
Regulation of HIF-1a and VEGF by miR-20b Tunes Tumor
Cells to Adapt to the Alteration of Oxygen Concentration
Zhang Lei, Bo Li, Zhuoshun Yang, Haoshu Fang, Gui-Mei Zhang, Zuo-Hua Feng, Bo Huang*

Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, The People’s Republic of China

Abstract

The regulation of HIF-1a is considered to be realized by pVHL-mediated ubiquitin-26S proteasome pathway at a post-
transcriptional level. The discovery of a class of small noncoding RNAs, called microRNAs, implies alternative mechanism of
regulation of HIF-1a. Here, we show that miR-20b plays an important role in fine-tuning the adaptation of tumor cells to
oxygen concentration. The inhibition of miR-20b increased the protein levels of HIF-1a and VEGF in normoxic tumor cells;
the increase of miR-20b in hypoxic tumor cells, nevertheless, decreased the protein levels of HIF-1a and VEGF. By using
luciferase reporter vector system, we confirmed that miR-20b directly targeted the 39UTR of Hif1a and Vegfa. On the other
hand, the forced overexpression of HIF-1a in normoxic tumor cells downregulated miR-20b expression. However, HIF-1a
knockdown in hypoxic tumor cells caused the increase of miR-20b. The differential expression of miR-20b has important
biological significance in tumor cells, either enhancing the growth or favoring the survival of tumor cells upon the oxygen
supply. Thus, we identify a novel molecular regulation mechanism through which miR-20b regulates HIF-1a and VEGF and is
regulated by HIF-1a so to keep tumor cells adapting to different oxygen concentrations.
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Introduction

Hypoxia is a common feature in solid tumors as the

consequence of poor tumor vascularization [1–3]. The transcrip-

tion factor hypoxia-inducible factor-1 (HIF-1) is a key regulator

responsible for the induction of genes that facilitate adaptation and

survival of tumor cells from hypoxic microenvironment and confer

the tumor a worse malignant phenotype [4,5]. As a heterodimeric

complex, HIF-1 consists of a hypoxically inducible subunit HIF-1a
and a constitutively expressed subunit HIF-1b. The overexpres-

sion of HIF-1a was found in various types of cancers of both

human and mouse [4,6]. To date, the regulation of HIF-1a by

oxygen is elucidated well. Under normoxia, hydroxylation of two

proline residues and acetylation of a lysine residue of HIF-1a are

mediated by oxygen. Such modifications cause tumor suppressor

von Hippel-Lindau protein (pVHL) to bind and degrade HIF-1a
through ubiquitin-26S proteasome system. Nevertheless, in

hypoxia, the hydroxylation is inhibited by the lack of oxygen,

leading to no pVHL binding and the stability of HIF-1a [4–6].

During tumorigenesis, the hypoxic microenvironment and/or

genetic alteration pVHL may cause a high level of HIF-1a in

cancer cells [7,8], suggesting that HIF-1a is a potential target in

tumor therapy.

The regulation of HIF-1a must be tight in cells in order to

precisely adapt to changes of oxygen supply. In this regard, the

mechanisms of regulating HIF-1a might be delicate and complex.

Although pVHL-mediated degradation of HIF-1a is an important

pathway, phosphorylation of HIF-1a also plays a role by

increasing the transcriptional activity of HIF-1a [9,10]. Moreover,

cytokines, growth factors, and environmental stimuli seem to be

involved in the regulation of HIF-1a under nonhypoxic condition

[11,12]. Besides those, whether other pathway(s) involves the

regulation of HIF-1a remains unclear. Recently, the intense

studies on a class of small noncoding RNAs, called microRNAs

(miRNAs), disclose the regulation of gene expression by miRNAs.

The underlying mechanism involves miRNAs annealing to

inexactly complementary sequences in the 39-UTR of target

mRNAs to suppress translation [13,14]. In this regard, HIF-1a is

possibly regulated by miRNAs. Recently, HIF-1a was reported as

the target of miR-17-92 microRNA cluster in lung cancer cells

[15]. In the present study, we further show a molecular

mechanism involving miR-20b regulating HIF-1a and VEGF

and being regulated by HIF-1a, through which tumor cells adapt

to different oxygen concentrations.

