxicogenomics

[1,2,3,4,5] (combining the toxicology with some high-throughput

technologies) – which enables us to ask some detailed questions

about the possible drug effects very early on, thereby fundamentally

changing the traditional approaches for the drug discovery.

Microarray profiles have been used extensively in some basic

biological researches, biomarker determination, pharmacology,

drug target selectivity, development of prognostic tests and

determination of disease-subclass, as well as in toxicogenomics.

Microarray profile will also be used as the input data of

pharmacological and xenobiotic response for this study. The livers

play many roles in the body functioning, such as the control and

synthesis of critical blood constituents including glucose, free-fatty

acids, ketone bodies, amino acids, hormones, clotting factors, and

inflammatory mediators [6]. The liver is critical in defense against

certain infectious organisms and toxins, entered from the gastroin-

testinal tract [7]. Therefore, data from the liver xenobiotic and

pharmacological responses are used for analysis in the study.

Both the pharmaceutical industry and the Regulatory Author-

ities are, despite the increasing effort to develop safer drugs,

concerned by the risk of unexpected side effects observed in the

later steps of the development of new drugs, either in late clinical

development or after marketing approval. In order to reduce the

risk of the side effects, it is important to look out for the possible

xenobiotic responses at an early stage. We attempt such an effort

through a prediction by assuming that similarities in microarray

profiles indicate shared mechanisms of action and/or toxicological

responses among the chemicals being compared [8,9,10] since it

has been demonstrated that compounds with similar pharmaco-

logical or toxicological effects produced similar gene expression

profiles either in vitro [11] or in vivo [12,13] exposure conditions.

Because one drug may have multiple responses during the

regulatory time-course studies, the prediction should allow one

data to be allocated to multiple classes, i.e. a multiple-target

classification/prediction problem. 34 categories of pharmacolog-

ical and toxicological effects were adopted (Refer to Table 1) to be

the targets of each molecular compound. These categories are

divided according to the body and organ weight (BO), histopa-

thology (H), clinical pathology (CP) and structural activity class

(SAC).

Machine learning and data mining methods have been

widely used in the computational biology and bioinformatics

area. Many researchers have made lots of efforts to develop

useful algorithms and software to investigate various biology

problems such as protein post-translation modification, bio-
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Table 1. The Characteristics of 34 responses.

Unique ID Type Category Description Drugs

SV0567082R5RU T CP Absolute monocyte
increase

1-NAPHTHYL ISOTHIOCYANATE, IBUPROFEN, SULINDAC, FLUCONAZOLE, NAPROXEN,
ITRACONAZOLE, 4,49-METHYLENEDIANILINE, ERYTHROMYCIN, GERANIOL,
CHOLECALCIFEROL, OXICONAZOLE, CITRIC ACID, LANSOPRAZOLE, GENTIAN VIOLET,
CHLOROXYLENOL, PRAZIQUANTEL, CARBAMAZEPINE, NYSTATIN, PRAMOXINE, KETOROLAC,
PRALIDOXIME CHLORIDE, BENZETHONIUM CHLORIDE, ROFLUMILAST, IBUFENAC

SV0567098R5RU T CP Creatinine increase IBUPROFEN, NIMESULIDE, CISPLATIN, CHLOROFORM, LOMEFLOXACIN, FLUOXETINE,
PROPYLTHIOURACIL, TICLOPIDINE, PRIMAQUINE, ANISINDIONE, SULFADIAZINE, COLISTIN,
PYROGALLOL, TACRINE, ETODOLAC, ROXITHROMYCIN, AMIODARONE, NAFENOPIN

SV0567149R5RU T CP Albumin increase KETOCONAZOLE, FENOFIBRATE, LOVASTATIN, PREDNISOLONE, PRAVASTATIN,
AMOXAPINE, ISONIAZID, TOLAZAMIDE, DEFERIPRONE, PRIMIDONE, MEGESTROL ACETATE,
PIRINIXIC ACID, BUPROPION, BETAMETHASONE, FLUDROCORTISONE ACETATE,
HYDROCORTISONE, NAFENOPIN

