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Abstract

DNA sequences seen in the normal character-based representation appear to have a formidable mixing of the four
nucleotides without any apparent order. Nucleotide frequencies and distributions in the sequences have been studied
extensively, since the simple rule given by Chargaff almost a century ago that equates the total number of purines to the
pyrimidines in a duplex DNA sequence. While it is difficult to trace any relationship between the bases from studies in the
character representation of a DNA sequence, graphical representations may provide a clue. These novel representations of
DNA sequences have been useful in providing an overview of base distribution and composition of the sequences and
providing insights into many hidden structures. We report here our observation based on a graphical representation that
the intra-purine and intra-pyrimidine differences in sequences of conserved genes generally follow a quadratic distribution
relationship and show that this may have arisen from mutations in the sequences over evolutionary time scales. From this
hitherto undescribed relationship for the gene sequences considered in this report we hypothesize that such relationships
may be characteristic of these sequences and therefore could become a barrier to large scale sequence alterations that
override such characteristics, perhaps through some monitoring process inbuilt in the DNA sequences. Such relationship
also raises the possibility of intron sequences playing an important role in maintaining the characteristics and could be
indicative of possible intron-late phenomena.
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Introduction

The apparent lack of pattern of composition and distribution of

bases in DNA sequences have been one of the enduring problems

of molecular biology. Chargaff’s rule provided a clear relationship

between the numbers of guanines and cytosines, and between

adenines and thymines in duplex DNA sequences, understood well

by the Watson-Crick model. However, no clear relationship has

been found as yet between the occurrences of these four bases in

an individual strand of a gene sequence, although much work have

been done on understanding nucleotide frequencies and base

distributions in DNA sequences. To cite a few examples, Sueoka

[1] proposed a unitary theory based on genetic and evolutionary

considerations which attempted to account for the main

characteristics of the distribution of DNA base composition in

nature. The author considered the GC content of DNA sequences

of organisms and mutations of GC base pairs to AT base pairs and

vice versa over many generations from which a distribution

function of the GC content of DNA molecules at equilibrium was

obtained based on assumptions of rather uniform mutation and

selection pressures affecting base pair conversions.

Goldman and Yang [2] proposed a codon-based model for the

evolution of protein-coding DNA sequences using a Markov

process to describe substitutions between codons. They used codon

level information to model synonymous and asynonymous

nucleotide substitution applicable to homologous sequences with

no insertion/deletion gaps or with gaps removed. A 61661 matrix

of codon substitution rates (excluding the three stop codons) is

used, assuming that mutations occur at the three codon positions

independently and only single-nucleotide substitutions are permit-

ted to occur at any instant. Using several constraints and

refinements on the nucleotide substitution rates, the transition/

transversion bias and amino acid differences, they show that their

codon based model gives better phylogenies than simple

nucleotide substitution model. However, the possible patterns

arising from this model is very large and computationally very slow

requiring Monte Carlo simulations, maximum likelihood methods

and other approximations to arrive at quantitative results. While

the model is useful for pairwise distance measures and for

phylogenies, a relationship defining base composition in a DNA

sequence is not clearly realised.

In a recent paper, Qi Ding et al [3] formulated an approach to

determine a linear regression model for DNA sequences. By

regarding a DNA primary sequence as a random process in time

and defining the nucleotides’ random distribution functions in

three ways based on chemical structures they proposed two

methods to measure their similarities. Relating the random

distribution functions by a linear regression equation enabled

them to construct six new models to analyse the DNA sequences

and quantify their similarities and dissimilarities. The optimal

model can be chosen based on the amount of information

contained or lost in the process.

Several other studies have also focussed on nucleotide

asymmetries in DNA sequences to gain an insight into correla-

tions, if any, in base composition and distribution. Arnold et al [4]

used tetranucleotide frequencies in a third order Markov chain to
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predict the frequencies of longer oligonucleotides in the yeast

genome and observed that the oligonucleotide frequencies

depended strongly on base composition. Freeman [5] considered

several prokaryotic DNA genomic sequences and found, from base

composition asymmetries like purine excess over pyrimidines and

coding strand excess, that the global minima of the purine excesses

correlated with the origin of replication, and the maxima with the

likely terminus for prokaryotic genomes and that such a prominent

correlation between the purine excess and replication direction

probably leads to excess pyrimidine accumulation in the sense

strand and accordingly should increase the less mutationally

vulnerable purine content of the coding strand. Prusak and

Grzybowski [6] observed that there is a strong non-random

distribution of nucleotides in the cytochrome b sequence in several

species with the highest differences at the third codon position

which is also the codon position of the strongest compositional

bias; some species like quail, frog, python and elk appeared to

prefer C over A in the light DNA strand whereas species belonging

to the artiodactyls contained fewer pyrimidines compared to other

species investigated.

Such studies serve to also highlight the complexity of base

arrangements in a DNA sequence and the difficulties in finding

any inherent pattern or signal sequences in such arrangements,

especially in a character based representation of the hundreds and

thousands of nucleotides comprising the sequences. However, a

graphical representation can be expected to provide visual clues to

any inherent pattern or regularity as distinct from a purely random

distribution of the bases which could be expected to generate a

corresponding random distribution in the representative plot.

Indeed, a purine-pyrimidine sequence map proposed by Peng et al

[7] provided a visual rendition of the growth of purine and

pyrimidine numbers in a DNA sequence, which was interpreted by

the authors as indicative of an inherent fractal nature in the

purine-pyrimidine structure of the DNA sequences. The chaos

generator representation of Jeffreys [8] with its double-scoop

depletion pattern reflected largely the abundance, or sparseness, of

various dinucleotides and higher combinations, and also showed

characteristic variations for different classes of organisms.

