
Network Properties of Complex Human Disease Genes
Identified through Genome-Wide Association Studies
Fredrik Barrenas1.*, Sreenivas Chavali1., Petter Holme2,3, Reza Mobini1, Mikael Benson1

1 The Unit for Clinical Systems Biology, University of Gothenburg, Gothenburg, Sweden, 2 Department of Physics, Umeå University, Umeå, Sweden, 3 Department of
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Abstract

Background: Previous studies of network properties of human disease genes have mainly focused on monogenic diseases
or cancers and have suffered from discovery bias. Here we investigated the network properties of complex disease genes
identified by genome-wide association studies (GWAs), thereby eliminating discovery bias.

Principal findings: We derived a network of complex diseases (n = 54) and complex disease genes (n = 349) to explore the
shared genetic architecture of complex diseases. We evaluated the centrality measures of complex disease genes in
comparison with essential and monogenic disease genes in the human interactome. The complex disease network showed
that diseases belonging to the same disease class do not always share common disease genes. A possible explanation could
be that the variants with higher minor allele frequency and larger effect size identified using GWAs constitute disjoint parts
of the allelic spectra of similar complex diseases. The complex disease gene network showed high modularity with the size
of the largest component being smaller than expected from a randomized null-model. This is consistent with limited sharing
of genes between diseases. Complex disease genes are less central than the essential and monogenic disease genes in the
human interactome. Genes associated with the same disease, compared to genes associated with different diseases, more
often tend to share a protein-protein interaction and a Gene Ontology Biological Process.

Conclusions: This indicates that network neighbors of known disease genes form an important class of candidates for
identifying novel genes for the same disease.
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Introduction

Systems Biology based approaches of studying human genetic

diseases have brought in a shift in the paradigm of elucidating

disease mechanisms from analyzing the effects of single genes to

understanding the effect of molecular interaction networks. Such

networks have been exploited to find novel candidate genes, based

on the assumption that neighbors of a disease-causing gene in a

network are more likely to cause either the same or a similar

disease [1–14]. Initial studies investigating the network properties

of human disease genes were based on cancers and revealed that

up-regulated genes in cancerous tissues were central in the

interactome and highly connected (often referred to as hubs)

[1,2]. A subsequent study based on the human disease network

and disease gene network derived from the Online Mendelian

Inheritance in Man (OMIM) demonstrated that the products of

disease genes tended (i) to have more interactions with each other

than with non-disease genes, (ii) to be expressed in the same tissues

and (iii) to share Gene Ontology (GO) terms [8]. Contradicting

earlier reports, this latter study demonstrated that the non-essential

human disease genes showed no tendency to encode hubs in the

human interactome. A more recent report that evaluated the

network properties of disease genes showed that genes with

intermediate degrees (numbers of neighbors) were more likely to

harbor germ-line disease mutations [12]. However, interpretation

of this dataset might not be applicable to complex disease genes

since 97% of the disease genes were monogenic. Despite this

reservation, both the latter studies found a functional clustering of

disease genes. Another concern is that the above studies could be

confounded by discovery bias, in other words these disease genes

were identified based on previous knowledge. By contrast,

Genome Wide Association studies (GWAs) do not suffer from

such bias [15].

In this study, we have derived networks of complex diseases and

complex disease genes to explore the shared genetic architecture of

complex diseases studied using GWAs. Further, we have evaluated

the topological and functional properties of complex disease genes

in the human interactome by comparing them with essential,

monogenic and non-disease genes. We observed that diseases

belonging to the same disease class do not always show a tendency

to share common disease genes; the complex disease gene net-

work shows high modularity comparable to that of the human
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interactome; complex disease genes associated with same disease

more often tend to share a protein-protein interaction (PPI) and

GO biological process in comparison to the genes associated with

different diseases. We demonstrate that complex disease genes are

less central to the essential and monogenic disease genes in the

molecular interaction network. Our results support the assumption

that novel candidate genes might be identified among the network

neighbors of known complex disease genes.

Methods

Data Sources
We obtained the list of complex human disease associated genes

identified by GWAs (Table S1) from ‘A catalog of published

genome-wide association studies’ (retrieved on March 23, 2009)

[16]. The complex disease genes catalogued in this database have

SNPs published with a p-value less than 1E-5. The complex disease

genes dataset contained 349 genes that were implicated in 54

complex diseases. Disease classes of these diseases were identified

using MeSH (Medical Subject Headings) terms. We retrieved a list

of monogenic disease genes (n = 738) from the compendium

compiled by Jimenez-Sanchez et al [17]. Essential genes were

defined as previously described [8]. Briefly, a list of human orthologs

of mouse genes that resulted in a lethal phenotype in embryonic and

postnatal stages upon knockout was obtained from the Mouse

Genome database [18]. Next, complex and monogenic disease

genes were removed from that list resulting in 1986 essential genes.