SV0562011R5RU T CP Mean corpuscular
hemoglobin concentration
decrease (diagnostic,
3–7D time points)

CORTISONE, NIMETAZEPAM, THALIDOMIDE, ETODOLAC, ROXITHROMYCIN, ETHISTERONE,
OXYMETHOLONE, 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN, 3-METHYLCHOLANTHRENE,
PHENOBARBITAL, BETA-NAPHTHOFLAVONE, PERHEXILINE, ETHYLESTRENOL, CELECOXIB,
ROFECOXIB, BENOXAPROFEN

SV0571010R5RU T CP Mean corpuscular
hemoglobin concentration
decrease (predictive,
0.25–1D time points)

ROFECOXIB, ETODOLAC, ROXITHROMYCIN, NIMETAZEPAM, CORTISONE, THALIDOMIDE,
OXYMETHOLONE, ETHISTERONE, BETA-NAPHTHOFLAVONE, 3-METHYLCHOLANTHRENE,
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN, BENOXAPROFEN, ETHYLESTRENOL,
PERHEXILINE, CELECOXIB

SV0567088R5RU T CP Glucose increase KETOCONAZOLE, DEXAMETHASONE, THIOGUANINE, METHOTREXATE, CYCLOSPORIN A,
CARMUSTINE, NAPROXEN, CYPROTERONE ACETATE, PROMAZINE, ISONIAZID,
PYROGALLOL, BETAMETHASONE, HYDROCORTISONE, FLUOCINOLONE ACETONIDE

SV0650093R5RU T H Liver- centrilobular ,
inflammatory cell
infiltrate, mixed cell

ASPIRIN, LEFLUNOMIDE, PENICILLAMINE, CARBOPLATIN, BIS(2-ETHYLHEXYL)PHTHALATE,
CHLOROFORM, CLOFIBRIC ACID, CARBIMAZOLE, AMINOSALICYLIC ACID, ISONIAZID,
PYRAZINAMIDE, ACETAMINOPHEN, 3-METHYLCHOLANTHRENE, BETA-NAPHTHOFLAVONE,
ALPHA-NAPHTHOFLAVONE, 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN

SV0567153R5RU T CP Total protein
increase

CARMUSTINE, N,N-DIMETHYLFORMAMIDE, KETOCONAZOLE, AZATHIOPRINE,
CYPROTERONE ACETATE, PREDNISOLONE, PYROGALLOL, CORTISONE, ETHISTERONE,
MEGESTROL ACETATE, BETAMETHASONE, FLUDROCORTISONE ACETATE, ETHYLESTRENOL,
HYDROCORTISONE

SV0635003R5RU T CP Leukocyte count
increase

IBUPROFEN, 1-NAPHTHYL ISOTHIOCYANATE, BROMHEXINE, GENTIAN VIOLET,
CHLOROXYLENOL, NYSTATIN, PRAMOXINE, TICRYNAFEN, BENZETHONIUM CHLORIDE

SV0562020R5RU T CP Hemoglobin
decrease

IBUPROFEN, SULINDAC, DEXAMETHASONE, THIOGUANINE, NIMESULIDE, HYDROXYUREA,
CYTARABINE, INDOMETHACIN, DICLOFENAC, MELOXICAM, SULFISOXAZOLE,
LIPOPOLYSACCHARIDE E. COLI O55:B5, TRICHLOROACETIC ACID, PYROGALLOL,
ETODOLAC, BROMFENAC, KETOROLAC, PIOGLITAZONE, BENOXAPROFEN

SV0643003R5RU T BO Relative liver
weight decrease

SIMVASTATIN, ATORVASTATIN, DICLOFENAC, TAMOXIFEN, TOSUFLOXACIN, LOMEFLOXACIN,
3-METHYLCHOLANTHRENE, BETA-NAPHTHOFLAVONE, ALPHA-NAPHTHOFLAVONE, 2,3,7,8-
TETRACHLORODIBENZO-P-DIOXIN, CYCLOPROPANE CARBOXYLIC ACID