Results

Inverse level of miR-20b and HIF-1a in tumor cells
We predicted the candidate mouse microRNAs of targeting

Hif1a by combinatorial utilization of three different algorithms,

including TargetScan (http://www.targetscan.org/), PicTar

(http://pictar.bio.nyu.edu/), and Sanger microRNA target

(http://microrna.sanger.ac. uk/). On the basis of the obtained

information, we focused our attention on miR-18a, miR-199b,

miR-20b and miR-155. Four murine tumor cell lines from

different tissues, including liver cancer H22, breast cancer 4T1,

prostate cancer RM1 and melanoma B16, were tested here. In

normoxia, miR-18a, miR-199b, miR-20b and miR-155 were

PLoS ONE | www.plosone.org 1 October 2009 | Volume 4 | Issue 10 | e7629



expressed in such tumor cell lines with different expression levels

(Figure 1A). However, compared to the normoxic condition, the

expression of miR-20b, rather than miR-18a, miR-199b and miR-

155, in hypoxia was strikingly decreased (Figure 1A). We also

confirmed such expression pattern of miR-18a, miR-199b and

miR-155 by quantitative RT-PCR (Supporting information,

Figure S1). In addition, we determined miR-20a and miR-106-

363 cluster other members (miR-106a, miR-18b, miR-92-2, and

miR-363), since miR-20a is similar to miR-20b and miR-20b

belongs to miR-106-363 cluster [16]. However, the expressions of

those genes seemed not to be associated with the change of oxygen

concentration (Suupporting information, Figure S2). We then

focused our attention on miR-20b. The analysis by quantitative

RT-PCR showed that miR-20b had 64-fold decrease in hypoxia

(Figure 1B). Nevertheless, inverse to the expression pattern of miR-

20b, the protein level of HIF-1a was very low in normoxia, but

very high in hypoxia (Figure 1C). In addition, hypoxia seemed not

to change HIF-1a mRNA expression of tumor cells, evaluated by

real time RT-PCR (Figure 1D). These data suggested a

relationship between miR-20b and HIF-1a expression.

Among the tested tumor cell lines, H22 cells expressed the most

difference of miR-20b between normoxia and hypoxia. We

therefore validated the above in vitro data in vivo by inoculating

H22 cells to BALB/c mice subcutaneously. When tumors reached

to the size of 969 mm, we tested the expression of miR-20b in

different tumor regions. We found that miR-20b was much lower

in the hypoxic central region and much higher in the normoxic

marginal region (Figure 1E). In parallel, HIF-1a detection showed

much higher in the center and much lower in the margin

(Figure 1E). The low expression of miR-20b in hypoxia was not

due to the tumor necrosis. Most tumor cells in the detected tumor

mass were not stained by trypan blue and the mRNA levels of

either b-actin or GAPDH between central region and marginal

region had no significant difference, evaluated by real time RT-

PCR (data not shown). Furthermore, we performed the immuno-

histochemical assay. As expected, the result showed that the

central tumor tissues were positively stained with anti-HIF-1a
antibody; however, the marginal tumor tissues were stained

negatively (Supporting information, Figure S3). Thus, the

expression miR-20b is inversely relative to the level of HIF-1a
protein in tumor cells, implying that tumor cell HIF-1a might be a

target of miR-20b.

HIF-1a is targeted by miR-20b
To verify that HIF-1a is targeted by miR-20b, a blocking

strategy was adapted here by introducing miR-20b inhibitor to

normoxic H22 tumor cells, which indeed increased the protein

level of HIF-1a (Figure 2A). This was not due to the more

degradation of HIF-1a, since miR-20b inhibitor did not affect the

VHL protein level (Figure 2A), which binds and degrades HIF-1a.

On the other hand, the increase of miR-20b level of hypoxic

tumor cells by transfecting miR-20b effectively decreased HIF-1a
protein level (Figure 2B). Similarly, The VHL protein level was not

altered (Figure 2B). In both cases, neither miR-20b inhibitor nor

miR-20b affected the mRNA of HIF-1a (Figure 2C), suggesting

that HIF-1a is a target for miR-20b. To confirm the direct

interaction, a reporter vector system was used here. Transfection

of HIF-1a 39-UTR-containing luciferase reporter vector into

CHO cells resulted in the decent fluorescence production.

