
Scalable Steady State Analysis of Boolean Biological
Regulatory Networks
Ferhat Ay*, Fei Xu, Tamer Kahveci

Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, United States of America

Abstract

Background: Computing the long term behavior of regulatory and signaling networks is critical in understanding how
biological functions take place in organisms. Steady states of these networks determine the activity levels of individual
entities in the long run. Identifying all the steady states of these networks is difficult due to the state space explosion
problem.

Methodology: In this paper, we propose a method for identifying all the steady states of Boolean regulatory and signaling
networks accurately and efficiently. We build a mathematical model that allows pruning a large portion of the state space
quickly without causing any false dismissals. For the remaining state space, which is typically very small compared to the
whole state space, we develop a randomized traversal method that extracts the steady states. We estimate the number of
steady states, and the expected behavior of individual genes and gene pairs in steady states in an online fashion. Also, we
formulate a stopping criterion that terminates the traversal as soon as user supplied percentage of the results are returned
with high confidence.

Conclusions: This method identifies the observed steady states of boolean biological networks computationally.
Our algorithm successfully reported the G1 phases of both budding and fission yeast cell cycles. Besides, the experi-
ments suggest that this method is useful in identifying co-expressed genes as well. By analyzing the steady state profile
of Hedgehog network, we were able to find the highly co-expressed gene pair GL1-SMO together with other such
pairs.

Availability: Source code of this work is available at http://bioinformatics.cise.ufl.edu/palSteady.html twocolumnfalse]

Citation: Ay F, Xu F, Kahveci T (2009) Scalable Steady State Analysis of Boolean Biological Regulatory Networks. PLoS ONE 4(12): e7992. doi:10.1371/journal.
pone.0007992

Editor: Mark Isalan, Center for Genomic Regulation, Spain

Received September 18, 2009; Accepted October 9, 2009; Published December 1, 2009

Copyright: � 2009 Ay et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported partially by NSF under grants CCF-0829867, DBI-0606607 and IIS-0845439. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: fay@cise.ufl.edu

Introduction

Analyzing biological networks is essential in understanding the

machinery of living organisms which has been a main goal for

scientists [1,2]. Gene regulatory networks and signaling pathways

are two important network types that play role in every process of

living organisms [3]. In the last decade, significant amount of

research has been done on reconstruction of these networks from

experimental data [4–11]. The amount of regulatory data produced

by these methods is sufficient enough to trigger the research on

automated tools to analyze various aspects of these networks. We

use the term biological regulatory networks (BRN) to combine gene

regulatory networks and signal transduction pathways.

To capture the biological meaning of BRNs, it is necessary to

characterize their long term behavior. A common way to achieve

this is to identify the steady states of the dynamic system defined by a

BRN. Identification of steady states of BRNs is crucial in several

applications such as the treatment of various human cancers

[12,13] (e.g. leukemia, glioblastoma) and genetic engineering [14].

Additionally, the steady state analysis has proven to be successful

to explain the flower morphogenesis of Arabidopsis thaliana [15–17],

the differentiation process of T-helper cells [18–20], the mecha-

nism of T cell receptor signaling [21] and the cell cycles of yeast

types [22,23].

We use Boolean values for the states of the genes (‘‘ON’’ or

‘‘OFF’’ meaning high or low activity) since it is successfully used in

the literature for BRNs [15,18,20,22,23]. Recently, several

methods have used categorical values (e.g., low, medium, high

activity) for gene states in their model [16,24,25]. The steady states

extracted by these methods showed high parallelism with the ones

found using Boolean models. The naive approach to steady state

identification in Boolean networks is to exhaustively search the

state space. However, the number of possible states of a BRN is

exponential in the number of its genes. Therefore, exhaustive

methods are computationally infeasible for even moderately sized

BRNs. To address this problem, some existing methods use finite-

state Markov chains [26], binary decision diagrams (BDD) [18,19],

constraint programming [27], probabilistic Boolean networks [28],

linear programming [29], relational programming [30] and

module networks [31,32].

Orthogonal to the selection of the computational method, there

are two commonly used alternatives for modeling the state

PLoS ONE | www.plosone.org 1 December 2009 | Volume 4 | Issue 12 | e7992

transitions. These are synchronous and asynchronous models and both

are used in the literature [18,19,27,30]. Synchronous models

assume that the activity levels of all the genes change simulta-

neously. Hence, the next state is deterministically decided by the

current state. On the other hand, asynchronous models consider

time in small intervals, such that only one gene can change its state

at an interval and state change is equally likely for all genes [19].

For an n gene BRN, the state space of synchronous model has 2n

states and 2n state transitions. For asynchronous model, the

number of states is still 2n but the number of possible transitions

can go up to n2n. The advantages/disadvantages of these models

together with their effect on running time of steady state identi-

fication algorithms are discussed in the literature [19,33,34]. Due

to its strong assumptions, such as all genes change their state at the

same time and all have equal response times to these changes,

synchronous model is arguably more of an abstraction of the

biological process compared to asynchronous model. We use the

asynchronous model in our discussion here, however, it is

important to note our method works for the synchronous model

as well.

A state of a BRN is the union of the states of its genes at a certain

time. The state of a gene can change over the time due to internal

regulations or external stimulants. Steady states are the states in

which the dynamic system of that BRN stabilizes. The rest of the

states of the network are called transient states and they are usually

not of interest from biological viewpoint. We follow the steady state

definition of Garg et al.[18].

Definition 1
Let S be a set of states. Each si [S is steady if and only if the following

conditions are satisfied:

N The set of the successor states of all the states in S is equal to S

N For each si [S once it is visited the probability of revisiting si is equal to

1 in a finite number of state transitions.