To construct a human interactome, we obtained 35,021 protein-

protein interactions (PPIs) pertaining to 9462 proteins from the

Human Protein Reference Database (HPRD) database (release 7)

[19], as it is known to be one of the most reliable databases for PPI

data [20]. Non-essential genes without any disease associations and

with interactions in HPRD were considered as non-disease genes

(n = 6659).

Construction of Complex Disease and Complex Disease
Gene Networks

We constructed two separate networks from the compendium of

human complex diseases and their associated genes. In the complex

disease network (CDN), the nodes of the network are diseases and

two diseases were connected if they shared an associated gene; in the

complex disease gene network (CGN) nodes are genes and a link

represents two genes associated with the same disease. To

investigate how the topology of CGN differed from random null

model networks we randomly rewired the links between genes 1000

times, while keeping degrees constant. P-values for assortativity and

modularity of networks have been estimated as the ratio of

randomized models with a higher value of the corresponding

topological parameter than that of the real networks. To investigate

if the CGN shared topological features with the interactome we

applied the same method to the interactome data. (A detailed

description is given in Supplementary Material S1.) Such rewiring

methods need large networks to be interpretable. Due to its small

number of edges, we avoided these methods for analyzing the CDN.

Topological and Functional Properties of Complex
Disease Genes in Human Interactome

In many types of networks, including gene networks, one can

assume that the importance of a node (for example the likelihood

of causing a disease) is correlated with centrality. There is,

however, not only one way of measuring network centrality; rather

there are different types of measures trying to capture different

aspects of the concept. We measure three different centrality

quantities — degree, closeness and eccentricity. Closeness is defined as

the reciprocal average distance (number of links in the shortest

path) to every other node — a node with high closeness is thus, on

average, close in graph distance to the other nodes. The

eccentricity of a node is the distance to the farthest reachable

other node in a network, thus focusing on a maximal property

where closeness focus on an average. We compare these

topological measures between different classes of genes by

Mann–Whitney U tests.

To determine functional similarity among genes causing the

same disease compared to genes causing different diseases, we used

the Biological Process category of Gene Ontology classification.

We also determined the enriched terms among our complex

disease genes compared to all genes listed in Entrez database,

using the Bioconductor package TopGO [21].

Results

Complex Diseases Network (CDN)
Our complex disease network (CDN) consisted of 54 nodes and

41 edges. Most of the nodes were isolates with only 26 having at least

one edge (Figure 1A). The node size in Fig. 1A corresponds to the

number of genes associated with each disease. The differences in the

node sizes could effectively represent the differences in the allelic

architecture among these common complex diseases. Ideally,

GWAs capture association of variants with a considerably higher

minor allele frequency (MAF) and large effect sizes (referred

hereafter as high-profile variants). This could mean that diseases like

type 1 diabetes and multiple sclerosis (with 36 disease genes each)

may involve a larger number of genes with high-profile variants

than Parkinson’s disease and restless legs syndrome that involve only

5 genes. It is tempting to speculate that the allelic architecture of

diseases with fewer associated genes from GWA studies might have

an overrepresentation of variants with relatively lesser MAF, or

more modest allele effect sizes, or both. There were 17 diseases with

only one associated gene, possibly questioning the role of high-

profile variants in these diseases. Strikingly, attention deficit

hyperactivity disorder and conduct disorder had 33 associated

genes but belonged to an isolated cluster of only three nodes. This

is a clear indication of different underlying pathophysiological

mechanisms for these diseases compared to other diseases in our

dataset. Furthermore, breast cancer (with 12 genes) and chronic

lymphocytic leukemia (with 8 genes) did not have any edge.

Notably, the number of studies performed and the sample size

considered can also affect the number of genes identified and thus

also our interpretations. An increase in the number of studies and

the sample size might lead to the identification of new genes and

hence expansion of CDN and CGN.

Most intriguingly, diseases perceived to share pathophysiolog-

ical mechanisms (different forms of cancer, Type 1 and Type 2

diabetes, neurodegenerative diseases) were not directly connected

in the CDN. In fact, the different cancer types did not show any

overlapping genes. Moreover, even though type 1 and type 2

diabetes were both part of the same component, they were only

linked indirectly with Crohn’s disease acting as a connecting link.