SV0562050R5RU T CP Alkaline phosphatase
decrease

SODIUM ARSENITE, KETOCONAZOLE, METHOTREXATE, MITOMYCIN C, ETODOLAC,
KETOROLAC, CYCLOPROPANE CARBOXYLIC ACID, ROFLUMILAST

SV0643002R5RU T BO Relative spleen
weight decrease

CHLORAMBUCIL, DEXAMETHASONE, THIOGUANINE, ROSIGLITAZONE, DOXORUBICIN,
LEFLUNOMIDE, KETOCONAZOLE, METHOTREXATE, BETAMETHASONE, HYDROCORTISONE,
EPIRUBICIN, FLUOCINOLONE ACETONIDE, DAUNORUBICIN, CYCLOPROPANE CARBOXYLIC
ACID

SV0562014R5RU T CP Mean corpuscular hemo-
globin decrease (diag-
nostic, 3–7D time points)

ETODOLAC, ROXITHROMYCIN, 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN, 3-
METHYLCHOLANTHRENE, PHENOBARBITAL, BETA-NAPHTHOFLAVONE, CYCLOPROPANE
CARBOXYLIC ACID

SV0562026R5RU T CP Leukocyte count
decrease

CHLORAMBUCIL, VALPROIC ACID, THIOGUANINE, CYTARABINE, DOXORUBICIN,
LEFLUNOMIDE, IFOSFAMIDE, CARMUSTINE, METHOTREXATE, PROCARBAZINE, MITOMYCIN
C, INDOMETHACIN, ETODOLAC, EPIRUBICIN, DAUNORUBICIN, CYCLOPROPANE
CARBOXYLIC ACID

SV0650033R5RU T H Liver-periportal,
hypertrophy

DEXAMETHASONE, ZOMEPIRAC, DICLOFENAC, MELOXICAM, MITOMYCIN C,
INDOMETHACIN, MESTRANOL, ETODOLAC, KETOROLAC, CARVEDILOL, EPIRUBICIN

SV0567174R5RU T CP Absolute basophil
increase

3-METHYLCHOLANTHRENE, BETA-NAPHTHOFLAVONE, ALPHA-NAPHTHOFLAVONE, 2,3,7,8-
TETRACHLORODIBENZO-P-DIOXIN, PERHEXILINE, ETHYLESTRENOL, CELECOXIB,
ROFECOXIB, BENOXAPROFEN

SV0642001R5RU T BO Relative liver
weight increase

DEXAMETHASONE, ITRACONAZOLE, KETOCONAZOLE, CYPROTERONE ACETATE, ARTEMISININ,
GENTIAN VIOLET, BETAMETHASONE, HYDROCORTISONE, FLUOCINOLONE ACETONIDE

SV0651106R5RU T H Liver-diffuse,
cytoplasm, eosinophilia

BEZAFIBRATE, FENOFIBRATE, FLUVASTATIN, CERIVASTATIN, ERYTHROMYCIN,
AMINOSALICYLIC ACID, PIRINIXIC ACID, VINBLASTINE

SV0575020R5RU T CP Lipase increase ATORVASTATIN, BISPHENOL A, KETOCONAZOLE, CLOTRIMAZOLE, BITHIONOL,
FLUVASTATIN, NITRAZEPAM

Predict Drug Responses
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molecular function classification, protein subcellular locations

and protein-DNA interaction [14,15,16,17,18,19,20,21,22,

23,24,25,26].

In this research, we present a classification of the liver

toxicogenomic data [27] to support decision making of drug

classification, or biomarkers when a new compound is entered

for examination. The following sections will describe the

microarray data obtained for the study, the analytical machine

learning method which include the classification model and

feature selection approach mRMR (Minimum-Redundancy-

Maximum-Relevance), the results of the prediction and some

discussions.

