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Abstract

Background: Prionopathies are characterized by spongiform brain degeneration, myoclonia, dementia, and periodic
electroencephalographic (EEG) disturbances. The hallmark of prioniopathies is the presence of an abnormal conformational
isoform (PrPsc) of the natural cellular prion protein (PrPc) encoded by the Prnp gene. Although several roles have been
attributed to PrPc, its putative functions in neuronal excitability are unknown. Although early studies of the behavior of Prnp
knockout mice described minor changes, later studies report altered behavior. To date, most functional PrPc studies on
synaptic plasticity have been performed in vitro. To our knowledge, only one electrophysiological study has been performed
in vivo in anesthetized mice, by Curtis and coworkers. They reported no significant differences in paired-pulse facilitation or
LTP in the CA1 region after Schaffer collateral/commissural pathway stimulation.

Methodology/Principal Findings: Here we explore the role of PrPc expression in neurotransmission and neural excitability
using wild-type, Prnp 2/2 and PrPc-overexpressing mice (Tg20 strain). By correlating histopathology with electrophysiology
in living behaving mice, we demonstrate that both Prnp 2/2 mice but, more relevantly Tg20 mice show increased
susceptibility to KA, leading to significant cell death in the hippocampus. This finding correlates with enhanced synaptic
facilitation in paired-pulse experiments and hippocampal LTP in living behaving mutant mice. Gene expression profiling
using IlluminaTM microarrays and Ingenuity pathways analysis showed that 129 genes involved in canonical pathways such
as Ubiquitination or Neurotransmission were co-regulated in Prnp 2/2 and Tg20 mice. Lastly, RT-qPCR of
neurotransmission-related genes indicated that subunits of GABAA and AMPA-kainate receptors are co-regulated in both
Prnp 2/2 and Tg20 mice.

Conclusions/Significance: Present results demonstrate that PrPc is necessary for the proper homeostatic functioning of
hippocampal circuits, because of its relationships with GABAA and AMPA-Kainate neurotransmission. New PrPc functions
have recently been described, which point to PrPc as a target for putative therapies in Alzheimer’s disease. However, our
results indicate that a ‘‘gain of function’’ strategy in Alzheimer’s disease, or a ‘‘loss of function’’ in prionopathies, may impair
PrPc function, with devastating effects. In conclusion, we believe that present data should be taken into account in the
development of future therapies.
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Introduction

The cause of spongiform encephalopathy in Creutzfeldt-Jacob

disease (CJD), scrapie in sheep or bovine spongiform encephalop-

athy (BSE) is an abnormal conformational isoform (PrPsc) of the

Prnp gene product PrPc [1–4]. Although early studies of the

behavior of Prnp knockout mice described only minor changes [5],

later studies reported that these mice develop an age-dependent

impairment in memory consolidation, altered behavior and

neurotransmission (see [6,7] for reviews). Several authors reported

that excitatory glutamatergic synaptic transmission, GABAA

receptor–mediated fast inhibition and late afterhyperpolarization

were reduced or absent in mice lacking PrPc [8–11]. However,

other authors reported differences in inhibitory and excitatory

neurotransmission between Prnp 2/2 and wild-type mice

[12–16]. More recently, the function of PrPc in the regulation of

olfactory behavior and dendrodendritic synaptic transmission in

olfactory neurons has been described [17]. Moreover, Prnp 2/2
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mice show synaptic dysfunctions such as altered circadian rhythms

and sleep [18], impaired hippocampal dependent spatial learning

[19] and age-dependent impairment of memory consolidation

[20]. Some of these functions such as memory consolidation are

mediated by its receptor [21] and the stress-inducible protein 1

[22]. Here we explore the role of PrPc expression in neurotrans-

mission and neural excitability using wild-type, Prnp 2/2 and

PrPc-overexpressing mice (Tg20 strain). By correlating neurohis-

topathology with electrophysiology in living behaving mice, we

found that Prnp 2/2 mice but, more relevantly, Tg20 mice show

increased susceptibility to KA, leading to relevant cell death in the

hippocampus. This finding correlates with enhanced synaptic

facilitation and hippocampal LTP in both types of mutant mice.

Lastly, our study using IlluminaTM microarrays and further

validation with RT-qPCR demonstrate that genes encoding

AMPA-kainate and GABAA-mediated receptors are co-regulated

in Prnp 2/2 and Tg20 mice.

Results

Different KA sensitivity and severity of KA-induced
seizures in Prnp 2/2, and Tg20 with respect to wild-type
mice

Mice were treated with KA for 2 h (4 i.p. injections and analyzed

for additional 2 h). The onset and intensity of seizures induced by

identical KA injections differed greatly between mutant (Prnp 2/2

and Tg20) and wild-type mice (Table 1). Although non-statistically

significant, Tg20 mice showed a later onset of seizures

(95.8610.1 min; mean 6 SEM) with respect to Prnp 2/2 mice

(84.6615.19 min). Wild-type mice showed few behavioral changes

and only one wild-type mouse showed signs of Grade III seizures

after 147 min, which corresponded to the hyperactivity stage

(Table 1, see Experimental procedures for details). None of the wild-

type mice died during the experiments. In contrast, one Prnp 2/2

and two Tg20 mice had severe seizures and died. The mean

number6SEM of seizures in treated mice was as follows:

Tg20 = 7.361.8, Prnp 2/2 = 14.860.9, and wild-type = 0.360.3.

Although the number of seizures was low, all Tg20 mice showed

Grade VI seizures, while Prnp 2/2 mice showed Grade V-VI. In

addition, Tg20 had significantly longer seizures than Prnp 2/2

(33 min for Tg20 and 16 min for Prnp 2/2).

Correlation between histological and behavioral effects
after KA treatment in experimental mice

To determine whether the severity of changes in behavior

observed in Tg20 and Prnp 2/2 after KA treatment correlated to

neuron death in the hippocampus, we carried out Fluoro Jade-B

(FJ-B) histochemical staining in coronal brain sections from KA-

treated mice from all three experimental groups (Fig. 1). The

pattern of cell death was different in each group. Tg20 mice

showed more dying cells than Prnp 2/2 or wild-type mice.

Although most dying cells were observed in the pyramidal layer of

the CA1, with fewer in CA3 (Fig. 1), many FJ-B-positive cells were

seen in the hilus of the dentate gyrus, the interphase stratum

lacunosum moleculare/stratum radiatum (irl) and stratum oriens of the

hippocampus proper of Tg20 (Fig. 1A, G). In contrast, dying cells

were exclusively observed in the pyramidal layer of the CA1 and

CA3 regions in Prnp 2/2 mice (Fig. 1C). Wild-type animals

showed no cell death in the hippocampus after the KA-treatment

(Fig. 1E). Neurodegeneration in Tg20 and Prnp 2/2 mice was

accompanied by reactive astrogliosis in lesioned regions, deter-

mined by increased GFAP-immunostaining (Fig. S1) and ERK1-2

kinase activation in reactive glial cells (not shown).