Links between mental and metabolic diseases in the CDN

emphasize the emerging concept of convergent mechanisms

underlying these classes of complex diseases [22]. The modular

nature of human genetic diseases has generated a lot of enthusiasm

of an easy way of predicting new disease genes for phenotypically

similar diseases [23]. However, the CDN obtained from GWAs

results did not provide evidence for modularity of phenotypically

similar genetic diseases. This suggests that high-profile variants

often constitute disjoint parts of the allelic spectra of phenotyp-

ically similar complex diseases.

Network Properties - GWA Genes

PLoS ONE | www.plosone.org 2 November 2009 | Volume 4 | Issue 11 | e8090



Complex Disease Gene Network (CGN)
The CGN consisted of 349 genes (nodes) and 3440 edges

(Fig. 1B). In the CGN 349 nodes were connected to at least to one

other gene and 214 belonged to the giant component. Very few

genes were associated with multiple diseases (grey-colored in

Fig. 1B). HLA-DQA1, HLA-DRB1, CDKN2A, CDKN2B, IL23R and

HLA-E genes showed an association with more than two diseases.

Most of the genes that were associated with more than one disease

were inflammatory; exceptions being CDKN2A and CDKN2B that

were involved in proliferation. Interestingly genes involved in

cancers and certain nervous system diseases were rarely associated

with any other diseases; genes associated with one type of cancer

were not associated with other types. Given that the link between

two genes represent their association to the same disease it would

be interesting to evaluate the combined effect of their correspond-

ing variants on the disease susceptibility. Contrary to the

candidate-gene-based association studies, GWAs effectively over-

come spurious associations, emphasizing that the genes associated

with multiple diseases may possibly elevate the risk for all the

diseases they are implicated with.

Topological Properties of Complex Disease Genes in
Human Interactome

We obtained PPIs from HPRD and constructed a molecular

interaction network. One of the network measures we use to

quantify this data with is the assortativity. This quantity measures

the tendency for nodes with similar magnitude of degrees to be

connected by an edge. This determines whether the nodes of large

degrees are primarily linked to low-degree vertices or if low- and

high-degree vertices are typically connected. Technically, the

Figure 1. Networks of complex diseases and complex disease genes. A) Complex Disease Network (CDN). Each node is a complex disease
studied in GWAs with the link representing sharing of disease genes. The color of the nodes corresponds to disease class as identified using MeSH
(Medical Subject Headings) terms as given on the right side. Notably, complex diseases are hard to define using single MeSH term. The node size
refers to the number of associated genes identified. Diseases with most number of associated genes identified through GWAs are listed on the right
side with the numbers in the parenthesis indicating the number of associated genes. B) Complex Disease Gene Network (CGN): Each node represents
a gene and connections between two genes represent their association with the same disease. The node size refers to the number of diseases a gene
is associated with. Genes associated with many diseases are listed on the top right side with the number of diseases they are implicated with, in the
parenthesis. A node (highlighted in gray) each in lung cancer and Alzheimer’s disease gene cluster are singular associations in idiopathic pulmonary
fibrosis and narcolepsy respectively.
doi:10.1371/journal.pone.0008090.g001
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assortativity r is the Pearson correlation coefficient of degrees at

either side of an edge, over the set of all edges. (Assortativity is

further described in Supplementary Material S1.) We observed a

negative assortativity of the human interactome; it was, however,

larger than the randomized networks (–0.05 and –0.12 respec-

tively; P,0.001). This means that, given the degrees of the

interactome, it was actually wired with a bias towards degrees of

similar magnitude being connected. Note, however, given that the

range of possible r-values for a graph constrained to a specific set of

degrees typically varies about 1.5 units [24], thus the magnitude of

r for the real and rewired networks were close. So, even though the

P-value indicated that the real r was significantly larger than our

null-model, the indicated tendency could have been stronger,

given the basic constraints of the null-model. The modularity (the

tendency for the network to be divisible into dense regions that are

sparsely interconnected, see Supplementary Material S1) was

significantly larger than the randomized null model (0.53 and 0.32

respectively; P,0.001), which supported a modular organization

of the PPI network. The overlap (see Supplementary Material S1)

between annotated diseases and network clusters had a z-score of

3.960.1, meaning that the network clusters separated the disease

genes so that genes belonging to the same category of disease were

significantly more likely to belong to the same network cluster than

expected by chance. The giant component of the human

interactome consisted of 9045 nodes in comparison to 9281.6

nodes in the random network (P,0.001). This suggested that the

human CGN shares topological similarities with that of the human

interactome.