Materials and Methods

Original Data Set
The data used in this work are the time-series microarray data

that are extracted from a large liver xenobiotic and pharmaco-

logical response database of Iconix Biosciences. The data are

publicly available at GEO http://www.ncbi.nlm.nih.gov/geo

under accession number GSE8858. The initial data set consists

of 1695 individual animal studies and 5288 microarrays. GE

Healthcare/Amersham Biosciences CodeLink UniSet Rat I

Bioarray, layout EXP5280X2-584, layout EXP5280X2-613 and

layout EXP5280X2-648 containing about 10000 probes was used

to analyze the global gene expression in the livers of compound-

treated rats. Only treatments with gene expression data of day 1, 3

and 5 were involved in our analysis, including 402 treatments with

306 compounds.

Data Construction
First, we get a list of 10399 common probe sets between GE

Healthcare/Amersham Biosciences CodeLink UniSet Rat I Bioar-

ray, layout EXP5280X2-584, layout EXP5280X2-613 and layout

EXP5280X2-648. Secondly, the gene expression profiles of 402

treatments on day 1, 3 and 5 were obtained from corresponding 3563

microarrays by averaging the duplicated experiments. Then, the

control probe sets and probe sets without GenBank Accession

number were excluded. The probe sets with more than 30% missing

value were also excluded. This yields a subset of 9852 probes. After

probe filtering, the missing expression data were imputed using

nearest neighbor averaging. Finally, we normalized the expression

data of 402 treatments on day 1, 3 and 5 using quantile method.

Thus expression data of 9852 genes of each day (day 1, 3 or 5)

were involved in our study, producing 9852*3 = 29556 features for

each of the 402 samples. Each sample is to be allocated into the 34

categories listed in Table 1, with the allowance of multiple entries

into the categories, using the 29556 features.

Minimum Redundancy Maximum Relevance Feature
Selection

Minimum-Redundancy-Maximum-Relevance (mRMR) [28] is

a widely used method for feature selection. The goal of mRMR is

Unique ID Type Category Description Drugs

SV0571053R5RU T CP Absolute lymphocyte
decrease

CHLORAMBUCIL, THIOGUANINE, DEXAMETHASONE, DOXORUBICIN, KETOCONAZOLE,
BETAMETHASONE, FLUDROCORTISONE ACETATE, HYDROCORTISONE, EPIRUBICIN,
FLUOCINOLONE ACETONIDE, DAUNORUBICIN

SV0650143R5RU T H Liver-periportal,
fibrosis

1-NAPHTHYL ISOTHIOCYANATE, CARMUSTINE, LOMUSTINE, 4,49-METHYLENEDIANILINE,
CROTAMITON

SV0562116R5RU T CP Glucose decrease 1-NAPHTHYL ISOTHIOCYANATE, CLOTRIMAZOLE, NALOXONE, BETA-NAPHTHOFLAVONE,
ALPHA-NAPHTHOFLAVONE

SV0650106R5RU T H Liver- hepatocyte, peri-
portal, lipid accumulation

MICONAZOLE, ECONAZOLE, MIFEPRISTONE, ALPHA-NAPHTHOFLAVONE

SV0650121R5RU T H Liver- hepatocyte, centri-
lobular, lipid accumulation,
microvesicular

SULINDAC, MICONAZOLE, INDOMETHACIN, CHLOROFORM

SV0599196R5RU P SAC GR-MR agonist DEXAMETHASONE, PREDNISOLONE, CORTISONE, BETAMETHASONE, FLUDROCORTISONE
ACETATE, HYDROCORTISONE, FLUOCINOLONE ACETONIDE

SV0614125R5RU T SAC Toxicant, DNA
alkylator

N-NITROSODIETHYLAMINE, HYDRAZINE, 2-ACETYLAMINOFLUORENE, 4,49-
METHYLENEDIANILINE, AFLATOXIN B1, N-NITROSODIMETHYLAMINE

SV0614137R5RU P SAC Estrogen receptor
agonist, steroidal

ETHINYLESTRADIOL, BETA-ESTRADIOL, BETA-ESTRADIOL 3-BENZOATE, ESTRIOL,
MESTRANOL

SV0614148R5RU P SAC PPAR a agonist, fibric acid GEMFIBROZIL, BEZAFIBRATE, CLOFIBRIC ACID, PIRINIXIC ACID, NAFENOPIN