This definition suggests that there are two types of possible

steady states, self loops (e.g., Figure 1(a)) and simple loops

(e.g., Figure 1(b)) as named in [18]. If a set of states create a

complex loop, then all the states of this set are transient since

at least one of the states does not satisfy the second condition of

the above definition. For instance, in Figure 1(c) the state 010½ �
is not revisited with probability equal to 1 in finite steps since

the system can loop forever through other four states which

create a loop. Similarly, Garg et al. name such sets of states as

transient states. Figure 1 exemplifies all the state types discussed

above.

Our Contributions
In this paper, we develop an algorithm that identifies all the

steady states of BRNs accurately and efficiently.

To mathematically express this problems clearly, we define

three types of states according to the number of possible outgoing

transitions from them. We name a state Type 0 if it has no outgoing

transitions to another state except itself (self loop) (state 110½ � in

Figure 1(a)). A state with exactly one outgoing transition to another

state is Type 1 (all the states in Figure 1(b)). States with more than

one outgoing transitions are Type 2 states (state [110] in Figure 1(c)).

Using this notation, we observed the following:

N All Type 0 states are steady (self loops).

N All Type 2 states are transient.

N All the states of a simple loop are of Type 1.

It is important to note that all the above observations are one-

sided (i.e. ‘‘if’’ conditions). For instance, second observation means

that if a state is of Type 2 then it is transient. However, a transient

state does not have to be a Type 2 state. Here, we name the steady

states of Type 1 as cyclic steady states (i.e, simple loops). Our method

first divides the whole state space into three types (Type 0, 1 and 2)

without materializing the exponential state space graph. Then, we

extract the cyclic steady states from Type 1 states by using a

randomized traversal method. Cyclic steady states together with

the Type 0 states constitute all the steady states of the BRN of

consideration.

We use the Boolean network model proposed by Kauffman

et al.[35]. We build a hypothetical state transition graph using the

interactions in a BRN. We develop a mathematical model that

uses binary decision diagram (BDD) data structure [36] to classify

each state into one of the three classes, namely Type 0, Type 1 and

Type 2. Type 0 and Type 2 states are guaranteed to be steady and

transient (i.e. not steady), respectively. Type 1 states can be either

one. To further classify the Type 1 states as transient or steady, we

develop a randomized traversal method which samples random

seed states from Type 1 states and classifies the visited states during

the traversal from this seed state. While sampling, we calculate the

estimators for the number of steady states, expected steady state

distribution of individual genes and joint-steady state distributions

of gene pairs. We calculate a stopping criterion from the statistical

information of explored states. This criterion allows early

termination of sampling when the user defined percentage of

steady states are found with high confidence. In summary, our

technical contributions are:

N We build a mathematical model for pruning a very large

portion of state space quickly without losing any steady states.

N We develop a randomized traversal method that computes

estimators for the number of steady states and the fraction of

Figure 1. States of a hypothetical network with three genes.
The binary values correspond to activation levels of these genes. (a) The
three states on the left are transient and of Type 1. The state with self
loop is steady and Type 0. (b) The four states in simple loop are cyclic
steady states and they are of Type 1. (c) The leftmost state is transient
and Type 1. Even though only 110½ � is of Type 2 (others are Type 1), the
remaining five states create a complex loop, and thus they are transient.
doi:10.1371/journal.pone.0007992.g001

Steady States of Boolean BRNs

PLoS ONE | www.plosone.org 2 December 2009 | Volume 4 | Issue 12 | e7992

individual genes and gene pairs being active in these states in

an online fashion. Our algorithm guarantees to find all the

steady states after sufficient number of iterations.

N We formulate a stopping criterion which uses the information

of classified states to terminate the algorithm when sufficient

percentage of steady states are extracted with a given

confidence value.

Results and Discussion

Cell Cycles of Budding Yeast and Fission Yeast
To evaluate the accuracy of the results reported by our

algorithm, we compared the steady states that we found to the

steady states that are reported in the literature. For this purpose,

we use the cell cycle networks of two yeast types, namely

Saccharomyces cerevisiae (budding yeast) and Schizosaccharomyces pombe

(fission yeast). We consider the key regulatory genes of these

networks since the core process of these two cell cycles are well

analyzed in the literature by both differential equation models

[37,38] and Boolean network models [22,23,39,40].

The cell cycles of both yeasts go through four main phases. In

the first phase the yeast cell grows till its size reaches a certain

amount (G1). The second phase is when the DNA is synthesized

and chromosomes are replicated (S). Third phase is a transition

gap between the second and fourth (G2). The cell division is

completed at the fourth phase named M. The two new cells then

enter the G1 phase again which completes the cycle. The state

corresponding to G1 phase is a steady state that is observed the

most in the yeast life cycle.

Li et al.[23] studied the Boolean network model of the budding

yeast (Figure 2) and identified the Boolean states visited during a

complete cell cycle together with seven steady states of the network

corresponding to the fixed points of the dynamic system. Similarly,

Davidich et al.[22] found thirteen different steady states for the

Boolean model of the cell cycle of fission yeast (Figure 3).

Here we compare the steady states reported by our method with

the ones from the methods of Li et al. and Davidich et al. For this we

use vector notation to represent the activity levels of an ordered gene

set. In this notation, 0 means the corresponding gene is inactive, 1

means its active and X means it can be either one. For instance, for a

gene set of g1, g2, g3f g, the [01X] vector represents two states,

namely [010] and [011].

The budding yeast cell cycle network in Figure 2 is the same as

the one analyzed by Li et al.[23]. We use the order {Cln3, MBF, SBF,

Cln1-2, Cdh1, Swi5, Cdc20, Clb5-6, Sic1, Clb1-2, Mcm1} for the vector

representation of the states of eleven genes in this network. We

follow Li et al. by excluding Cell size from the gene set and the state

representation. Li et al. reported seven steady states for this network

one of which corresponds to the G1 phase of the cell cycle. We

identified eight different steady states, six of which are Type 0 and

the other two are of Type 1. Six Type 0 steady states we found are

[0000X000X00] (4 states) and [0100X000100] (2 states) and all are

also reported by Li et al. Also, our method accurately labeled the

[00001000100] state that corresponds to G1 phase as steady. The

two Type 1 steady states which visit each other in a cycle are

SS1~ 00100000000½ � and SS2~ 00110000000½ �. SS1 is when SBF

is the only active gene in the network. SS1 is followed by SS2 since in

the next time step SBF also activates Cln1-2. Due to self degradation

of Cln1-2 in state SS2, this state goes back to the SS1 again. The

method of Li et al. labels SS2 as steady whereas it does not

report SS1.