Figure 1. Expression of miR-20b is reversely correlated with
HIF-1a level in tumor cells. (A) The expressions of miR-18a, 155, 20b
and 199b in tumor cell lines were detected by RT-PCR in normoxia (20%
oxygen) or hypoxia (1% oxygen). (B) The detection of miR-20b in tumor
cell lines by real time RT-PCR. The miR-20b level in the hypoxia groups
was designated as 1. (C and D) The expression of HIF-1a in tumor cell
lines was detected by Western blot (C) or real time RT-PCR (D). (E)
Expressions of miR-20b and HIF-1a in different tumor regions. 16105

H22 tumor cells were inoculated subcutaneously into mice. When
tumor size was .969 mm, the central and marginal regions of tumor
tissues were used for miR-20b and HIF-1a detection by RT-PCR and
Western blot, respectively. Data from three tumor tissues were
presented in this figure.
doi:10.1371/journal.pone.0007629.g001

Figure 2. HIF-1a is targeted by miR-20b. (A) miR-20b inhibitor
increased HIF-1a protein in normoxic H22 cells. miR-20b inhibitor or
control oligonucleotide was transfected into normoxic H22 cells. 48 hr
later, the cells were used to detected HIF-1a and VHL proteins by
Western blot. (B) miR-20b decreased HIF-1a protein in hypoxic H22
cells. miR-20b or control oligonucleotide was transfected into hypoxic
H22 cells. 48 hr later, the cells were used to detect HIF-1a and VHL
proteins by Western blot. (C) miR-20b inhibitor or miR-20b did not
affect the mRNA levels of HIF-1a. The cells of above (A) and (B) were
used for real time RT-PCR to detect HIF-1a mRNA expression. (D) miR-
20b targeted 39-UTR of HIF-1a mRNA. The specificity of miR-20b to 39-
UTR of HIF-1a mRNA was identified as described in Methods. *, P,0.01,
compared with HIF-1a 39-UTR group.
doi:10.1371/journal.pone.0007629.g002

Regulation HIF-1a by miR-20b
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However, the cotransfection of miR-20b and reporter vector

resulted in a significant decrease of luciferase activity (Figure 2D).

Thus, miR-20b directly targets 39-UTR of HIF-1a.

miR-20b is downregulated by HIF-1a
The differential expression of miR-20b between normoxia and

hypoxia raised the question of how miR-20b was downregulated in

hypoxic tumor cells. To explore the underlying mechanism, we

hypothesized that miR-20b was regulated by HIF-1. To test this,

HIF-1a was forcedly overexpressed in H22 tumor cells by the

transfection of its expressing vector (Figure 3A). As a result, the

forcedly expressed HIF-1a caused the decrease of miR-20b in

normoxia (Figure 3B). Meanwhile, by a comparable approach, we

silenced HIF-1a expression in hypoxic tumor cells using HIF-1a
siRNA (Figure 3C). As expected, the decrease of HIF-1a resulted

in the increase of miR-20b in hypoxic tumor cells (Figure 3D). In

addition, we transfected VHL siRNA to normoxic tumor cells to

increase the HIF-1a protein level (Figure 3E). Under such

condition, the miR-20b level was also reduced (Figure 3F). Taken

together, these data suggested that HIF-1a downregulates miR-

20b expression in tumor cells.

miR-20b regulating VEGF further tunes tumor cells to
adapt to the alteration of oxygen concentration

Previous study has reported that miR-20b is a putative regulator

of VEGF [17], the pivotal angiogenic factor in response to

hypoxia. Here, we further hypothesized that VEGF was targeted

by miR-20b thus to additionally tune tumor cells to adapt to the

alteration of oxygen concentration. To test this, we performed the

in vitro assay as described above (Figure 2). Under normoxic

condition, the decrease the activity of miR-20b by transfecting

miR-20b inhibitor resulted in the upregulation of VEGF protein

(Figure 4A); under hypoxic condition, the increase miR-20b level

by transfecting miR-20b however downregulated VEGF protein

(Figure 4B). Nevertheless, the mRNA level of VEGF was not

affected by either miR-20b inhibitor or miR-20b (Figure 4C).