Recording of fEPSPs at the CA3-CA1 synapse in alert
behaving PrPc mice strains

Permanently implanted stimulating and recording electrodes in

the hippocampus of behaving mice enabled us to follow the

evolution of fEPSPs evoked at the CA3-CA1 synapse for several

days in the same animal [23,24]. During surgery, recording

electrodes were oriented towards the apical dendrites of pyramidal

CA1 cells (Fig. 2), as indicated by the negative fEPSPs recorded in

most cases [24,25]. The final location of recording and stimulating

electrodes was checked histologically at the end of the experiments

(Fig. S2).

Input/output ratios were modified in Prnp 2/2, and
Tg20 with respect to wild-type mice

In a preliminary series of experiments, we measured the slope

of fEPSPs evoked at the CA1 area by paired-pulse (40 ms inter-

stimulus interval) stimulation of Schaffer collaterals at increasing

intensities. In wild-type, (n = 3 animals; n = 5 measurements/

stimulus intensity and animal), the slope of fEPSPs (in mV/s)

evoked in the CA1 area by the first pulse increased steadily with

current strength, to asymptotic values (at <950 mV/s) (Fig. 2). In

contrast, fEPSPs evoked by the second pulse increased more or

less in parallel with the fEPSPs evoked by the first pulse (but with

<20% larger values) until a certain stimulus intensity (<0.15 mA;

see insert at Fig. 2A, 1.WT), after which the fEPSP slopes evoked

by the second pulse were significantly smaller than those evoked

by the first [F(19,38) = 2.313; P,0.01, marked by asterisks in

Fig. 2A, 1.WT]. Thus the paired-pulse facilitation evoked at low

stimulus intensities in wild-type animals was reverted into a

paired-pulse depression at high stimulus intensities. Indeed, as

reported recently [26], the paired-pulse ratio [(2nd/1st)6100; see

bottom graph at Fig. 2A, 1.WT] decreased steadily from

Table 1. Effects of KA-induced status epilepticus and death in
Tg20, Prnp 2/2, and wild-type mice.

Mice genotype Onset (min) nu of seizures Prioritary behavior

Tg20 60 17 VI (death)

Tg20 113 5 VI

Tg20 101 8 VI

Tg20 66 4 VI (death)

Tg20 121 5 VI

Tg20 114 5 VI

Wild-type - 0 III

Wild-type 147 2 III

Wild-type - 0 III

Wild-type - 0 III

Wild-type - 0 III

Wild-type - 0 III

Prnp 2/2 40 14 V–VI

Prnp 2/2 118 13 V–VI

Prnp 2/2 103 19 V–VI

Prnp 2/2 120 15 V–VI

Prnp 2/2 100 13 V–VI

Prnp 2/2 27 Continue V–VI (death)

The onset, the number of seizures, the behavioral stages and the time in the
prioritary stage is shown in each case.
doi:10.1371/journal.pone.0007592.t001
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Figure 1. Increased seizure-related histopathology in Prnp 2/2, Tg20 and wild-type mice. A–F) Low-power photomicrographs illustrating
the pattern of Fluoro Jade-B (FJ-B) labeling (A,C,E) and DAPI (B,D,F) in the hippocampus of Tg20 (A–B), Prnp 2/2 (C–D) and wild-type (E–F) mice after
KA injection. Dying pyramidal neurons (arrows in A and C) labeled with FJ-B were located in the CA1 and CA3 regions in Tg20 and Prnp 2/2 mice.
However, a more widespread distribution of dying cells can be seen in Tg20 hippocampus (arrowheads in A) with hilar cells and subsets of
interneurons in CA1-3 being intensely labeled. G–L) High-power photomicrographs illustrating the pattern of Fluoro Jade-B (FJ-B) labeling (G.J) and
DAPI (H,K) in the hilus (G–I) and the CA1 (J–L) of Tg20 mice after KA injection. Numerous neurons labeled with Fluoro Jade-B (arrows in G,J and I,J)
displayed condensed chromatin, as ascertained by DAPI staining (H–I, K–L) Abbreviations: CA1-3 hippocampal fields 1–3, DG, dentate gyrus; gl,
granule cells; h, hilus; ml, molecular layer; sp; stratum pyramidale; sr, stratum radiatum; slm, stratum lacunosum moleculare; so, stratum oriens. Scale
bars A = 250 mm pertains to B–F. G = 100 mm pertains to H–I; J = 150 mm pertains to I–L.
doi:10.1371/journal.pone.0007592.g001
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Figure 2. Input/output curves of the CA3-CA1 synapse using paired-pulse stimulation in wild-type (WT), Prnp 2/2, and Tg20 mice
before (A) and after (B) the administration of kainate (KA). A) Relationships between the intensity (from 0.01 to 0.2 mA) of pairs of stimuli
(40 ms inter-stimulus interval) presented to Schaffer collaterals and the slope (in mV/s) of fEPSPs evoked at the CA1 layer, corresponding to the 1st
(white triangles) and the 2nd (black triangles) pulses. Data were collected from WT (1.), Prnp 2/2 (2.) and Tg20 (3.) mice (n = 3 animals/group;
n = 5 measurements/animal). The paired-pulse ratio was calculated as [(2nd/1st)6100] and it is illustrated for each group in the lower plot (white
circles). Arrows in 1.WT indicate the intensity at which the paired-pulse evoked facilitation was reversed into depression . The inset in 1.WT is an
enlargement of the dotted area, to illustrate the switch from paired-pulse facilitation to paired-pulse depression. Note that this reversal was not
present in Prnp 2/2 or Tg20 groups, in which the second pulse was significantly larger than the first for most of the stimulation range.
Representative averaged (n = 3) records of fEPSPs recorded in the CA1 area following paired (1st and 2nd St., at 40 ms inter-stimulus interval)
stimulation of the ipsilateral Schaffer collaterals at two different (0.05 mA and 0.18 mA) intensities are illustrated for the three experimental groups.
For comparative purposes, fEPSPs evoked by the 1st pulse were adjusted to the same amplitude. Dots indicate stimulus artifacts and bent arrows
indicate the presence of afferent volleys. B) Same set of experiments as illustrated in A, but 30 min after a single injection of KA (8 mg/kg, i.p.). Note
that KA did not significantly increase fEPSPs evoked by the 1st or the 2nd pulses in any of the 3 experimental groups. Asterisks indicate significant
differences (P#0.05) between fEPSPs evoked by the 1st versus the 2nd pulse.
doi:10.1371/journal.pone.0007592.g002
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facilitation to depression with an inflexion point at <0.15 mA

(arrows in Fig. 2A, 1.WT). It has been suggested that the

switch from facilitation to depression evoked by paired-pulse

stimulation of increasing intensity is part of a protective and/or

balancing homeostatic mechanism present in hippocampal

synapses [27].