For the states of the fission yeast cell cycle in Figure 3, we

use the ordered gene set {Start, SK, Cdc2/Cdc13, Ste9,

Rum1, Slp1, Cdc2/Cdc13*, Wee1/Mik1, Cdc25, PP}. Our method

reports fifteen different steady states all are of Type 0. These

states are: [0001X00XX0] (8 states), [0000100XX0] (4 states),

[00000001X0] (2 states) and [0000000000]. The first set of states

contains the steady state [0001100100] that corresponds to most

stable phase (G1) of the cell cycle. This state together with twelve

other steady states we found matches exactly the ones found by

Davidich et al. [22] The two additional steady states that we found

different than Davidich et al. are [0000000100] and [0000000110].

The first state corresponds to high activation level of only Wee1/

Mik1 genes and the second state is when Cdc25 is also active

together with Wee1/Mik1. The reason of this difference is that

Davidich et al. manually sets a negative threshold for Cdc2/Cdc13

activation. Cdc2/Cdc13 degrades Wee1/Mik1 which prevents

their system from visiting the two steady states we found without

setting any threshold manually.

Figure 2. Regulatory network of the cell cycle of budding yeast.
Red arrows with pointed heads represent activation, black arrows with
bar heads represent inhibition and yellow arrows indicate self-
degradation.
doi:10.1371/journal.pone.0007992.g002

Figure 3. Regulatory network of the cell cycle of fission yeast.
Red arrows with pointed heads represent activation, black arrows with
bar heads represent inhibition and yellow arrows indicate self-
degradation.
doi:10.1371/journal.pone.0007992.g003

Steady States of Boolean BRNs

PLoS ONE | www.plosone.org 3 December 2009 | Volume 4 | Issue 12 | e7992

These two examples suggest that our method can accurately identify the

steady states of BRNs.

Performance Evaluation
Here, we compare the performance of our method to that of

Garg et al. [18,19]. We used the asynchronous state transition model

for both algorithms in this experiment. We compared the running

times for a number of real BRNs as well as for randomly generated

networks. We compiled the real BRNs from the pathway database

PID [41] and other published work [18,19,22,23]. Table 1 reports

the running times for Garg et al.’s method named Genysis and our

algorithm with different parameter settings.

For real networks of small size such as yeast cell cycles and T-

Helper network, the running times for both methods are around one

second with Genysis running slightly faster than our method.

However, for bigger real networks our method’s running time is

significantly smaller than Genysis. As the authors also stated in their

work, Genysis might need extensive amount of running time when

using asynchronous model due to their heuristics to select seed states

from the state space. The row corresponding to p38 MAPK signaling

pathway constitutes a good example for this scenario. For the same

network our algorithm can identify the 90% of the steady states with

90% confidence in only 11.3 seconds. Additionally, the running

times on four randomly generated networks indicated that Genysis

can not scale well with the growing network size whereas our

algorithm can still find large portion of the steady states in a few

minutes. It is worthwhile to note that both Genysis and our

algorithm have exponential time and space complexity in the worst

case scenario. This is a direct consequence of using BDD data

structure as it has exponential worst case complexity.

We also compared the steady states found by both algorithms

for the two yeast cell cycles. As discussed in previous section, the

steady states of these two networks are reported in Li et al.[23] and

Davidich et al.[22]. For the budding yeast cell cycle in Figure 2,

Genysis was able to identify only the trivial steady state when all

the genes are inactive. For the fission yeast, Genysis labeled the

state that corresponds to the G1 phase (only the genes Ste9, Rum1

and Wee1/Mik1 are active) of cell cycle as transient. As reported in

Davidich et al.[22], G1 is the most stable phase of this cycle and our

method correctly classifies this state as steady.

The above results support that our algorithm is more scalable and practical

compared to Genysis. Furthermore, the steady states we reported for yeast cell

cycles match better with the previous findings.

Co-Expressed Gene Pairs in Human Hedgehog Network
We calculate the fraction of steady states in which two genes are

in active state together. Biologically this fraction corresponds to the

co-expression of the two genes. Revealing co-expressed genes has

great significance in discovery of conserved genetic modules

[31,42,43] and identification of differentially expressed genes [44].

Here, we compare the co-expression values for gene pairs found

by our algorithm with the values reported in the gene co-

expression database, COXPRESdb [45]. For this purpose, we use

The Hedgehog signaling network of Homo Sapiens given in the KEGG

Pathway Database [46]. This network consists of 17 genes and

hence, 136 possible gene pairs. We sorted the gene pairs according

to their co-expression values in decreasing order and compared

our ordering with the one in COXPRESdb. We picked the top 20

gene pairs from our list and searched for the indices of these pairs

in the ordering of COXPRESdb. Here, we report the largest

index, l, among these k indices for different values of k.

For k~1 we have l~1, which means that the highest co-

expressed gene pair (GL1-SMO) in our ordering is also the top

scoring pair in COXPRESdb. For k~5 we have l~6, meaning

that the five gene pairs (GL1-SMO, GSK3B-FBXW11, RAB23-

GAS1, GLI1-IHH and SUFU-SMO) with the highest ranks in our

ordering are in between the top 6 pairs in the ranking of

COXPRESdb. For the other values of k~10 and k~15, the l
values are 16 and 35 respectively. Hence, the gene pairs reported

by our method that are found to be active together in the steady

states suggest that there is a co-expression between these two

genes.

The above results suggest that our algorithm is useful in predicting co-

expression of genes by utilizing the the steady state information of BRNs.