SV0599539R5RU P SAC H+/K+ ATPase inhibitor OMEPRAZOLE, PANTOPRAZOLE, LANSOPRAZOLE, RABEPRAZOLE

SV0614270R5RU P SAC PDE4 inhibitor PICLAMILAST, ROFLUMILAST, ROLIPRAM, SCH-351591

SV0599291R5RU T SAC Toxicant, heavy metal (3, 5
and 7D, other non- metal
toxicants in negative class)

SODIUM ARSENITE, LEAD(IV) ACETATE, LEAD (II) ACETATE

SV0614202R5RU T SAC Toxicant, heavy metal (0.25–
7D allowed, other toxicants
not in negative class)

SODIUM ARSENITE, LEAD (II) ACETATE, LEAD(IV) ACETATE

SV0614084R5RU P SAC HMG-CoA reductase inhibitors ATORVASTATIN, FLUVASTATIN, CERIVASTATIN

The ‘‘type’’ column indicates the toxicity-type (T) or the pharmacology-type (P); there are four categories of responses presented, body and organ weight (BO),
histopathology (H), clinical pathology (CP) and structure activity class (SAC).
doi:10.1371/journal.pone.0008126.t001

Table 1. Cont.
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to select a feature subset that can best characterize the statistical

property of a target classification variable, subject to the constraint

that these features are mutually as dissimilar to each other as

possible, but marginally as similar to the classification variable as

possible.

The feature which has maximum relevance with the target

variable and minimum redundancy within the features is defined

as a ‘‘good’’ feature. Mutual information (MI) is defined to

describe both relevance and redundancy:

I(x,y)~

ðð
p(x,y) log

p(x,y)

p(x)p(y)
dxdy ð1Þ

Where x and y are two vectors; p(x,y) is the joint proba-

bilistic density; p(x) and p(y) are the marginal probabilistic

densities.

The whole vector set is defined as V, The selected vector set

with m vectors is defined as Vs, and the to-be-selected vector set

with n vectors is defined as Vt. Relevance D of a feature f in Vt

can be calculated by Eq (2):

D~I(f ,c) ð2Þ

Here c is a classification variable.

Redundancy R of a feature f in Vt with all the features in Vs

can be calculated by Eq (3):

R~
1

m

X
fi[Vs

I(f ,fi) ð3Þ

mRMR function maximize relevance and minimize redundancy

by integrating Eq (2) and Eq (3):

max
fj[Vt

I(fj ,c){
1

m

X
fi[Vs

I(fj,fi)

" #
(j~1,2,:::,n) ð4Þ

After the pre-evaluation procedure, a feature set S is provided:

S~ f0

0
,f1

0
,:::,fh

0
,:::,fN{1

0
h i

ð5Þ

the feature index reflects the evaluations for feature. The

feature which fits the Eq(4) better will be added to the set S

earlier. For example, If a,b, fa is considered to be better

than fb.

Prediction Model
With the mRMR selected features, Nearest Neighbor Algorithm

(NNA) [29] is used to classify the data into the above mentioned

categories. NNA allocates a new data into categories by comparing

the features of the data with the features of those that have known

categories. The similarity between two vectors px, py is defined as

[25]:

D(px,py)~1{
px
:py

jjpxjj:jjpyjj
ð6Þ

where px
:py is the inner product of px and py, and ||p|| is the

module of vector p. px and py are considered to be more similar if

D(px,py) is smaller.

Traditionally, NNA chooses to classify the new pattern pt into

the class of its nearest neighbor which has the smallest D(pn,pt).

That is:

D(pn,pt)~ minfD(p1,pt),D(p2,pt),:::,D(pz,pt),:::,D(pN ,pt)g

(z=t)
ð7Þ

where N represents the number of training samples.

Because this research is about multi-target classification i.e. a

data can belong to more than one category, the prediction model

needs to be adjusted to cope with the multi-target problem. In the

prediction of multi-targets, if D(pm,pt),D(pn,pt), it means that pt is

closer to pm than to pn. Thus we rank the predicted classes of each

drug data as:

class iƒclass j if D(pi,pt)ƒD(pj ,pt)

D(pi,pt)~ minfD(p1,pt),D(p2,pt),:::,D(pZ,pt),:::D(pN ,pt)g

(z=t,pz[class i)

ð8Þ

From Eq. (8), we can get a list with the most likely class (defined as

order-1 response) to be in the first position, and the second likely

class (defined as order-2 response) to be in the second position, and

so on.