Input/output curves evoked at the CA3-CA1 synapse in

Prnp2/2 animals (n = 3 animals; n = 5 measurements/animal)

were different in amplitude and profile from those evoked in wild-

type mice. In the Prnp 2/2 group both the 1st and 2nd pulse

evoked fEPSPs slopes greater than the corresponding values

collected from wild-type (Fig. 2A, 2. Prnp 2/2). Moreover, the

slope of fEPSPs evoked by the 2nd pulse was significantly greater

than those evoked by the 1st pulse over a wide range of stimulus

intensities [0.08–02 mA; F(19,38) = 4.123; P,0.001; Fig. 2A, 2.

Prnp 2/2 upper graph]. More importantly, the paired-pulse ratio

in Prnp 2/2 mice did not present a decreasing profile with the

progressive increase in stimulus intensity (Fig. 2A, 2. Prnp 2/2 ,

bottom graph).

Finally, input/output relationships evoked at the CA3-CA1

synapse in the Tg20 group (n = 3 animals; n = 5 measurements/

animal) were <3 times larger in fEPSP slopes than in the wild type

group [F(38,76) = 2.863; P,0.001; Fig. 2A, 1.WT vs. Fig. 2A, 3.

Tg20 graphs]. Moreover, asymptotic values were reached at

lower stimulus intensities (<0.07 mA for the Tg20 group vs.

<0.16 mA for the wild-type group). The slope of fEPSPs evoked

by the 2nd pulse in the Tg20 group was significantly greater than

those evoked by the 1st pulse over a wide range of stimulus

intensities [0.05–0.2 mA; F(19,38) = 4.517; P,0.001; Fig. 2A, 3.

Tg20, upper graph]. Finally, the paired-pulse ratio in Tg20 mice

showed a decreasing profile with the progressive increase in

stimulus intensity, but always in the paired-pulse facilitation

range (Fig. 2A, 3. Tg20, bottom graph). In summary, Prnp 2/2

and Tg20 mice presented significantly different input/output

curves from wild-type, with a strong increase in paired-pulse

facilitation and with the disappearance of the balancing

homeostatic mechanism already described at CA3-CA1 in wild-

type mice [26].

Effects of a single KA injection on input/output
relationships at the CA3-CA1 synapse in the three
experimental groups

As reported above Prnp 2/2 and Tg20 mice showed increased

sensitivity to KA-induced seizures. In order to discern the effects of

a relative low dose of KA on input/output curves, we repeated the

experiment illustrated in Fig. 2A, but 30 min after a single

injection of KA (8 mg/kg, i.p.). KA injection produced slight

changes in the profiles of input/output relationships evoked in

wild-type, Prnp 2/2 and Tg20 animals (Fig. 2B). The paired-pulse

depression evoked in the wild-type group disappeared at higher

stimulus intensities (compare the upper graphs in Figs. 2A and 2B,

for the wild-type group, 1.WT). Indeed, fEPSP slopes evoked by

the 2nd pulse at high intensities in wild-type animals were

significantly greater than the corresponding values for the 1st pulse

[0.17–0.2 mA; F(19,38) = 1.749; P#0.05; Fig. 2A, B, 1.WT, upper

graph]. No significant differences were observed between input/

output curves evoked in Prnp 2/2 or Tg20 mice before or after

KA injections. Thus, KA injection apparently disrupted the

protective facilitation/depression mechanism evidenced by paired-

pulse stimulation at increasing intensities [27], but did not affect

fEPSPs evoked at the CA3-CA1 synapse in Prnp 2/2 or Tg20

mice, because this balancing mechanism is already disrupted and/

or occluded in the latter animals.

Prnp 2/2 and Tg20 mice presented more paired-pulse
facilitation than wild-type mice

The facilitation evoked by the presentation of a pair of pulses is

a typical presynaptic short-term plastic property of some excitatory

synapses, including the hippocampal CA3-CA1 synapses, and it

has been correlated with neurotransmitter release [28]. As

reported, recently, this contention can only be sustained at low

stimulus intensities [26]. For this reason, we checked paired-pulse

facilitation in the three groups of animals at different (10, 20, 50,

100, 200, and 500 ms) inter-stimulus intervals, but setting the

stimulus intensity at 30–40% of the amount needed to reach

asymptotic values [23,29]. In this situation, wild-type animals were

expected to present a larger fEPSP response to the 2nd (with

respect to the 1st) stimulus at short intervals (,100 ms). Wild-type

mice presented a significant [F(5) = 54.810; P,0.01] increase in the

response to the 2nd pulse at the 40-ms interval (Fig. 3A).

Prnp 2/2 mice also presented significant paired-pulse facilitation

at the 40-ms interval (P,0.01; Fig. 3A, 2. Prnp 2/2), whilst Tg20

mice presented significant paired-pulse facilitation at several (10,

20, 40) short inter-stimulus intervals (P,0.01; Fig. 3A, 3.Tg20).

Paired-pulse facilitation at the 40 ms interval was significantly

larger in Prnp 2/2 and Tg20 animals than in wild-type mice

[F(10,20) = 3.040; P#0.01]. KA injection did not significantly

modify paired-pulse facilitation in wild-type and Prnp 2/2

animals, but evoked a facilitation at medium (100 ms) inter-

stimulus intervals in Tg20 mice [F(10,20) = 4.507; P#0.002]. In

short, Prnp 2/2 and Tg20 presented more facilitation during the

paired-pulse test than wild-type both in the absence and in the

presence of a KA injection.

LTP of the CA3-CA1 synapse is increased in Prnp 2/2
and Tg20 mice

For the LTP study, animals were stimulated at Schaffer

collaterals every 20 s for $15 min, until a stable fEPSP was

recorded (baseline, Fig. 4A). The stimulus consisted of a double

(100 ms, square, and biphasic) pulse presented at an interval of

40 ms [24]. Pulse intensity (30–110 mA) was set at 30–40% of the

amount necessary to evoke a maximum fEPSP response [23]. For

LTP induction, each animal was presented with a high-frequency

stimulation (HFS) session consisting of five trains (200 Hz, 100 ms)

of pulses at a rate of 1/s. This protocol was presented 6 times in

total, at intervals of 1 min. In order to avoid evoking a population

spike and unwanted EEG seizures, the stimulus intensity for HFS

was set at the same amount used for generating the baseline record.

After HFS, the same single stimulus used to generate baseline

records was presented at the initial rate (3/min) for another 30 min.

Field EPSPs were checked for a further 15 minutes, 24 h and 48 h

after the HFS session (Fig. 4A). Since short-term potentiation seems

to be dependent on the number of stimuli [30], paired-pulse

evolution after HFS was monitored using a minimum number of

paired stimuli per recording session (i.e., a maximum of 90 paired-

pulses per recording day). Using this protocol, the three experi-

mental groups presented a significant LTP lasting .24 h for both

the 1st and the 2nd pulses [wild-type: F(14) = 14.048, P,0.001.