Accuracy of Estimators
To evaluate the quality of our sampling-based estimators, we

measured their correctness and convergence rate. Correctness

means that the estimates will eventually converge to the correct

value. For the convergence rate, a good estimator should

approximate the correct value after a small fraction of the state

space is explored.

We use a portion of p53 network of Homo Sapiens taken from

KEGG [46] in this experiment. We measure the estimated

number of steady states at which a gene is active for each gene at

each iteration of our algorithm. Our algorithm traverses the entire

space of Type 1 states in about 2,500 iterations for this network.

Table 1. The comparison of our algorithm with an existing method, Genysis [18,19],on real and random networks.

Network Name Genes Interactions Genysis1 Our Algo.2 Our Algo.3

Fission yeast cell cycle [22] 10 27 0.21 s 0.18 s 0.17 s

Budding yeast cell cycle [23] 12 35 0.13 s 0.25 s 0.22 s

T-Helper cells [18] 23 35 0.23 s 1.14 s 0.43 s

p38 MAPK signaling [41] 26 28 545.3 m 11.3 s 2.1 s

T-cell receptor [19] 40 58 20.7 m 14.2 s 2.11 s

randomNet 1 20 32 10.4 m 2.282 s 0.3 s

randomNet 2 30 48 - 5.923 s 3.13 s

randomNet 3 40 64 - 4.7 m 3.4 m

randomNet 4 50 80 - 68.7 m 15.3 m

1We used a cut-off time of 24-hours and ‘‘-’’ indicates that the method could not find all steady states within this time. s denotes seconds and m denotes minutes.
2Running time of our algorithm when 90% of the steady states are found with 90% confidence.
3Running time of our algorithm when 80% of the steady states are found with 80% confidence.
doi:10.1371/journal.pone.0007992.t001

Steady States of Boolean BRNs

PLoS ONE | www.plosone.org 4 December 2009 | Volume 4 | Issue 12 | e7992

Figure 4 shows the results for seven different genes. We plot these

genes as they have different steady state profiles. In other words,

they vary in the fraction of steady states in which they are active

(e.g. CHK1 is active whereas p21 is suppressed in most of the

steady states). The results show that our estimators converge to the

correct ratio for all genes in less than 500 iterations. The rapid

convergence suggests that our algorithm approximates the correct

profile of gene levels at steady states without traversing the whole

space of Type 1 states. This suggests that, equipped with the

stopping criterion we devised, our algorithm is also practical and

accurate for BRNs with large number of Type 1 states since early

termination of the algorithm does not lead to significant deviation

from the correct steady state profile.

Methods

This section discusses our algorithm for identifying all the steady

states of Boolean BRNs. First we describe the mathematical model

for expressing the states and state transitions. Then, we discuss our

method to segregate the state space into three subspaces. Finally,

we present our randomized traversal method that extracts Type 1

steady states. We also give the formulation of a stopping criterion

that terminates the traversal when sufficient amount of steady

states are reported with high confidence.

State Transition Model
In order to identify the steady states of a BRN, we first need to

build a mathematical model that explains its states and how the

network moves from one state to another.

Let Xi tð Þ~true=false denote the state of the ith gene at time t.
Here true denotes that ith gene is ‘‘active’’ and false denotes that it

is ‘‘inactive’’. We use Xi instead of Xi tð Þ for simplicity wherever

appropriate.

We summarize the interactions that determine the next state of

the ith gene from the activity values at time t as follows. The ith
gene will be inactive if at least one of its suppressors is active. If all

the suppressors of the ith gene are inactive and at least one of its

activators is active, then it becomes active in the next time step. In

all other situations the state of the ith gene remains unchanged.

Even though the assumption that one inhibitor can suppress all

activators seems questionable, it is commonly observed in

biological networks. Wu et al. [40] named this as ‘‘strong

inhibition’’ model and showed that it produces the same results

as threshold network model [39] for fission yeast cell cycle

network. Also, it has been used as a modeling decision by Garg

et al.[18,19]. However, it is important to note that our method does

not depend on this assumption.

The following equation summarizes how the next state of ith
gene is determined:

Xi tz1ð Þ : Xi tð Þ _ pA tð Þð Þ ^ :pS tð Þ ð1Þ

In this equation, the symbols _ and ^ denote the logical ‘‘OR’’

and ‘‘AND’’ operators, pA tð Þ and pS tð Þ represent predicates for

the activators and the suppressors of the ith gene at time t,
respectively. We compute these predicates as pA tð Þ~_j[A Xj tð Þ
and pS tð Þ~_j[S Xj tð Þ, where A and S are the sets of indices for

activators and the suppressors of the ith gene.

An important observation is that, even though the next state of

the i th gene is deterministically calculated, there can be multiple

next states for the whole network since we use asynchronous model.

A state of a given BRN is defined by the states of individual genes.

Let u~ X1 � � �Xn½ � denote a state of the network. The network can

move from state u to state v~ X1 � � �Xi{1 :Xi Xiz1 � � �Xn½ � only

if the ith gene is one of the genes that can have a state change.

Figure 4. Convergence of the estimators for the steady state profiles of the genes. These genes are a selected subset of the genes of p53
network of Homo Sapiens [46]. Y-axis shows for each gene the fraction of steady states that the gene is in active state.
doi:10.1371/journal.pone.0007992.g004

Steady States of Boolean BRNs

PLoS ONE | www.plosone.org 5 December 2009 | Volume 4 | Issue 12 | e7992

Individual genes that can issue a state change at a given state

determines the possible next states of the network.

We model the changes in the states of a BRN using an abstract

graph representation. In this graph, each vertex corresponds to a

possible state of the BRN. Thus, if there are n genes in a BRN,

then the corresponding graph contains 2n vertices. There is an

edge from vertex u to vertex v, if it is possible to change the state of

the BRN from the state represented by u to the state represented

by v by only changing the state of a single gene. There can be up

to n2n edges between these states. This graph is hypothetical as we

use it only for building our mathematical model. We never

materialize this exponential graph in our method.