We examined the topological properties of the complex disease

genes in the human interactome by comparing them with that of

monogenic disease genes and non-disease genes. We observed that

the degrees of complex disease genes were significantly lower than

those of monogenic disease genes (average degrees are 9.5 and

13.3 respectively; P = 6.461024). Differences in closeness provided

suggestive significance between these two groups (average values

0.24 and 0.25 respectively; P = 0.05) while complex disease genes

had higher average eccentricity (9.8) compared to monogenic

disease genes (9.6; P = 7.361024). Comparisons with non-disease

genes revealed that complex disease genes had higher degree,

closeness and eccentricity (P = 6.361024; 0.03 and 0.008 respec-

tively). The respective average values for non-disease genes were

5.8, 0.23 and 9.9. The relative frequency of each class of genes in

each interval of degree, closeness and eccentricity explicitly

demonstrated this (Fig. 2 panels A, B and C respectively). From

Figure 2. Comparative distribution of topological measures (A) Degree, (B) Closeness and (C). Eccentricity among monogenic disease genes,
complex disease genes and non-disease genes in human interactome. The co-ordinates on the Y-axis indicate the relative frequency of each of the above
mentioned classes in a given bin with the error bars indicating the fraction of genes in each bin for each class of genes. For example, monogenic disease
genes are over-represented in the bin of 0.30, for closeness while closeness values for most of the genes in each class lie in the interval of 0.21–0.25.
doi:10.1371/journal.pone.0008090.g002
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this we conclude that the complex disease genes are less central

compared to the monogenic disease genes and occupy an

intermediate niche between the monogenic disease genes and

non-disease genes. However, knowledge bias associated with

human interactome may affect the outcome of such comparisons.

Higher network connectivity of essential genes has already been

well documented [25]. Our results confirmed this observation,

highlighting that essential genes have higher degree and closeness

and lower eccentricity compared to complex disease genes

(P = 2.661028; 1.561029 and 7.161024 respectively). With the

current understanding of the human interactome and the results

presented here, the centrality of gene classes can be ordered as

essential genes (being the most central), monogenic disease genes,

complex disease genes and non-disease genes (being the most

peripheral). Moving from the center to the periphery is thus

moving from lethality, via disease to negligible effect of variations

and thus reflects importance of functionality of the encoded

proteins. For mutations in individual genes to be sufficient to

manifest clinical phenotypes they should occur in less central

regions of the interactome which do not affect the survival. That

complex disease genes are relatively peripheral accentuates that

variations in these genes are essential, but not sufficient, to result in

a disease phenotype, which aid their maintenance and perpetu-

ation in a population.

Functional Properties of Complex Disease Genes in
Human Interactome

Genes associated with the same disease tended to share a PPI

more often than genes associated with different diseases

(P = 5.161025). Effectively, the average distance between genes

causing the same disease was significantly lower than the average

distance between genes associated with different diseases

(P = 2.761025). We observed a strong tendency for genes causing

the same disease, compared to genes associated different diseases,

to share the same GO term (13.3% and 8.9% respectively;

P = 1.9610212). There seemed to be an overrepresentation of

inflammatory genes among all the disease genes compared to all

known genes, as can be seen in table 1. This might indicate that

the common complex diseases pertinently involve inflammatory

responses. Notably, such an observation may also result from the

kind of diseases studied using GWAs so far.

Discussion

In conclusion, here we have derived networks for complex

diseases and complex disease genes based on GWAs, most of

which have analyzed Caucasian population. With the information

from GWAs done on other populations, we expect that CGN and

CDN would expand. Nevertheless, GWAs mostly done on

Caucasians adds strength to the analysis provided here, as these

networks are derived from a homogenous population with isogenic

background. The advantage of using GWAs data is that complex

disease genes, unlike genes listed in OMIM, are identified without

discovery bias. However, the results presented here are to be

interpreted with caution as the genes considered here are

identified to be associated with complex diseases and less is

known about their role in disease causality. Other possible

confounders include the kind of common complex diseases studied

using GWAs and the knowledge-based bias associated with the

human interactome. Notably, GWAs are empowered to track

disease association of high-profile variants (higher MAF and/or

high allele-effect size). So, the results presented here do not

account for variants with modest allele effect size. The complex

disease genes exhibited significantly different topological features

compared to the monogenic disease genes. We, therefore, surmise

that genes in the network neighborhood of complex disease genes

should be prioritized in predicting new complex disease gene

candidates. As the number of diseases studied using GWAs

increases, improving the resolution of the CDN and CGN, we

expect a better comprehension of the complex diseases, co-

morbidities and the underlying mechanisms.
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