Prnp 2/2 : F(14) = 0.982, P,0.001. Tg20: F(14) = 12.509, P,0.001;

Fig. 4A]. However, Tg20 presented significantly larger potentiation

to the 1st and, mostly, to the 2nd pulse following the HFS session as

compared with the wild-type [F(6,42) = 1.388, P,0.01 for the 1st

pulse and F(6,42) = 1.423, P,0.01 for the 2nd pulse; Fig. 4B]. Values

recorded in Prnp 2/2 mice were also higher (but not significantly)

than wild-type.

It has been reported that HFS can modify the paired-pulse

ratio, possibly as a result of competition with presynaptic release

PrPc and Neurotransmission
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mechanisms [24,30–32]. This suggestion was clearly confirmed

here for HFS modified the paired-pulse ratio in Tg20 and

Prnp 2/2 animals (Fig. 3C), but not in the wild-type group. A

consequence of the latter result could be the rather small

facilitation obtained in this group during baseline records.

Moreover, HFS in Prnp 2/2 and mainly in Tg20 mice evoked

a greater paired-pulse facilitation than in wild-type mice, even

after LTP induction.

Microarray analysis of gene expression and identification
of canonical pathways by IngenuityTM pathways analysis
(IPA) in the three experimental groups

We used SAM software to identify genes that were differentially

expressed in the untreated hippocampi of the three phenotypes.

Thus, Tg20 mice had 336 genes that were de-regulated compared

to wild-type mice. 207 of these were specific to Tg20 and the rest

(129) were shared with Prnp 2/2 (Fig. S3). In addition, Prnp 2/2

showed 404 genes that were de-regulated in comparison with wild-

type, of which 275 were specific to Prnp 2/2 and 129 were shared

with Tg20 (Fig. S3). The 129 genes shared by Prnp 2/2 and Tg20

mice are co-regulated in the same way (up- or down-regulated)

(Fig. S3). Next, we used the Web-based on line tool IPA to identify

the set of biological pathways that were regulated in our

experiment by integrating gene expression profiles using gene

ontology (GO). As illustrated in Fig. S3, the list of significant

canonical pathways containing co-regulated genes in Tg20 and

Prnp 2/2 mice included: Protein Ubiquitination Pathways,

Glycerolphospholipid Metabolism, Nitrogen Metabolism, GABA

Receptor Signaling, D-Glutamine and D-Glutamate Metabolism,

Glutamate Receptor Signaling, B-Cell Receptor Signaling,

Hypoxia Signaling in the Cardiovascular System and Calcium

Signaling. (Fig. S3).

Differential expression of Glutamate and GABAA

receptors in prion mice strains
Illumina Sentrix 6 mouse v2 beadarrays contain probes for

some of AMPA-Kainate receptor subunits but, unfortunately not

all subunits are represented (e.g., GluR6 and GluR7). In addition,

any minor deregulation in specific genes cannot be determined

since it may be masked in the hybridization procedure. However,

Figure 3. Effects of paired-pulse stimulation of the CA3-CA1 synapse at different inter-stimulus intervals for the three experimental
groups before and after the administration of kainate (KA). A) Paired-pulse facilitation collected from wild-type (WT; 1, black triangles),
Prnp 2/2 (2, black circles) and Tg20 (3, black squares) mice (n = 3 animals/group; n = 5 measurements/animal) in the control situation. Thus, each
point indicates the mean value for 15 records 6 SEM. B) Same set of experiments carried out 30 min after a single injection of KA (8 mg/kg, i.p.).
Asterisks indicate significant differences (P#0.01) between fEPSPs evoked by the 2nd pulse as compared with those evoked by the 1st, for the three
experimental groups. The plus signs indicate significant differences (P#0.001) between the amount of facilitation evoked in Tg20 and Prnp 2/2
groups as compared with the WT group.
doi:10.1371/journal.pone.0007592.g003

PrPc and Neurotransmission
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Figure 4. Evolution of fEPSPs evoked in the CA1 area by paired-pulse stimulation of Schaffer collaterals for the three experimental
groups before and after a HFS session. A) Graphs illustrating the time course of changes in fEPSPs (mean 6 SEM) following HFS stimulation of
the Schaffer collaterals. The HFS train was presented after 15 min of baseline recordings, at the time marked by the dashed line and consisted of five
200 Hz, 100 ms trains of pulses at a rate of 1/s. This protocol was presented six times, at intervals of 1 min. fEPSPs are given as a percentage of the
baseline (100%) slope. LTP evoked in WT (1.), Prnp 2/2 (2.), and Tg20 (3.) mice (n = 8 animals per group). The 100 ms, square, biphasic pulses used to
evoke LTP were applied at the same intensity as that used for the single pulse presented following HFS presentation. The evolution of LTP was
confirmed using a pair of pulses (1st, white triangles; 2nd, black triangles) with an inter-stimulus interval of 40 ms. Recordings were carried out for
30 min after the HFS session, and repeated for 15 min 24 h and 48 h later. B) Quantitative analysis of fEPSP evolution at the indicated times for the
three experimental groups. Field EPSPs evoked by the 1st (top diagram) and the 2nd (bottom diagram) pulses are indicated separately. Asterisks
indicate significant differences between groups (P#0.01). C) Evolution of the paired-pulse ratio [(2nd/1st)6100] for WT (black triangles), Prnp 2/2
(black circles), and Tg20 (black squares) groups. Note that fEPSP slopes decreased across recording days for both 1st and 2nd pulses, but that their
relationship [(2nd/1st)6100; white circles] increased steadily over time. Illustrated data correspond to mean 6 SEM *, P,0.001, [F(12,108) = 13.463] for
differences between the 1st and 2nd pulses.
doi:10.1371/journal.pone.0007592.g004

PrPc and Neurotransmission
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GluR1 and GABAA-c2 were among the 129 co-regulated genes.

Thus we used RT-qPCR to extend the analysis to all glutamate

and GABAA receptors (Fig. 5). First, Prnp expression levels in the

hippocampus were analyzed in wild-type and Tg20 samples and

Prnp 2/2 mice by RT-pPCR (Fig. 5A–B). There was a 4.9 fold

increase in Prnp-expression in Tg20 compared to wild-type

whereas Prnp was not detected in Prnp 2/2 mice. Next, we

analyzed the differential expression of AMPA-Kainate and

NMDA receptor subunits (NR1, NR2A and NR2B) and GABAA

receptors subunits by RT-qPCR using specific primers (Table S1).

GluR1 subunit was up-regulated 1.3 fold and 2 fold in Tg20 and

Prnp 2/2 mice respectively compared to wild-type animals. In

contrast, GluR2 was down-regulated in Tg20 (0.5 fold) and

Prnp 2/2 (0.7 fold) compared to wild-type. GluR6 increased in

Tg20 (6.5 fold) and in Prnp 2/2 (2.5 fold). In addition, GluR7 was

also overexpressed in Tg20 and Prnp 2/2 (1.5 fold increase in

both cases). Kainate receptor subunits 1 and 2 were up-regulated

in Prnp 2/2 mice (1.2 fold increase (KAR1 and 2)) and down-

regulated in Tg20 mice [0.62 (KAR1) and 0.3 (KAR2) fold

respectively]. NR1 was up-regulated 2 fold in Prnp 2/2 and 1.5

fold in Tg20; NR2A and NR2B subunits were inversely regulated

in Tg20 and Prnp 2/2 mice. NR2A was up-regulated 2.5 fold in

Tg20 and down-regulated 0.7 fold in Prnp 2/2. In contrast,

NR2B was inversely regulated, with a 2.5 fold increase in

Prnp 2/2 and a decrease (0.3 fold) in Tg20 an imals.