Moreover, cotransfection of miR-20b and VEGF 39-UTR-

containing luciferase reporter vector into CHO cells resulted in

a significant decrease of fluorescence intensity (Figure 4D),

suggesting that miR-20b may directly targets 39-UTR of VEGF.

Thus, the regulation of VEGF by miR-20b may further tune

tumor cells to adapt to the alteration of oxygen concentration.

Roles of miR-20b in tumor cells
miR-20b has been reported to accumulate in tumor cells and

speculated to have an oncogenic role [18,19]. Here, we further

explored the biological significance of miR-20b in tumor cells

based on the above study. Under normoxic condition, tumor cells

have the capacity of vigorous proliferation and high expression of

miR-20b, implying a possible role of miR-20b in tumor cell

growth. To verify this, miR-20b inhibitor was transfected into

normoxic H22 tumor cells to block the function of miR-20b. As a

result, tumor cell growth was retarded significantly (Figure 5A).

However, this retardation was rescued by the cotransfection of

HIF-1a siRNA (Figure 5A), suggesting that miR-20b maintains

tumor cell growth through its regulation of HIF-1a. In addition,

the VHL knockdown also dampened H22 cell growth significantly

(Figure 5A). Nevertheless, the further increase of miR-20b level in

normoxic H22 tumor cells by the transfection of miR-20b seemed

to accelerate tumor cell growth but not significantly (Figure 5A).

miR20b was downregulated in tumor cells in hypoxia. We then

further asked whether the decrease of miR-20b contributed to a

more malignant phenotype of cancer cells, such as the enhanced

resistance to apoptosis, the feature of HIF-1a in tumor. To verify

this, miR-20b inhibitor was transfected to normoxic H22 tumor

cells. 24 hr later, the cells were treated with UV irradiation or

chemodrug mytomycin C. The flow cytometric result showed that

inhibition of miR-20b increased the apoptosis resistance of tumor

cells, compared to the control (Figure 5B). Nevertheless,

cotransfection of HIF-1a siRNA completely abolished the effect

of miR-20b inhibitor (Figure 5B), suggesting that the decrease of

Figure 3. miR-20b is downregulated by HIF-1a. (A and B) HIF-1a
decreased miR-20b expression in normoxic H22 cells. HIF-1a vector or
mock vector was transfected into normoxic H22 cells. 72 hr later, the
cells were used for HIF-1a analysis by Western blot (A) and miR-20b
analysis by RT-PCR and real time RT-PCR (B). (C and D) HIF-1a siRNA was
transfected into hypoxic H22 cells. 72 hr later, the cells were used for
HIF-1a analysis by Western blot (C) and miR-20b analysis by RT-PCR and
real time RT-PCR (D). (E and F) VHL siRNA was transfected into normoxic
H22 cells. 72 hr later, the cells were used for VHL and HIF-1a analysis by
Western blot (E) and miR-20b analysis by RT-PCR and real time RT-PCR
(F).
doi:10.1371/journal.pone.0007629.g003

Figure 4. VEGF is targeted by miR-20b. (A) miR-20b inhibitor
increased VEGF protein in normoxic H22 cells. miR-20b inhibitor or
control oligonucleotide was transfected into normoxic H22 cells. 48 hr
later, the cells were used to detected VEGF expression by Western blot.
(B) miR-20b decreased VEGF protein in hypoxic H22 cells. miR-20b or
control oligonucleotide was transfected into hypoxic H22 cells. 48 hr
later, the cells were used to detect VEGF expression by Western blot. (C)
miR-20b inhibitor or miR-20b did not affect the mRNA levels of VEGF.
The cells of above (A) and (B) were used for real time RT-PCR to detect
VEGF mRNA expression. (D) miR-20b targeted 39-UTR of VEGF mRNA.
The specificity of miR-20b to 39-UTR of VEGF mRNA was identified as
described in Methods. *, P,0.01, compared with VEGF 39-UTR group.
doi:10.1371/journal.pone.0007629.g004

Regulation HIF-1a by miR-20b
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miR-20b enhances the resistance to chemo- and radiotherapy

through increasing the HIF-1a level. In line with these data, miR-

20b inhibitor transfection could affect Bcl-2 family gene

expression, including upregulation of Bcl-xL and downregulation

of Bax in normoxic H22 tumor cells (Figure 5C). Finally, we tested

the role of miR-20b in hypoxia. Normoxic H22 cells were

transfected with miR-20b. 24 hr later, 16106 cells were cultured

in hypoxia for 12 h for apoptosis detection by flow cytometry. The

result showed that miR-20b transfection significantly increased the

proportion of apoptotic cells, compared to control (Figure 5D). In

addition, by combinatorial utilization of different algorithms, such

as TargetScan, PicTar, and Sanger microRNA target, we

searched all the candidate target genes for miR-20b. The result

showed that Bcl-xL and Bax were not in the list of candidate

genes, suggesting miR-20b indirectly regulating these genes.