Jackknife Cross-Validation Method
Jackknife Cross-Validation Method [14,18] is an effective and

objective way to evaluate statistical predictions. Each sample in the

data set is in turn knocked out and tested by the predictor trained

by the other samples remaining in the data set. During the process,

every sample is used not only for the training, but also for the

testing. The prediction accuracy Q for overall samples was used to

evaluate the performance of predictor:

Q~
TPzTN

TPzTNzFPzFN
ð9Þ

where TP, TN, FP and FN stand for true positive, true negative,

false positive and false negative, respectively.

Incremental Feature Selection (IFS)
mRMR only provides a list of features by sorting the features

according to their importance to the prediction without telling

how many fore features in the list should be selected. The fore

features are selected by testing all possible feature sets, and

choosing the feature set that achieves the best prediction rate. A

possible feature subset Si can be expressed by the following

equation.

Si~ff0,f1,:::,fig(0ƒiƒN{1) ð10Þ

The initial feature subset is S0~ff0g, and the last feature subset is

SN{1~ff0,f1,:::,fN{1g which includes all the features. Jackknife

test is then used to obtain the accurate prediction rates of all the

feature subsets. The one that achieves the highest prediction

accuracy is considered to be optimized feature set selected by IFS.

We can plot a curve, called IFS curve, with index i as its x-axis and

the overall accurate rate as its y-axis.

Results

IFS Curves of the Drug Responses
Because a drug may have several pharmaceutical responses, Eq.

8 is used to rate all the available responses. We only take the first

Predict Drug Responses
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three responses for every drug. And more will be available if they

are needed in a future research. The cumulated prediction

accuracies of first one, two, and three responses using different

number of features, are shown in Figure 1, evaluated by jackknife

cross-validation test. The highest prediction accuracy of first order

response was 63.9% with 141 features. The highest cumulated

prediction accuracies of first two responses and first three

responses were also achieved with these 141 features. The detailed

information of the IFS procedure and these 141 features can be

found in Table S1 and Table S2.

IFS Feature Selection and the Prediction Accuracy
141 features are selected as the result according to the IFS

curves. Using these 141 features, the highest prediction accuracy

for the first order response is 63.9%, evaluated by jackknife cross-

validation test. Unfortunately, the prediction accuracy is rather

low, which might be due to the sparse data points in the high-

dimensional feature space. More samples could be used in a future

research to study how much the prediction accuracy is affected by

the number of samples available for training and predicting the

prediction model. And the biological relevance of these 141

features was explored by KEGG and GO category enrichment

analysis.

The KEGG category enrichment analysis (see Table S3) shows

that two of the 141 features, Cyp3a9 and Ephx1, involves in the

pathway for the metabolism of xenobiotics by cytochrome P450.

Cytochrome P450s (CYP), comprising a superfamily of heme-

thiolate proteins, is the main metabolizing enzyme system for

foreign compounds, including drugs, and has a primary role in

organism protection against potential harmful assaults from the

environment [30]. It is often used as biomarker to determine

human exposure to environmental molecules or to predict the

susceptibility to certain pathologies [31,32].

The GO category enrichment analysis results (see Table S4,

Table S5 and Table S6) show that many of these candidate

biomarkers are involved in insulin signaling pathway. The

insulin-mediated receptor tyrosine kinase (RTK) signaling

pathways [33,34] by downstream effectors such as phosphati-

dylinositol 3-kinase, mitogen activated protein kinase (MAPK),

Akt/protein kinase B (PKB), mammalian target of rapamycin

(mTOR), and the p70 ribosomal protein S6 kinase (p70S6

kinase) have been reviewed [35] in the regulation of drug

metabolizing enzyme expression in response to insulin and

growth factors. The term fatty acid metabolism, comprising

genes such as fatty acid synthase, enoyl-CoA hydratase, acyl-

CoA synthetase among others is also enriched. The liver is a

major site for fatty acid and lipid metabolism, and several

major classes of compounds appearing in the database (statins,

fibrates, glitazones, estrogen receptor modulators and others)