For GABAA receptors, the receptor subunit a1 was overex-

pressed in Prnp 2/2 (1.4 fold increase) and down-regulated in

Tg20 (0.7 fold) with respect to wild-type mice. The expression of

GABAA-d in mutant mice was similar to those seen in a1: down-

regulated in Tg20 (0.62 fold) and over-expressed in Prnp 2/2

mice (1.4 fold). Finally, GABAA-c2 was strongly up-regulated in

Tg20 (4.5 fold increase) and increased in Prnp 2/2 (2 fold

increase). We conclude that Tg20 and Prnp 2/2 animals

overexpress GluR1, GluR6 and GluR7 and GABAA-c2 subunits

and down-regulate GluR2. In addition, GABAA-a1 and GABAA-d
as well as KAR1 and KAR2 are up-regulated in Prnp 2/2 but

down-regulated in Tg20 compared to wild-type.

Discussion

Most studies of the synaptic functions of PrPc have compared

Prnp 2/2 mice (Zürich 1 or Edinburgh strains) with wild-type

animals (see Introduction). The results have highlighted the anti-

oxidative function and neuroprotective roles of PrPc (e.g., see

[6,7,33,34] for reviews). Previous studies have shown that

Prnp 2/2 mice are more susceptible to KA injections than

wild-type [35,36]. Here we hypothesized that the overexpression

of PrPc would enhance cell survival by decreasing the susceptibility

to KA observed in knockout mice.

In order to test this hypothesis, we compared Tg20, Prnp 2/2

and wild-type mice to examine the effect of Prnp dosage on KA-

mediated neurotoxicity. Surprisingly, our results did not vindicate

our hypothesis because increased Prnp dosage (4.9 fold increase) in

Tg20 mice led to stronger reactions to KA-treatment (e.g.,

epileptic behavior and cell death) than those observed in Prnp2/2

or wild-type mice. For this reason, we compared these new data

with those obtained after electrophysiological recording at the

hippocampal CA3-CA1 synapse of living behaving mice and with

parallel RT-qPCR of glutamate and GABAA receptors in the

hippocampus of these mice after a microarray analysis. We found

increased cell death in the hippocampus of both Tg20 and

knockout mice after KA-treatment compared to wild-type mice.

For this reason, in addition to the neuroprotective functions

reported for PrPc (e.g., [37,38]), our results demonstrate that PrPc

levels play a crucial role in controlling neuronal homeostasis and

cell survival. Prnp dosage should be maintained to a certain levels

that, when modified, leads to dramatic neurological defects. In

Prnp 2/2 mice the re-expression of a single allele of the Prnp gene

rescues the KA-susceptible phenotype of Prnp 2/2 mice [35] and

behavioral deficits [19]. For PrPc-deficient mice we can consider a

‘‘loss of function phenotype’’. However, our results from Tg20

mice are more difficult to reconcile with current knowledge of PrPc

physiology. In addition, our data show that Tg20 mice are more

susceptible to KA than Prnp 2/2. Whether these unexpected

results in Tg20 mice are attributable to a ‘‘loss of function,’’ or a

‘‘masking’’ effect of endogenous PrPc roles by the increased Prnp

over-expression, or a gain of ‘‘neurotoxic’’ properties by high PrPc

levels warrants further study.

Tg20 mice showed enhanced neurotoxicity in the hippocampal

formation but especially in cell types that were not affected in KA-

treated knockout mice, such as interneurons, or hilar cells. This

indicates a gain of function process in terms of susceptibility rather

than a loss of function phenomena, at least for certain

hippocampal cells, since in KA-treated Prnp 2/2 hippocampus

such cells are healthy. In this scenario, two results should be taken

into account. First, transient over-expression of PrPc in non-

neuronal cell lines activates apoptotic stimuli and cell death [39].

Second, some mouse models overexpressing non-mutated forms of

PrPc [40–42] displayed neurodegenerative symptoms. Taken

together, these results reinforce the notion that enhanced PrPc-

overexpression may impair cell homeostasis in vitro and in vivo.

Although we have not analyzed them in detail, these two results

may be generated by different mechanisms. Overexpression of

PrPc may increase PrPc levels at lipid rafts of the plasma

membrane, which may alter intracellular signaling cascades or

redox homeostasis, leading to caspase activation. Enhanced

signaling by antibody-mediated PrPc-aggregation triggers cell

death by increasing the generation of reactive oxygen species

(ROS) [43,44]. In contrast, in some PrPc-overexpressing mice,

enhanced PrPc presence may lead to abnormal PrPc aggregation ,

which would contribute to the neural deficits reported [41].

To date, most functional PrPc studies on synaptic plasticity have

been performed in vitro. To our knowledge, only one electrophys-

iological study has been performed in vivo—that by Curtis and

coworkers. They reported no significant differences in paired-pulse

facilitation or LTP in the CA1 region after Schaffer collateral/

commissural pathway stimulation. However, they found reduced

LTP in the CA1 of older Prnp 2/2 mice compared to wild-type

[16]. Here, we report that young-adult Tg20, but not Prnp 2/2,

mice presented significantly larger potentiation to the 1st and,

especially, to the 2nd pulse following HFS of the CA3-CA1

synapse, compared to wild-type. In contrast to the data reported

by Curtis et al. (2003) in anesthetized animals, Prnp 2/2 mice

presented more synaptic facilitation in the paired-pulse test than

wild-type, a variation that could simply reflect the different

functional (anesthetized vs. alert) states. On the other hand, a

recent study by Powell et al., indicates that Ca2+ stores are altered

in Prnp 2/2 mice, which may explain some of the phenotypes

identified in Prnp 2/2 mice (i.e., weaker slow afterhyperpolariza-

tions (AHP) in hippocampal neurons) [45]. This AHP defect is not

caused by voltage-dependent calcium channels or calcium-

activated potassium channels as previously suggested [9]. Since

AHP is a natural mechanism that modulates successive action

potential firing it is reasonable to expect higher susceptibility in

Prnp 2/2 mice to epileptic treatments and synapse potentiation.