Taken together, these data suggested that HIF-1a-mediated

downregulation of miR-20b is required for H22 cells to adapt

the hypoxia.

Discussion

The current concept on the adaptive responses to changes in

tissue oxygenation is mainly formed from the study on pVHL-

mediated degradation of HIF-1a. Here, we provide alternative

mechanism that a single microRNA, miR-20b, by virtue of its

differential expression in normoxic and hypoxic microenviron-

ment, can finely tune the expressions of HIF-1a and VEGF

in tumor cells, making them to adapt to different oxygen

concentrations.

microRNAs are endogenous non-coding small RNAs of 19–23

nucleotides in length. The biological functions of microRNAs are

involved in numerous cellular processes, including proliferation,

differentiation, metabolism, and motility [20–22]. Coincidently, all

these cellular processes can also be influenced by a transcription

factor HIF-1 [23,24], implying possible connection of HIF-1 and

microRNAs. HIF-1 activity is controlled by the von Hippel-

Lindau tumor suppressor protein (pVHL), a recognition compo-

nent of the E3 ubiquitin ligase. Under normoxic condition, pVHL

binds hydroxylated proline residues within HIF-1a and thereby

targets HIF-1a to the 26S proteasomal degradation system (4–6).

However, during hypoxia, proline hydroxylases are inactive and

can not catalyze the hydroxylation of proline residues of HIF-1a,

leading to the accumulation of HIF-1a in the cell. Besides this

classical regulation machinery, in the present study, we addition-

ally demonstrate that HIF-1a and VEGF is regulated by miR-20b

in tumor cells. Intriguingly, miR-20b is also regulated by HIF-1a;

VEGF can be transcriptionally activated by HIF-1 [25]. Such

multiple regulation relationship among miR-20b, HIF-1a and

VEGF therefore keep tumor cells to adapt different oxygen

concentration for survival.

HIF-1a is a master regulator of oxygen homeostasis [4].

Unusually, its response to oxygen alteration happens at the protein

level rather than mRNA level. The reason maybe is that the cells

can immediately translate the preexisted mRNA into the protein

so to adapt the hypoxia promptly. On the other hand, the

degradation of HIF-1a protein through pVHL-mediated pathway

is also extremely rapid with a half-life estimated to be less than 5

minutes [4]. Such regulation model for HIF-1a is efficient but too

rigid in some physiological conditions. For instance, the formation

of hypoxia in tissues such as embryo or tumor is a gradual process.

Therefore, to reconcile this, a complementary mechanism may be

required. Our findings of the reciprocal regulation of miR-20b and

HIF-1a may be such a paradigm. Interestingly, VEGF is also

targeted by miR-20b directly. Based on these findings, we propose

that miR-20b cooperates with pVHL-mediated degradation

pathway to effectively repress HIF-1a in normoxia. In order to

adapt the gradual onset of hypoxia, inactivation of pVHL pathway

is an initial response, which ceases the degradation of HIF-1a and

leads to the increase of HIF-1a protein. However, to further

increase of HIF-1a and VEGF proteins, tumor cells have to

remove the inhibition of miR-20b on HIF-1a and VEGF by

downregulating miR-20b. Such regulation model confers tumor

cells to sense precisely the alteration of oxygen by the dynamic

equilibrium between miR-20b and HIF-1a.