We classify the vertices of this graph into three classes based on

the number of their outgoing edges. Figure 1 provides visual

examples for all three state types listed below:

N Type 0: The vertices that have no outgoing edges (except self

cycles). These vertices correspond to steady states as the state

of the network cannot change once one of them is visited.

(Figure 1(a))

N Type 1: The vertices that have exactly one outgoing edge. The

states for these vertices can be steady or transient. (Figure 1(b))

N Type 2: The vertices that have two or more outgoing edges. All

Type 2 states are transient. (Figure 1(c))

In the following section, we describe our method for segregating

the state space into the above three types.

Segregation of States using BDDs
As we discussed in the previous section, we never generate the

state transition graph of the input network. A simple observation

on our state transition model allows us to segregate the states

without this materialization. This segregation results in not only

the immediate identification of all Type 0 steady states, but also

eliminates a huge portion of states by classifying them as transient.

For instance, for T-Helper cell network with 23 genes and

8,388,608 223
� �

possible states, our segregation method classifies

1,321 states as Type 0 and 8,364,757 *223
� �

states as Type 2 in

only 0.08 seconds. The remaining 22,530 states are labeled as

Type 1. Thus, we need to explore only a small percentage

(*0.26%) of the whole state space.

Here, we describe how we construct the BDDs for all Type 0

states and all Type 1 states, namely Z0 and Z1. We first define a

predicate that will be handy in this discussion.

Ci : Xi tz1ð Þ+Xi tð Þ ð2Þ

Here, + denotes the logical ‘‘XOR’’ operator. Ci evaluating to

true at time t means that gene i will change its state from Xi to :Xi

at time tz1. Otherwise, it preserves its current state. The

following equations, show the formulas of BDDs representing

Type 0 and Type 1 states:

Z0 :
î
:Ci and Z1 : _

i
Ci ^ ^

j=i
:Cj

� ��
:

Z0~}True} represents the states that do not satisfy any of the

Ci conditions (i.e. none of the genes change state). The states in

Z1~}Ture} satisfy exactly one of the Ci conditions (i.e. exactly

one gene changes state). The states which are not included in the

two BDDs above are called Type 2 and they are all transient

states. The BDD for these states can be constructed similarly.

However, we simply eliminate these states since they do not reflect

the long term behavior of the system. By doing this without

materialization, we quickly reduce the state space of the problem

to a significantly smaller one. In the next section, we describe how

we extract the steady states of Type 1.

Extracting Cyclic Steady States
In this section, we develop a randomized traversal strategy that

identifies the steady states of Type 1. We call these states ‘‘cyclic

steady’’. An example for this is the cycle of four states in

Figure 1(b). At the end of each traversal, we remove the traversed

states from the state space that by using difference operator of

BDD. In other words, our method avoids redundant enumeration

of the states. After traversing a portion of the vertices, we estimate

the total number of steady states, the probability of each gene

being active and the joint probability of gene pairs being co-

expressed in steady states. It is worth mentioning that our traversal

method never traverses a state more than once. Hence, if it runs

for enough time it labels all the Type 1 states as steady or transient.

Algorithm 1 briefly describes how we traverse the Type 1 states.

Next, we elaborate on different steps of this algorithm.

Step 1. Selecting a random seed state
We obtain a random seed state among the untraversed

satisfying assignments of the BDD for Type 1 states. We do this

by traversing the BDD from root node to the leaf level. At each

step of the traversal, we randomly pick a child node of the

currently visited node. When we reach the leaf level of the BDD,

the states of all the genes are determined and hence, our seed state

for the whole BRN.

Algorithm 1 RANDOMIZED TRAVERSAL OF TYPE 1 STATES

1. Randomly get an unobserved vertex from the Type 1 set.

2. Follow the outgoing edge to traverse the graph until seeing one

of the following vertices

(i) A vertex that is labeled as transient or steady in previous

iterations.

(ii) A vertex that is traversed in this iteration.

3. Label all the traversed vertices as transient or steady and

update the estimators.

4. Stop if the number of steady states observed so far is sufficient.

Step 2. Traversal starting from the seed state
Once we choose an unobserved seed state, the next step is to

understand whether or not we can reach to a new steady state

from this state. To do this, we traverse the state transition graph

starting from this vertex by following the edges.

Since the seed state is of Type 1, by definition, it has only one

outgoing edge. Thus, we can easily find the next state as the state

that satisfies the transition condition. We continue traversal by

applying the same principle. Figure 5 summarizes the possible

cases that can occur during this traversal. Starting from an

unobserved state if we traverse one of the following three paths

then all the states visited on this path are transient:

N A path ending in a Type 0 state

N A path ending in a Type 2 state

N A path ending in a state that is observed in previous iterations

Steady States of Boolean BRNs

PLoS ONE | www.plosone.org 6 December 2009 | Volume 4 | Issue 12 | e7992

Notice that all three cases correspond to Step 2(i) of our

traversal method. The next case produces both cyclic steady and

transient states:

N A path leading to a cycle of states visited in current iteration

In this case, we label all the states on the cycle as steady and the

other states on the path as transient. For instance, if the traversal

starts from the [001] state in Figure 1(b), then [001] is transient

and other four states are Type 1 steady states.

Step 3. Calculating Estimators
At each iteration, we traverse a path in the state transition graph

and label each state on this path as transient or steady. We name

the set of vertices visited in each such traversal as an observation.

Using these observations, we develop estimators for the total

number and the ‘‘ profile’’ of steady states. The profile of the steady

states is the vector where the ith entry is the expected fraction of

the steady states at which the ith gene is active. For example, if the

second entry of the profile is 0.95, it means that we expect that the

second gene is active in 95% of the steady states. We also compute

the estimators for the joint expression (co-expression) fractions of

gene pairs. Computing these estimates is important as they can

lead to early prediction of the steady state profile.