Although an early study reported a role of PrPc in the regulation of

Ca2+ stores in synaptosomal fractions [46], and some pathological

effects of aggregated synthetic prion peptides treatments have been
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Figure 5. RNA expression of NMDA, AMPA, KA and GABAA receptors in Tg20, Prnp 2/2 and wild-type mice. A) Agarose gel showing
the amplified products of mice genotyping. B) Histograms showing the level of expression of Prnp mRNA obtained by RT-qPCR in each genotype
(Tg20, Prnp 2/2 and wild-type). C) Agarose gel of the amplified products using the Sybr Green RT-qPCR primers for GluR1, GluR2, GluR6, GluR7,
KAR1, KAR2, NR1, NR2A, NR2B, GABAA-a1, GABAA-d, GABAA-c2 and GAPDH. The size of the amplified bands is indicated in each lane in B. GADPH was
used as internal control. D) Examples of the melting point analysis of the amplified products for GluR6, GluR7, NR2A, GABAA-c2 and GADPH. Note the
presence of different curves for each gene. The mean temperature for GABAA-c2 is shown as an example. E) Histogram illustrating the quantitative
results of the RT-qPCR experiment of target mRNA levels. Histograms represent the mean 6 SEM of three independent experiments correlating
receptor subunits/GADPH levels by using the 22DDCt method. Fold increases or decreases were calculated with respect to wild-type data.
doi:10.1371/journal.pone.0007592.g005
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associated with the endoplasmic reticulum [47], whether enhanced

PrPc expression alters intracellular Ca2+ stores in Tg20 mice is still

unknown.

On the other hand, the enhanced excitability in Tg20 and

Prnp 2/2 mice can be mediated by the differential expression of

specific glutamate or GABAA subunit receptors. Indeed GluR2

down-regulation observed in both mice is currently associated with

high neuronal excitability (e.g., [48]). In addition, the up-

regulation of GluR6 [49] and GABAA-c2 [50] is also correlated

with higher excitability. All these receptor subunits are co-

regulated in Tg20 and Prnp 2/2 mice. However, the distribution

of FJ-B-positive dying cells in the hippocampus is different in Tg20

and Prnp 2/2 mice, especially in CA3 and interneurons of CA1-

3, and in hilar cells. These differences may reflect the particular

distribution of the different glutamate receptors in the hippocam-

pus and the specific participation of AMPA or kainate receptors as

well as NMDA receptors in the KA-induced effects [51,52]. For

example, in addition to the co-regulation of GluR1-2 and Glur6-

GluR7 subunits, Prnp 2/2 mice increased KAR1 and KAR2

receptor subunits compared to Tg20. In contrast, both mice

displayed increased expression of NR1, but Prnp 2/2 displayed

enhanced NR2B expression. The distribution of NR1 in the

hippocampus closely follows the distribution of NR2A and NR2B

[53,54]. However, recent studies reported that NMDA receptors

play special role in CA3 recurrent networks with relevant roles in

seizure generation [55]. In addition, Gardoni and collaborators

have recently reported that reduced NR2B expression impairs

LTP in Schaffer collaterals without the participation of NR2A

[56]. Thus, the specific overexpression of NR2B, together with

KAR1 and KAR2 in Prnp 2/2 may participate in the enhanced

seizures observed in the pyramidal layer of CA3 in Prnp 2/2

mice. However, the NMDA receptor subunit NR2D is only

present in the stratum oriens of the CA1 and CA2, the stratum lucidum

of CA3 and the inner third of the molecular layer of the dentate

gyrus [53]. Although we did not explore NR2D levels in the

present study, it has recently been described that PrPc inhibits

NR2D subunits [57], thus PrPc-deficient neurons showed

enhanced and drastically prolonged NMDA-evoked currents

[57]. This may also explain our results, since the participation of

NMDA receptor in KA-induced cell death in hippocampus has

also been demonstrated in Prnp 2/2 neurons [35].

Recent reports have shown that PrPc decreases the extracellular

levels of amyloid oligomers, which indicates that it might be a

target for putative therapies in Alzheimer’s disease [58]. However,

our results show that a ‘‘gain of function’’ strategy to increase Prnp

dosage in Alzheimer’s disease or a ‘‘loss of function’’ in case of

prionopathies to prevent PrPc to PrPsc conversion may impair

natural function or PrPc leading to devastating effects if natural

expression levels are modified. In conclusion, we believe that

present data should be taken into account in the development of

future therapies.

Materials and Methods

Mouse strains
Prnp 2/2 mice bred from a C57BL6J/129, Ola/Sv back-

ground [5] were purchased from EMMA (Monterotondo, Italy)

We backcrossed to C57BL/6J for at least 15 generations to obtain

Prnp 2/2 and wild-type littermates. 22 Prnp 2/2 adult mice were

used in the study. In addition, 19 C57BL6J littermates were also

used. PrPc-overexpressing mice (Tg20 strain) were purchased from

EMMA (Monterotondo). They were generated from Prnp 2/2

mice as described by Fisher et al. [59]. 28 Tg20 mice were used in

this study. Experiments were carried out in accordance with the

guidelines of the European Union (2003/65/CE) and current

Spanish regulations (BOE 252/34367-91, 2005) for the use of

laboratory animals in chronic studies. All experimental protocols

were also approved by the respective local Ethical Committees.

Mouse genotyping
Specific primers for Prnp genotyping were designed in our

laboratory based on the original P10 and P3 primers described

elsewhere [5]: P10-new: 59-cataatcagtggaacaagccc-39; P4-new: 59-

gctacaggtggataacccctc-39; P3-new: 59-gccttctatcgccttcttgac-39. 40

cycling condition were: 450 95uC; 450 62uC; 19 72uC, followed by

a final extension at 72uC for 5 min. For Tg20 mice, the transgene

was detected by specific primers as indicated [60].

Kainate injections and scoring of seizure severity
The C57BL6J strain is seizure resistant in comparison to other

mouse genetic backgrounds [61,62]. As indicated, Prnp 2/2 mice

were generated on a C57BL6J/129, Ola/Sv background [5]. Non-

lethal convulsive seizures were induced in wild-type mice by

successive injections of kainate (KA) (Sigma, Saint Louis, Missouri,

USA) dissolved in 0.1 M phosphate buffered saline (PBS) Ph = 7.4.

Animals were weighed and injected i.p. with one pulse of KA

(8 mg/kg b.w.) every 30 min for 2 h (making a total of four pulses).

Injected animals displayed forelimb clonus, rearing and falling, or

continuous tonic clonic seizures. They were observed for 4 hours

after the first injection. Seizure intensity was evaluated as

described elsewhere [63,64]. After the first KA injections, affected

animals became hypoactive and immobile (Grade I–II). After

successive injections, hyperactivity (Grade III) and scratching

(Grade IV) were often observed. Some animals (especially

Prnp 2/2 and Tg20 mice) progressed to a loss of balance control

(Grade V) and further chronic whole-body convulsions (Grade VI).

The behavior known as pop-corn bouncing was included in Grade

VI of the scale used in our study. Multiple doses of KA treatments

were used to identify the threshold of KA-mediate seizures.