miR-20b has been reported to accumulate in tumor cells and

might play an oncogenic role [18,19]. Beyond consistence with

these reports, our data here at least partially elucidate the

mechanism underlying miR-20b-promoting tumorigenesis. We

confirm the differential expression of miR-20b in different tumor

regions in a mouse liver cancer model. Such differential expression

of miR-20b may have different roles in tumor cells. High

expression of miR-20b favors tumor cell growth in normoxia;

low expression of miR-20b inhibits tumor cell growth but confers

tumor cell more resistance to apoptosis in hypoxia. Although we

show that the down-regulated miR-20b leads to an increase in the

levels of the anti-apoptotic factor, BcL-xL and a decrease in the

levels of the pro-apoptotic factor, Bax, the informatics analysis

Figure 5. Differential expression of miR-20b affects different
aspects of tumor cells. (A) miR-20b was required for H22 cell growth.
H22 cells were transfected with miR-20b inhibitor or miR-20b inhibitor +
HIF-1a siRNA or miR-20b or VHL siRNA or control oligonucleotide for
24 hr. Then the cells were seeded in 96-well plate (56103 per well) for
48 h in normoxia. The proliferation assay was performed with MTT Cell
Proliferation Kit (Roche Diagnostics, IN) according to the manufacturer’s
instructions. *, P,0.05, compared with control. (B) Downregulation of
miR-20b enhanced the resistance to apotosis. H22 cells were
transfected with miR-20b inhibitor or miR-20b inhibitor + HIF-1a siRNA
for 24 hr. Then the cells (16106) were irradiated by UVB (200 J/m2) or
treated with mitomycin C (MMC, 10 mg/ml)for 12 h. The cells were
stained with PE-Annexin V and 7-AAD for apoptotic analysis by flow
cytometry. *, P,0.05, compared with control. (C) Analysis of the mRNA
expressions of Bcl-2, Bcl-xL, Bax and Bad genes. H22 cells were
transfected with miR-20b inhibitor or miR-20b inhibitor + HIF-1a siRNA
for 72 hr. The cells were used for the analysis of gene expression by real
time RT-PCR. *, P,0.05, compared with control. (D) Normoxic H22 cells
were transfected with miR-20b for 24 hr. Then the cells were cultured
under hypoxic condition for 12 h, and stained with PE-Annexin V and 7-
AAD for apoptotic analysis by flow cytometry. *, P,0.05, compared with
control.
doi:10.1371/journal.pone.0007629.g005
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indicate that neither BcL-xL nor Bax as a candidate target gene

for miR-20b. Considering the regulation of apoptosis genes by

HIF-1a [26–29], the regulation of apoptosis genes by miR-20b

may be ascribed to the reciprocal regulation of miR-20b and

HIF-1a.

VEGF is one of the most potent stimulators of angiogenesis by

stimulating the proliferation and migration of vascular endothelial

cells [30–32]. In a rapidly growing tumor, the increased diffusion

distances between the blood vessels and the oxygen-consuming

cells [33,34] lead to the decrease of oxygen delivery and local

hypoxia, which trigger the upregulation of VEGF in an effort to

ameliorate the hypoxic state. Regardless of the important role of

VEGF in tumor hypoxia, our data show that miR-20b

downregulates VEGF expression in tumor cells. Thus, the

accumulation of miR-20b in tumor cells [18,19] raises the

question of how tumor cells adapt the hypoxia when the

expression of VEGF is inhibited. A possible reason is that tumor

stromal cells may act as the cellular source of VEGF. On the other

hand, the downregulation of miR-20b may upregulate VEGF

expression in tumor cells, which impairs the inhibitory effort on

tumor cells by the decrease of miR-20b. Therefore, although our

findings and others suggest that miR-20b may be a potential target

in tumor therapy, the combination of targeting miR-20b and

VEGF might be a better choice.

Materials and Methods

Ethics statement
All animal work was conducted according to relevant national

and international guidelines. For details please refer to subsection

entitled Animals and cell lines.

Animals and cell lines
BALB/c mice, 6 to 8-week-old, were purchased from Center of

Medical Experimental Animals of Hubei Province (Wuhan,

China) for studies approved by the Animal Care and Use

Committee of Tongji Medical College. Mouse tumor cell lines

H22 (hepatocarcinoma), 4T1 (breast cancer), RM1 (prostate

cancer), and B16 (melanoma) were purchased from the American

Type Culture Collection (ATCC, Manassas VA) and China

Center for Type Culture Collection (CCTCC, Wuhan, China),

and cultured according to their guidelines. For hypoxic experi-

ments, cells were incubated in a hypoxic incubator. The

atmosphere was maintained at 1% O2, 5% CO2 in humidified

environment at 37uC.