Here, we describe in detail the calculation and the analysis of

the estimator of the total number of Type 1 steady states. First of

all, we prove that it is an unbiased estimator. Then, we discuss how

to minimize the variance of this estimator. For the other estimators

we only give the formulations.

First, let us introduce some notation we use throughout this

section:

N N0, N1: Number of Type 0 and Type 1 states, respectively. We

calculate these numbers at the initial segregation step.

N Oi~ si,tið Þ: i th observation. si and ti are the number of

observed steady and transient states traversed in this

observation.

N Si, Ti, Ui: Total number of observed steady states, observed

transient states and unobserved states after first i observations,

respectively.

From the definitions above, we can calculate Ui~N1{Si{Ti,

Si~
Pi

j~1 sj and Ti~
Pi

j~1 tj . Now, we introduce a 0/1 random

variable Bi for each observation Oi. At a given time Bi~1 means

the current iteration results in observation Oi. We simulate our

sampling by assuming at any time one and only one of the Bi’s can

be 1. In other words, E BiBj

� �
~0 for any i=j. Notice that

E Bi½ �~E Bn
i

� �
~

sizti

N1

for observation Oi. We formulate the estima-

tor of the total number of Type 1 steady states at the i th iteration as:

Fi~
Xi

k~0

Bksk
N1

skztk

ð3Þ

Lemma 1. The estimator Fi is an unbiased estimator.

Proof. We prove this by showing the expected value of Fi is

equal to the total number of Type 1 steady states. Taking

expectations of both sides and replacing E Bk½ � with
skztk

N1
:

E Fi½ � ~E
Pi

k~0

Bksk

N1

skztk

� �

~
Pi

k~0

E Bksk

N1

skztk

� �
~
Pi

k~0

sk

After defining the estimator, the next step is to calculate its

variance.

Lemma 2. The variance of Fi is

Var Fi½ �~
Xi

j~0

s2
j

N1

sjztj

� �
{

Xi

j~0

sj

" #2

:

Proof. We know that, Var Fi½ �~E F2
i

� �
{E2 Fi½ �. We first

compute F2
i .

F2
i ~

Pi

j~0

Bjsj
N1

sjztj

Xi

k~0

Bksk
N1

skztk

~
P
j=k

BjBksjsk
N1

sjztj

� �
N1

skztk

� �

z
Pi

j~0

B2
j s2

j

N1

sjztj

� �2

When we take the expected value of F2
i the first term cancels

since E BjBk

� �
~0 for any i=j. Hence, the variance of Fi can be

computed as:

Var Fi½ � ~E F2
i

� �
{E2 Fi½ �

~E
Pi

j~0

B2
j s2

j

N1

sjztj

� �2
" #

{ E Fi½ �ð Þ2

~
Pi

j~0

s2
j

N1

sjztj

� �
{

Pi

j~0

sj

" #2

There are many ways to build an estimator from Fjs. However,

it is desirable to build an estimator with a small variance as it

Figure 5. Summary of the traversal process for a randomly
picked state að Þ from unobserved Type 1 states. If the path
starting from a ends at b, c, d or e, then all the states on this path are
transient (Step 2(i) of Algorithm 1). If the path starting from a ends at a
state like f then all the states on the path from a to f are transient
(excluding f) and all the states on the cycle from f to f are steady.
doi:10.1371/journal.pone.0007992.g005

Steady States of Boolean BRNs

PLoS ONE | www.plosone.org 7 December 2009 | Volume 4 | Issue 12 | e7992

converges to true solution faster. The following lemma builds the

estimator with minimum variance.
Lemma 3. The estimator that has the smallest variance is

T~
X

j

1P
i

1

Vi

Vj

Fj

Proof. Now, we discuss how we combine the estimators

F1,F2, . . . ,Fn with variances V1,V2 . . . ,Vn to minimize the overall

variance of our estimation. In other words, we want to find the

weight parameters c1,c2, . . . ,cn such that
P

ci~1 and the variance

of the estimator for total number of steady states of Type 1 is

minimized. Let us denote this new estimator as T~
P

ciFi. Then,

Var Tð Þ~
X

c2
i Vi

Mathematically, our aim is to minimize
P

c2
i Vi given

P
ci~1.

We formulate this problem by using Lagrange Multiplier as follows:

L~
X

c2
i Vi{l

X
ci{1

	

Taking derivative of both sides with respect to each ci, we get

the equations:

2ciVi{l~0,l~
1P 1

2Vi

Solving these equations we get the ci values that minimizes the

Var Tð Þ as:

cj~
1P 1

Vi

Vj

Thus, by using the value of cis we find that the estimator with

smallest variance is

T~
X

j

1P 1

Vi

Vj

Fj

Next, we give the formulations of the estimators for the fractions

of each gene and each gene pair being active in steady states. First,

we formulate our estimator for the fraction of a gene being active

in cyclic steady states. Assume that the number of steady states at

the ith observation in which the k th gene is active is nk,i. An

estimator for the k th gene after the ith iteration is then :

Gk,i~
Xi

j~1

nk,j

,
Si ð4Þ

Let na<b,i denote the number of steady states in which gene a
and gene b are both active or both inactive after the ith

observation. We calculate the estimator of joint probability of two

genes having the same activity level at a steady state as:

Ja<b,i~
Xi

j~1

na<b,j

,
Si ð5Þ

Step 4. Stopping Criteria
When our method finishes traversing all Type 1 states (steps 1 to

3), it finds all the steady states. However, in some applications it

might be sufficient to find a predetermined percentage of steady

states. We develop a statistical criterion to be able to terminate the

algorithm quickly after a sufficient portion of the Type 1 states are

explored. Our method still guarantees that the desired percentage

of the results are found with high confidence. More precisely,

when the user supplies a parameter a (e.g. 0.9), we compute a

confidence c [0,1½ �, at each iteration such that ‘‘at least a|100
percent of the steady states are found with probability at least c’’. This is

desirable as the user can terminate the loop when c is large enough

for the underlying application.