Fluoro Jade-B staining of dying neurons in brain sections
Mice were perfused with phosphate buffered 4% paraformal-

dehyde, pH = 7.3, postfixed overnight in the same fixative, and

cryoprotected in buffered 30% sucrose. Coronal sections (30-mm

thick) were obtained in a freezing microtome and processed in

parallel. Free-floating sections were rinsed for 2 hours in Tris

0.1 M, pH = 7.4, mounted and air-dried at room temperature

overnight. Next day, sections were pretreated for 3 min in absolute

alcohol, followed by 1 min in 70% ethanol and 1 min in distilled

water. They were then oxidized in a solution of 0.06% KMnO4 for

15 min. Following three rinses of 1 min each in distilled water, the

sections were incubated for 30 min in a solution of 0.001% Fluoro

Jade-B (Chemicon, Temecula, USA) containing 0.01% of DAPI in

0.1% acetic acid. The slides were then rinsed in deionised water

for 3 min each, dried overnight, rinsed in xylene and coverslipped

with EukittTM (Merck, Germany). Sections were examined using

an epifluorescent microscope with blue-violet excitation light set at

450 nm and 350 nm, respectively. Fluoro-Jade stained cells emit

green light with an excitation peak at 480 nm and an emission

peak around 525 nm.

Electrophysiological experiments in behaving mice
A total of 24 (8 from each experimental group) male adults (3–5

months old; 25–35 g) were used in the electrophysiological study.

Additional animals were used in a preliminary study of the stability

of the recording and stimulating systems. Upon arrival in the

laboratory, animals were housed in separate cages (n = 8 per cage),
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but they were switched to individual cages after surgery. Mice

were kept on a 12 h light/dark cycle with constant ambient

temperature (2261uC) and humidity (5568%). Food and water

were available ad libitum.

Surgery
Animals were anesthetized with 0.8–3% halothane (AstraZe-

neca, Madrid, Spain). The gas mixture was delivered through a

small anesthesia mask (David Kopf Instruments, Tujunga, CA)

connected to a calibrated Fluotec 5 (Fluotec-Ohmeda, Tewksbury,

MA, USA) vaporizer at a flow rate of 1–4 L/min oxygen. Animals

were implanted with bipolar stimulating electrodes in the right

Schaffer collateral-commissural pathway of the dorsal hippocam-

pus (2 mm lateral and 1.5 mm posterior to Bregma; depth from

the brain surface, 1.0–1.5 mm [65]. A recording electrode was also

implanted in the ipsilateral stratum radiatum underneath the CA1

area (1.2 mm lateral and 2.2 mm posterior to Bregma; depth from

the brain surface, 1.0–1.5 mm). Electrodes were made of 50 mm,

Teflon-coated tungsten wires (Advent Research Materials, Eyn-

sham, UK), bared at their tips for <0.3 mm. The recording

electrode was implanted in the CA1 area using as a guide the field

potential depth profile evoked by paired (40 ms interval) pulses

presented to the ipsilateral Schaffer collateral pathway. The

recording electrode was fixed at the site where a reliable

monosynaptic (#4 ms of latency) CA3-CA1 fEPSP was recorded.

In short, the electrical stimulation of Schaffer collaterals evoked an

afferent volley into the CA1 area, usually appearing as a small

triphasic (positive-negative-positive) potential, with a latency of

<1.5–2 ms60.5 ms (Figure 2). The afferent volley was followed,

<2 ms later, by a large negative wave when recorded at the stratum

radiatum (see ref. [23] for details). A 0.1 mm bare silver wire was

affixed to the skull as a ground. All the wires were connected to a

four-pin socket (RS-Amidata, Madrid, Spain). The socket was

affixed to the skull by two small screws and dental cement. Further

details are provided elsewhere [23,24] Experimental sessions

started one week after surgery.

Electrophysiological recording procedures
Recording sessions were carried out with 3 animals at a time.

Animals were placed in separate small (565610 cm) plastic

chambers located inside a larger Faraday box (30630620 cm).

Extracellular recordings were made with a high impedance probe

(261012 V, 10 pF) using differential amplifiers with a bandwidth of

0.1 Hz–10 kHz (P511, Grass-Telefactor, West Warwick, RI,

USA). For input-output curves, the stimulus intensity of paired

pulses presented to Schaffer collaterals was raised from 0.01 mA to

0.2 mA in steps of 10 mA (Fig. 2). The selected stimulus interval

was 40 ms, because this interval presents maximum facilitation for

the CA3-CA1 synapse [24]. In all cases, the pair of pulses of a

given intensity was repeated 5 times with time intervals $30 s, to

minimize interferences with slower short-term potentiation

(augmentation) or depression processes [28]. To record paired-

pulse facilitation at different (10, 20, 40, 100, 200, and 500 ms)

inter-stimulus intervals (Fig. 3), pulse intensity (50–400 mA) was set

at 30–40% of the amount necessary to evoke a maximum fEPSP

response [23,29]. To evoke long term potentation (LTP), we used

an HFS session consisting of five 200 Hz, 100 ms trains of pulses

at a rate of 1/s. This protocol was presented six times, at intervals

of 1 min. Field EPSP baseline values were collected 15 min prior

to LTP induction using paired (40 ms inter-stimulus interval)

100 ms, square, biphasic pulses, presented every 20 s. As indicated

above, paired-pulse intensity for baseline recordings and after the

HFS session was set at 30–40% of the amount necessary to evoke a

maximum fEPSP response and at an inter-stimulus interval of

40 ms. In order to avoid evoking a population spike or unwanted

EEG seizures, the stimulus intensity during the HFS train was that

used to generate baseline records. After each HFS session, the

same paired-pulse stimuli (40 ms inter-stimulus interval) were

presented every 20 s for 30 min during the first LTP session and

for 15 min on the following two days.

Drug administration in electrophysiology procedures
KA was dissolved in 0.1 M phosphate buffered saline (PBS) at

pH 7.4. KA was injected at a dose of 8 mg/kg, i.p., 30 min before

input/output curves and the paired-pulse test.

Electrode location in electrophysiological procedures
At the end of the experiments, mice were deeply re-anesthetized

(sodium pentobarbital, 50 mg/kg), and perfused transcardially

with saline and 4% phosphate-buffered paraformaldehyde (PFA).

Selected brain sections (50 mm) including the dorsal hippocampus

were obtained on a microtome (Leica, Wetzlar, Germany),

mounted on gelatinized glass slides and Nissl stained with 0.1%

Toluidine blue to determine the location of stimulating and

recording electrodes.

Analysis of the electrophysiological data
Field EPSPs and 1-volt rectangular pulses corresponding to

stimulus presentations were stored digitally on a computer through

an analog/digital converter (CED 1401 Plus, Cambridge,

England), at a sampling frequency of 11–22 kHz and an amplitude

resolution of 12 bits. Commercial computer programs (Spike 2 and

SIGAVG from CED) were modified to represent EMG and fEPSP

recordings. Data were analyzed off-line for quantification of CRs

and fEPSP slope with the help of home-made representation

programs [23]. Computed data were processed for statistical

analysis using the SPSS for Windows package. Unless otherwise

indicated, data are reported as the mean6SEM. Acquired data

were analyzed using a two-way ANOVA test, with group, session,

or time as repeated measure. Contrast analysis was added to

further study significant differences.