For tumor model, 26105 H22 tumor cells (BALB/c derived) in

50 ml 0.9% sodium chloride sterile saline solution were subcuta-

neously injected to the left flank of BALB/c mice. 20 days later,

when the tumor size reached 969 (mm6mm), the marginal and

central tumor tissues were cut with small surgical scissors for RT-

PCR, Western blot or immunohistochemical analysis.

Analysis of microRNAs by RT-PCR and quantitative
RT-PCR

Total microRNAs were isolated from tumor cell lines using

microRNA isolation kit (Ambion, Austin, TX). Reverse transcrip-

tion primers for miR-199b, 18a, 20b and 155 were designed,

respectively, with RNA mfold version 2.3 server (supporting

information, Figure S4), and its specificity was identified according

to our previous study [35]. 100 ng of enriched microRNA was used

for the cDNA synthesis. A 67-bp cDNA product was amplified by

PCR with primers: miR-199b, 59-CTCACAGTAGTCTGCACA-

39 (sense); miR-18a, 59-GGTAAGGT GCATCTAG TG-39 (sense);

miR-20b, 59-CCCAAAGTGCTCATAGT G-39 (sense); miR-155,

59-CGGTTAATGCTAATTGTG-39 (sense); common antisense

primer, 59-GACTGTTCCTC TCTTCCTC-39.

For real-time PCR, the above primers and the Taqman probe

[6-FAM]TTGCGACTAC ACACACACACACA[BHQ1a-6FAM]

were mixed with TaqManH Universal PCR Master Mix (Applied

Biosystems, Foster City, CA). The reaction mixtures were incubated

at 95uC for 10 min, followed by 40 cycles of 95uC for 15 s and 60uC
for 1 min in Stratagene QRT-PCR instrument.

Identification of the specificity of miR-20b to HIF-1a and
VEGF mRNAs

A 450 bp or 240 bp fragment of 39-UTR of HIF-1a or VEGF

mRNA containing the target sequence (GCACTTT) of miR-20b

was amplified by RT-PCR (HIF-1a, sense 59-CTCTGAG

CTCTATCTGGAAGGTATGTG -39, antisense 59-CCTCAA-

GCTTCAGTTAGTGTTAGACC C-39; VEGF, sense 59-TAAC-

CATGTCACCACCACG-39, antisense 59- CCCAGAAACAA-

CCC TAATC-39). The fragment was designated as HIF-1a or

VEGF 39-UTR, and inserted into pMIR-REPORTTM luciferase

reporter vector (Sac I and Hind III restriction enzyme sites;

Ambion). Another expressing vector was also constructed by the

insertion of a mutated HIF-1a or VEGF 39-UTR in which the

target sequence of miR-20b was mutated into GCAATTT using

QuikChangeH Site-Directed Mutagenesis Kit (Stratagene). Then,

the recombinant reporter vectors with normal and mutated HIF-

1a or VEGF 39-UTR were cotransfected with miR-20b into CHO

cells, respectively, using TransMessengerTM Transfection Reagent

(Qiagen). The luciferase assay was performed according to the

manufacturer’s instructions.

Transfection assay
The tranfection assay was performed as described in our

previous study [35]. Briefly, miR-20b (Dharmacon, Lafayette,

CO), miR-20b inhibitor (Ambion, Austin, TX), HIF-1a siRNA

(Invitrogen, Carlsbad, CA), VHL siRNA (Invitrogen), and the

corresponding control oligonucleotides were purchased. HIF-1a-

expressing vector was constructed by inserting HIF-1a cDNA into

pcDNA3.1 vector. For transient transfection, 200 pmoles of

synthesized oligonucleotide or 2 mg of plasmid was mixed with

100 ml of Nucleofector solution (Amaxa, Gaithersburg, MD), and

transfected into 36106 tumor cells by electroporation using

Nucleofector instrument. After transfection, the cells were

allowed to recover by incubating for 4 h at 37uC, and then used

for the following assays.