Now, let us describe how the stopping criterion works. Let A�

denote the actual number of total Type 1 steady states. If we have

known the value of A� we could have stopped sampling with a

confidence value of c~1 when A�vSiz
1{að Þ N0zSið Þ

a
is

satisfied. That is the time when we are sure that a|100 percent

of the steady states are already reported. Since we do not know A�

in advance, we use the information gathered from observed

portion of states. We compute Ai which denotes the minimum

number of total steady states of Type 1 that needs to be present for

our method to continue traversal.

Ai~Siz 1{að Þ N0zSið Þ=a ð6Þ

Trivially, if AiwUizSi we just stop sampling with c~1 since

even if all the unobserved states were to be steady, the reported

ones would constitute at least a|100 percent of the Type 1 steady

states. Otherwise, we calculate the confidence value in ith iteration

as the probability that we would have observed at least Si steady

states in our observations so far if there were Ai unobserved steady

states. Formally, we compute the confidence as:

C Aið Þ~
XSizTi

k~Si

SizTi

k

� �
qk

i 1{qið ÞSizTi{k

� �
ð7Þ

qi in Equation 7 represents the percentage of steady states if there

were Ai steady states in Type 1 states (i.e. qi~
Ai

N1
). The inner term

of the summation represents ‘‘The probability of getting exactly k
steady states from SizTi currently observed states if the

probability of a state being steady is qi’’.

Lemma 4 shows that, the confidence value reported when we

stop sampling is never an over estimation.

Lemma 4. The confidence value given in Equation 7 by using Ai does

not lead to false dismissal.

Proof. Here, we have three cases to consider:

N Case1 : (A�wAi)

Then, q�~
A�

N1
w

Ai

N1
~qi. Since the confidence value is

calculated as the area under the right hand side of the

Steady States of Boolean BRNs

PLoS ONE | www.plosone.org 8 December 2009 | Volume 4 | Issue 12 | e7992

probability distribution function (i.e. inverse CDF), c will be

larger for a larger value of q. Hence, C A�ð ÞwC Aið Þ. That

means whenever we stop sampling the confidence we report is

conservative.

N Case2 : (A�~Ai)

Trivially, C A�ð Þ~C Aið Þ when we terminate the sampling.

N Case3 : (A�vAi)

This case implies that we overestimated the total number of

Type 1 steady states at ith iteration. Only thing that can

happen in such a case is that our method decides to continue

traversing when it does not need to. Since the actual number

of steady states are less than what we have estimated, when the

traversal stops we have already sampled at least as many

steady states as needed to guarantee the reported confidence

value.

Corollary 1 follows from Lemma 4.

Corollary 1. Our method guarantees to find all the steady states when the

confidence value reaches 1.

Author Contributions

Conceived and designed the experiments: FA TK. Performed the

experiments: FA. Analyzed the data: FA FX. Contributed reagents/

materials/analysis tools: FA FX TK. Wrote the paper: FA TK.

References

1. Ay F, Kahveci T, de Crecy-Lagard V (2008) Consistent alignment of metabolic

pathways without abstraction. In: Comput Syst Bioinformatics Conf volume 7:
237–248.

2. Ay F, Kahveci T, de Crecy-Lagard V (2009) A fast and accurate algorithm for
comparative analysis of metabolic pathways. J Bioinform Comput Biol 7(3):

389–428.

3. Karlebach G, Shamir R (2008) Modelling and analysis of gene regulatory
networks. Nat Rev Mol Cell Biol 9: 770–780.

4. Basso K, Margolin A, Stolovitzky G, Klein U, Dalla-Favera R, et al. (2005)
Reverse engineering of regulatory networks in human B cells. Nat Genet 4:

382–390.

5. Margolin A, Nemenman I, Basso K, Wiggins C, Stolovitzky G, et al. (2006)
ARACNE: An algorithm for the reconstruction of gene regulatory networks in a

mammalian cellular context. BMC Bioinformatics 7(Suppl 1): S7.
6. Tatsuya A, Satoru M, Satoru K (1999) Identification of genetic networks from a

small number of gene expression patterns under the Boolean network model. In:
Conf Proc Pac Symp Biocomp volume 4: 17–28.

7. Osamu H, Naoki N, Yoshinori T, Hideo B, Seiya I, et al. (2005) Estimating gene

networks from expression data and binding location data via Boolean networks.
Lect Notes Comput Sci 3482: 349–356.

8. Tatsuya A, Satoru K, Osamu M, Satoru M (2003) Identification of genetic
networks by strategic gene disruptions and gene overexpressions under a

Boolean model. Theor Comput Sci 298: 235–251.

9. Satoru M (2003) Inference, modeling and simulation of gene networks. In: Conf
Proc Comp Met Sys Biol. pp 207–211.

10. Osamu H, Ryo Y, Seiya I, Rui Y, Tomoyuki H, et al. (2008) Statistical inference
of transcriptional module-based gene networks from time course gene expression

profiles by using state space models. Bioinformatics 24: 932–942.
11. Wong S, Zhang L, Tong A, Li Z, Goldberg D, et al. (2004) Combining

biological networks to predict genetic interactions. Proc Natl Acad Sci USA 101:

15682–15687.
12. Hupp T, Lane D, Ball K (2000) Strategies for manipulating the p53 pathway in

the treatment of human cancer. Biochem J 352: 1–17.
13. Lane D (1999) Exploiting the p53 pathway for cancer diagnosis and therapy.

Br J Cancer 80: 1–5.

14. Ostergaard S, Olsson L, Johnston M, Nielsen J (2000) Increasing galactose
consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL

gene regulatory network. Nat Biotechnol 18: 1283–1286.
15. Mendoza L, Thieffry D, Alvarez-Buylla E (1999) Genetic control of flower

morphogenesis in Arabidopsis thaliana: A logical analysis. Bioinformatics 15:
593–606.