affect the lipid synthesis and degradation. Fatty acids are a

major energy source and important constituents of membrane

lipids, and they serve as cellular signaling molecules that play

an important role in the etiology of the metabolic syndrome

[36]. Some liver samples exhibited elevated triglyceride levels

that were correlated with changes in the urinary associated with

defective metabolism of fatty acids, confirmed by the in vitro

experiments [37].

Figure 1. The IFS curve of first three responses prediction. The order-1 response is the most possible response according to the prediction.
The highest prediction accuracy of first order response was 63.9% with 141 features. The highest cumulated prediction accuracies of first two
responses and first three responses were also achieved with these 141 features. The red color points represent the highest accuracy points of each
kind of accuracy.
doi:10.1371/journal.pone.0008126.g001
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Discussion

Microarray gene expression profiles has been proved valuable in

numerous applications including disease classification, diagnosis,

survival analysis, choice of therapy etc [38], but rarely used for

drug response prediction. The Connectivity Map [39,40] was a

new tool for finding connections among small molecules sharing a

mechanism of action, chemicals and physiological processes, and

diseases and drugs. But it couldn’t systematically research drug

response, because the reference collection of gene-expression

profiles in Connectivity Map were from cultured human cells

treated with bioactive small molecules and most cells were cancer

cell lines. The dataset we used were from in vivo rat liver which is

closer to clinic. The compound-treated rats had same background.

The bias in our research was much smaller. In the dataset of our

research, the small molecules were well organized and all the

responses were explicit recorded. There were thirty-four distinct

pharmacological and toxicological responses. In meta-dataset like

Connectivity Map’s reference collection, each experiment only

provided the phenotype this research group was interested in;

other responses were ignored in most time.

The statistic basis of Connectivity Map wasn’t solid [40]. The

methods we used like mRMR and NNA have solid statistic basis

and have been widely used in machine learning studies for a long

time. The results were proved effective strictly using Jackknife

Cross-Validation.

This paper presents a multi-target prediction for pharmacolog-

ical and xenobiotic responses from drugs, i.e. allocating a drug

treatment to several responses. Microarray data from liver

xenobiotic and pharmacological responses are adopted for the

prediction. Each drug treatment is coded by the genes of the

treated subjects, derived from the microarray profile, resulting in

thousands of features. Then mRMR method and IFS are used to

select a compact feature set (141 features) for the reduction of

feature dimension and improvement of prediction performance.

Finally, the features in the compact set, considered to be most

important for the prediction, are analyzed through GO category

enrichment analysis.

Supporting Information

Table S1 IFS prediction accuracy using different number of

features. The first column is the number of features used in

prediction. The following columns gave the prediction accuracies

from order-1 (the most possible response) to order-34 (the most

impossible response). The highest prediction accuracy of first order

response was 63.9% with 141 features.

Found at: doi:10.1371/journal.pone.0008126.s001 (0.32 MB

XLS)

Table S2 The detailed information of 141 features. The first

column is the feature name (probe name with time point). There

are 3 time points: day 1, 3 and 5 after treatment start. The third

column is the mRMR score.

Found at: doi:10.1371/journal.pone.0008126.s002 (0.12 MB

XLS)

Table S3 The KEGG enrichment of 141 features.

Found at: doi:10.1371/journal.pone.0008126.s003 (0.01 MB

XLS)

Table S4 The Gene Ontology Biological Process enrichment of

141 features.

Found at: doi:10.1371/journal.pone.0008126.s004 (0.07 MB

XLS)

Table S5 The Gene Ontology Molecular Function enrichment

of 141 features.

Found at: doi:10.1371/journal.pone.0008126.s005 (0.03 MB

XLS)

Table S6 The Gene Ontology Cellular Component enrichment

of 141 features.

Found at: doi:10.1371/journal.pone.0008126.s006 (0.02 MB

XLS)
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