Western blot
Cell lysates (30 mg of total protein) and prestained molecular

weight markers were separated by SDS-PAGE followed by

transfer onto nitrocellulose membranes. The membranes were

blocked in TBST (Tris-buffered saline with 0.5% of Triton X-100)

containing 5% nonfat milk, and probed with the indicated

antibodies. After incubation with the secondary antibody conju-

gated with horseradish peroxidase, membranes were extensively

washed, and the immunoreactivity was visualized by enhanced

chemiluminescence according to the manufacturer’s protocol

(ECL kit, Santa Cruz, Santa Cruz, CA). All antibodies were

purchased from Santa Cruze Biotechnology (Santa Cruz, CA).

HIF-1a and VEGF detection by real time RT-PCR
The cDNA sequences of Hif1a, Vegfa and b-actin genes were

retrieved from NCBI database. The primers were designed with

the Oligo Primer Analysis 4.0 software. Real time RT-PCR was
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done as described previously [36]. The mRNA level of the

detected gene was expressed as the relative level to that of b-actin.

Immunohistochemistry
Central or marginal tumor tissues were surgically excised for the

preparation of sections. The sections were fixed by acetone, and

then incubated with 0.1% BSA to block the activity of endogenous

peroxidase. Mouse-anti-human HIF-1a Ab (NB100-131SS, Novus

Biologicals, Littleton, CO), biotinylated anti-mouse IgG (Santa

Cruz), and streptavidin-conjugated horseradish peroxidase (Santa

Cruz) were used for immunohistochemical staining.

Proliferation assay
H22 cells were transfected with miR-20b inhibitor or miR-20b

inhibitor+HIF-1a siRNA or miR-20b or VHL siRNA or control

oligonucleotide for 24 hr. Then the cells were seeded in 96-well

plate (56103 per well) for 48 h in normoxia. The proliferation

assay was performed with MTT Cell Proliferation Kit (Roche

Diagnostics, IN) according to the manufacturer’s instructions.

Apoptosis assay
H22 cells were transfected with miR-20b inhibitor or miR-20b

inhibitor+HIF-1a siRNA for 24 hr. Then the cells (16106) were

irradiated by UVB (200 J/m2) or treated with mitomycin C

(MMC, 10 mg/ml)for 12 h. The apoptotic cells were analyzed with

PE Annexin V Apoptosis Detection Kit (BD Biosciences, San

Diego, CA) by flow cytometry.

Statistics
Results were expressed as mean value 6 SD and interpreted by

Students’t test. Differences were considered to be statistically

significant when P,0.05.

Supporting Information

Figure S1 The expressions of miR-18a, 155 and 199b are not

affected by different oxygen concentrations. The H22 and B16

tumor cell lines were treated with different oxygen concentrations.

The expressions of miR-18a, 155 and 199b were detected by real

time RT-PCR. The expression level in the hypoxia groups was

designated as 1.

Found at: doi:10.1371/journal.pone.0007629.s001 (0.40 MB TIF)

Figure S2 The expressions of miR-20a, 106a, 18b, 92-2 and 363

are not affected by different oxygen concentrations. The H22 and

B16 tumor cell lines were treated with different oxygen

concentrations. The expressions of microRNAs were detected by

real time RT-PCR. The expression level in the hypoxia groups

was designated as 1.

Found at: doi:10.1371/journal.pone.0007629.s002 (0.40 MB TIF)

Figure S3 HIF-1a is expressed in the central H22 tumor tissues

but not in marginal tumor tissues. H22 tumor cells were

subcutaneously injected to the left flank of BALB/c mice. When

the tumor size reached 969 mm, central or marginal tumor tissues

were surgically excised for the preparation of sections. The

sections were used for immunohistochemical staining against HIF-

1a. (A) The central tumor tissue was positively stained. (B) The

marginal tumor tissue was negatively stained. (C) The interface of

negative (marginal) and positive (central) staining of HIF-1a.

Found at: doi:10.1371/journal.pone.0007629.s003 (2.19 MB TIF)

Figure S4 Stem-loop structure of reverse transcription primers

for miR-199b, 18a, 20b and 155. The primers were designed with

RNA mfold version 2.3 server. The 39-end sequences of

TAACCAA, CTATCTG, CTACCTG and ACCCCTA were

complementary to the 39-end sequence of miR-199b, 18a, 20b and

155, respectively.

Found at: doi:10.1371/journal.pone.0007629.s004 (0.96 MB TIF)
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