16. Demongeot J, Morvan M, Sene S (2008) Impact of fixed boundary conditions on

the basins of attraction in the flower’s morphogenesis of Arabidopsis thaliana. In:
Conf Proc Adv Info Net App. pp 782–789.

17. Álvarez Buylla E, Chaos, Aldana M, Benı́tez M, Cortes-Poza Y, et al. (2008)
Floral morphogenesis: stochastic explorations of a gene network epigenetic

landscape. PLoS ONE 3: e3626.

18. Garg A, Xenarios I, Mendoza L, De Micheli G (2007) An efficient method for
dynamic analysis of gene regulatory networks and in silico gene perturbation

experiments. In: Conf Proc Res Comput Mol Biol. pp 62–76.
19. Garg A, Di Cara A, Xenarios I, Mendoza L, De Micheli G (2008) Synchronous

versus asynchronous modeling of gene regulatory networks. Bioinformatics 24:

1917–1925.
20. Mendoza L (2006) A network model for the control of the differentiation process

in Th cells. Biosystems 84: 101–114.
21. Saez-Rodriguez J, Simeoni L, Lindquist J, Hemenway R, Bommhardt U, et al.

(2007) A logical model provides insights into T cell receptor signaling. PLoS
Comput Biol 3: 1580–1590.

22. Davidich M, Bornholdt S (2008) Boolean network model predicts cell cycle

sequence of fission yeast. PLoS ONE 3: e1672.

23. Fangting L, Tao L, Ying L, Qi O, Chao T (2004) The yeast cell-cycle network is

robustly designed. Proc Natl Acad Sci USA 101: 4781–4786.

24. Garg A, Mendoza L, Xenarios I, DeMicheli G (2007) Modeling of multiple

valued gene regulatory networks. In: Conf Proc IEEE Eng Med Biol Soc. pp

1398–1404.

25. Mendoza L, Xenarios I (2006) A method for the generation of standardized

qualitative dynamical systems of regulatory networks. Theor Biol Med Model 3:

13.

26. Hachtel G, Macii E, Pardo A, Somenzi F (1996) Markovian analysis of large

finite state machines. IEEE Trans Comp-Aided Des 15: 1479–1493.

27. Devloo V, Hansen P, Labbé M (2003) Identification of all steady states in large

networks by logical analysis. Bull Math Biol 65: 1025–1051.

28. Shmulevich I, Dougherty E, Kim S, Zhang W (2002) Probabilistic Boolean

Networks: A rule-based uncertainty model for gene regulatory networks.

Bioinformatics 18: 261–274.

29. Shlomi T, Berkman O, Ruppin E (2005) Regulatory on/off minimization of

metabolic flux changes after genetic perturbations. Proc Natl Acad Sci USA 102:

7695–7700.

30. Schaub M, Henzinger T, Fisher J (2007) Qualitative networks: A symbolic

approach to analyze biological signaling networks. BMC Syst Biol 1: 4.

31. Segal E, Pe’er D, Regev A, Koller D, Friedman N (2005) Learning module

networks. J Mach Learn Res 6: 557–588.

32. Segal E, Michael S, Regev A, Pe’er D, David B, et al. (2003) Module Networks:

Discovering regulatory modules and their condition specific regulators from gene

expression data. Nat Genet 34: 166–176.

33. Albert I, Thakar J, Li S, Zhang R, Albert R (2008) Boolean network simulations

for life scientists. Source Code Biol Med 3: 16.

34. Albert R, Othmer H (2003) The topology of the regulatory interactions predicts

the expression pattern of the segment polarity genes in Drosophila melanogaster.

J Theor Biol 223: 1–18.

35. Kauffman S (1969) Homeostasis and differentiation in random genetic control

networks. Nature 224: 177–178.

36. Nielsen J (2006) BUDDY - A Binary Decision Diagram Package. Tech Report

Technical University of Denmark, http://www.itu.dk/research/buddy.

37. Tyson J, Csikasz-Nagy A, Novak B (2002) The dynamics of cell cycle regulation.

Bioessays 24: 1095–1109.

38. Tyson J, Chen K, Novak B (2001) Network dynamics and cell physiology. Nat

Rev Mol Cell Biol 2: 908–916.

39. Bornholdt S (2008) Boolean network models of cellular regulation: Prospects and

limitations. J R Soc Interface 5(Suppl 1): 85–94.

40. Wu Y, Zhang X, Yu J, Ouyang Q (2009) Identification of a topological

characteristic responsible for the biological robustness of regulatory networks.

PLoS Comput Biol 5: e1000442.

41. Schaefer C, Anthony K, Krupa S, Buchoff J, Day M, et al. (2009) PID: The

Pathway Interaction Database. Nucleic Acids Res 37: 674–679.

42. Stuart J, Segal E, Koller D, Kim S (2003) A gene-coexpression network for

global discovery of conserved genetic modules. Science 302: 240–241.

43. Zotenko E, Guimaraes K, Jothi R, Przytycka T (2005) Decomposition of

overlapping protein complexes: A graph theoretical method for analyzing static

and dynamic protein associations. Algorithms Mol Biol 1: 7.

44. Oldham M, Horvath S, Geschwind D (2006) Conservation and evolution of

gene coexpression networks in human and chimpanzee brains. Proc Natl Acad

Sci USA 103: 17973–17978.

45. Obayashi T, Hayashi S, Shibaoka M, Saeki M, Ohta H, et al. (2008)

COXPRESdb: A database of coexpressed gene networks in mammals. Nucleic

Acids Res 36(Database issue): 77–82.

46. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, et al. (1999) KEGG: Kyoto

Encyclopedia of Genes and Genomes. Nucleic Acids Res 27: 29–34.

Steady States of Boolean BRNs

PLoS ONE | www.plosone.org 9 December 2009 | Volume 4 | Issue 12 | e7992