Expression profiling analysis of WT, Prnp 2/2 and Tg20
with IlluminaTM bead arrays

To determine gene expression changes in the three mouse

strains, we performed a global transcriptome analysis using

Illumina Sentrix 6 mouse v2 bead arrays. Total RNA from 4

mice (biological replicate experiments of wild-type, Prnp 2/2 and

Tg20) was extracted from hippocampi and genotype. RNA

concentration was measured with a NanodropTM, and RNA

quality was assessed by BioanalyzerTM with RIN (RNA integrity

number) ranging between 8.5 and 10.0. For each sample, 200 ng

of total RNA was reverse transcribed, amplified by in vitro

transcription and labeled with biotin-UTP using the Illumina

Total Prep RNA amplification kit (IL1791, Applied Biosystem/

Ambion, Austin, TX, USA) following the manufacturer’s instruc-

tions. Labeled sample quality was assessed by NanodropTM and

BioanalyzerTM. After pre-heating to 65uC for 5 min 750 ng of

biotinylated cRNA was hybridized in a BeadChip Hyb Chamber

with rocking for 16 h at 58uC. On the following day, bead arrays

were washed in IlluminaTM washing solutions in a Hybex

waterbath: first with static incubation for 10 min at 55uC in

E1BC solution, followed by 10 rinses by dipping in the same

solution and shaking 5 min at 90 r.p.m. in an orbital shaker; the

next wash was by dipping 10 times in 100% ethanol and shaking

10 min at 110 r.p.m. in an orbital shaker; this was followed by

another wash in E1BC solution, dipping ten times, followed by
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2 min shaking at 90 r.p.m. Washed bead arrays were blocked in

E1 buffer for 10 min in a rocking incubator and for a further

10 min with 2 ml of E1 buffer plus streptavidin-Cy3. The

fluorescent reagent was removed with E1BC solution, dipping

ten times, plus 5 min shaking at 140 r.p.m. Finally, bead arrays

were dried by centrifugation for 4 min at 275 r.p.m., followed by

scanning in the Illumina Beadstation. The Beadscan software

generates *.tif images and extracts raw data as tabulated text files.

The raw data were summarized per probe using BeadStudio

software Gene Expression and the summary data file was

processed using the PILLA Web interface tool (Lozano et al,

unpublished) an implementation of the Lumi package [66]

developed within the Bioconductor project in the R statistical

programming environment [67]. Data were normalized using the

RSN (robust spline normalization) method and the VST (variance-

stabilizing transformation) method. The log2 intensities were

media centered and log ratios were computed as differences in

log2 intensities for each probe. The SAM (significance analysis of

microarrays) two-class unpaired comparison test was applied with

100 permutations to detect significant differences in gene

expression between treated and control conditions, initially setting

the statistical significance at a false discovery rate of 5%, with an

arbitrary absolute fold chance cutoff set at 1.2 [68]. Whole

genome expressional data results were filtered, with criteria

selection of 1.2 Fold Change and Q-value less than 5%.

Microarray functional analysis
We used the Ingenuity Pathway Analysis (IPA) software.

Annotation of expression data was performed with reference to

a number of sources which include; NIH DAVID the Gene

Ontology Consortium, Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway [http://david.abcc.ncifcrf.gov,

http://www.geneontology.org, http://www.genome.jp/kegg/

pathway.html]. The IPA tool was used to identify the biological

functions that were most significant to the data set. Canonical

pathways were also identified from the IPA library; canonical

pathways that were most significant to the data set were selected

[69]. The significance of the association between the data set and

the canonical pathway was measured in 2 ways: i) a ratio of the

number of genes from the data set that map to the pathway

divided by the total number of genes that map to the canonical

pathway was calculated. ii) Fischer’s exact test was used to

calculate a p-value determining the probability that the association

between dataset genes and the canonical pathway is significant.

RT-qPCR
RT-qPCR was carried out using ABI PRISM 7700 sequence

detection system equipment and power Sybr Green master mix

(Applied Biosystems). Reaction volumes of 12.5 ml were used with

0.5 mM primers. Specific primers were taken from a database

(http://pga.mgh.harvard.edu/primerbank/) based on the pub-

lished sequences (see Table S1). Amplification conditions consisted

of 20 denaturation at 95uC; 150 of annealing at 60uC; and 1 min

elongation at 60uC for 40 cycles. The results were normalized by

the expression levels of the housekeeping gene, gapdh, which was

quantified simultaneously with the target gene. To this mixture, we

added 1 ml of the serially diluted cDNA prepared from tissue. A

melting point analysis was carried out to improve the sensitivity

and specificity of amplification reactions detected with the Sybr

Green I dye. Data were analyzed by SDS 1.9.1 Software (Applied

Biosystems) following the 22DDCT method [70]. The significance

of differences was assessed using the Student’s t-test and the Sigma

Stat software.

Supporting Information

Figure S1 Photomicrographs of the CA1 region showing the

pattern of GFAP immunostaining in untreated Tg20 mice (A) and

after KA treatment (B–C). GFAP immunoreactivity strongly

increased in the CA1 of KA-treated Tg20 mice. In addition,

GFAP-positive cells after KA-treatment displayed the classical

morphology of reactive cells with tick cellular expansions (arrows

in C). Abbreviations as in Fig. 1. Scale bars A = 100 um pertains to

B. C = 50 um.

Found at: doi:10.1371/journal.pone.0007592.s001 (5.21 MB TIF)

Figure S2 A diagram illustrating the experimental design of the

electrophysiological experiments carried out in behaving mice. (A)

Animals were implanted with bipolar stimulating electrodes (St.)

oriented towards the right Schaffer collateral-commissural path-

way of the dorsal hippocampus and with a recording (Rec.)

electrode aimed at the ipsilateral stratum radiatum underneath the

CA1 area. A bare silver wire was affixed to the skull as a ground.

(B–C) Photomicrographs illustrating the location of stimulating (B)

and recording (C) electrodes. Scale bars are 200 mm. Abbrevia-

tions: D, L, M, V, dorsal, lateral, medial, ventral; DG, dentate

gyrus; Sub., subiculum.

Found at: doi:10.1371/journal.pone.0007592.s002 (3.51 MB TIF)

Figure S3 Venn diagrams (A–C) and histogram (D) representing

the functional microarray analysis between Tg20, Prnp 2/2 and

wild-type mice using IPA software. In A–C the number of

regulated (A); the down-regulated (B) and the up-regulated (C)

genes as well as the genes shared between genotypes are shown.

(D) Histogram illustrating the canonical pathways (X axis)

including co-regulated genes with higher probability (indicated

by the threshold (dashed line) of the 2Log(p-value)). Squares and

connecting lines between bars indicate the gene number tendency

between functions.

Found at: doi:10.1371/journal.pone.0007592.s003 (1.14 MB

DOC)

Table S1 List of PCR primers used in the RT-qPCR validation.

Found at: doi:10.1371/journal.pone.0007592.s004 (0.04 MB

DOC)
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