Graphical representations of DNA sequences assigning the four

individual nucleotides to designated axes on a Cartesian grid

provide a more direct visual indication of the progression of

nucleotides in a sequence, akin, in some respects, to the Wilson

cloud chamber for particle tracks. The first graphical representa-

tion of a DNA sequence was proposed by Hamori and Ruskin [9]

based on a 3D Cartesian axis system that generated a visual map

of the sequence of bases in a selected DNA sequence. A 2D

representation was proposed by Gates [10] and rediscovered

independently by Nandy [11] and Leong & Morgenthaler [12],

with different axes identifications for the four bases. These were

followed subsequently by many different approaches to render a

visual representation of the DNA sequences [13,14], and their

applications have been found to be very useful in elucidating

different characteristics of DNA sequences that are not easily

accessible in other ways. For example, Gates [10] referred to large

scale structures seen in the plots of some sequences; such structures

were also reported by Nandy and Nandy [15], and recently by

Larionov et al [16] who reported, inter alia, the presence of

gigantic palindromes in mouse and human chromosomal

sequences. Liao et al [17] have shown that 2D graphical methods

that convert a DNA sequence to a series of co-ordinates and

therefrom construct distance matrices can be used for computation

of molecular phylogeny without need for multiple alignments;

Wang et al [18] constructed a 3D representation in which a DNA

sequence could be denoted mathematically and a similarity matrix

constructed for multiple sequences to derive a phylogenetic tree by

virtue of the fuzzy theory. Lo et al [19] have shown using a 3D

trajectory method that global views of DNA sequences can be

obtained such that different types of DNA sequences can be easily

distinguished and any local differences and similarities between

two DNA sequences can also be easily observed.

Furthermore, numerical characterisation techniques based on

graphical representations have enabled quantitative estimations of

sequence similarities and dissimilarities [see review 14]. Basically

there have been two approaches for numerical characterization,

both of which use the graphical representation to map a DNA

sequence into a set of numbers. One approach using geometrical

mapping proposed by Raychaudhury and Nandy [20] have been

found to be useful for several calculations based on the 2D graphical

representation [14], and extended recently to an abstract 20D

modelling for protein sequences [21], where individual sequences

are indexed by numerical descriptors. The other approach is to use

matrix methods by forming ratios of graph theoretic and Euclidean

distances between nodes of the graphical plots, first formulated for

DNA sequences in Randic et al [22]. Since invariants associated

with matrix formulation are well-known, individual sequences can

be indexed by one or more such invariants of various orders; it is

expected that these would be sufficiently characteristic of the

underlying sequences to enable unique characterization. This

technique has been the most widely used method of choice for the

researchers in this field who have defined different types of matrices

to construct various invariants to describe the DNA sequences.

However, the difficulties associated with computing various

parameters for very large matrices that are natural for large

sequences have restricted the numerical characterizations to leading

eigenvalues and the like [14].

In principle, however, many of the indices used to characterize

numerically DNA representations are graph invariants that

describe the distribution of nodes and/or node-node connections

in these graphs. In the parlance of graph theory, many authors

have referred to some of these indices as Topological Indices (TIs)

and applications have been made not only to DNA sequences but

also to proteins, viral surfaces, RNA secondary structures and

small molecules [23,24]. Consequently, the method is of more

general application taking into consideration that the type of graph

representations referred to above have been extended from DNA/

RNA to the study of other types of relevant biological sequences.

In particular, González-Dı́az et al. extended these representations

to the study of protein sequences [25] and Mass Spectra outcomes

of proteins and/or protein serum profiles in parasites [26],

toxicoproteomics and diagnosis of cancer patients [27,28]. In any

case, the various numerical parameters of DNA/RNA graph

representations (TIs or otherwise) may be used not only to study

sequence-sequence similarity but also to fit Quantitative Structure-

Activity Relationship (QSAR) models. These QSAR connect

structural information with the biological function of a molecular

entity under study and may be used to predict unknown entries.

Structure here refers not only to drug structure but also to DNA

sequence, RNA sequence or secondary structure, and protein

sequences or 3D structure [see review 28].

Thus, the utility of graphical methods in revealing different

types of hidden structures and similarities/dissimilarities in and

between DNA and other biological sequences can be considered to

be well demonstrated.

In this light, a perusal of the representative patterns of

conserved gene sequences appears to indicate a possible

relationship between the numbers of the various nucleotides in

conserved gene sequences. Here we use the 2D graphical

representation method to show that plots of the conserved gene

Intra Pu-Py Relationship
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sequences trace out apparently curved paths that are also visually

similar across species for the same gene. The nature of these curves

is seen to generally imply a so far undescribed quadratic

relationship between intra-purine and intra-pyrimidine differenc-

es, whereas the null hypothesis would have indicated random

directionless walks. With such empirical relationship between the

two basic nucleotide differences, we propose a probable mutation

path to explaining the relationships. We then hypothesize that the

parameters of such relationships could be a property of the

underlying gene sequences and speculate that extensive alterations

of such genes by accretion or deletion of DNA fragments would be

s only if the modified sequences subscribe to the same basic

parameterised relation.

Methods

Here we use the random walk system envisaged in the Nandy

plot [11] based on a 2D Cartesian grid where the four bases are

assigned to the four cardinal directions: guanine (g) to the positive

x-direction, thymine (t) to the negative y-direction, adenine (a) to

the negative x-direction and cytosine (c) to the positive y-direction.

The method to plot a DNA sequence is to start at the origin and

take a step in the positive x-direction for a guanine base, in the

negative x-direction for an adenine, positive y-direction for a

cytosine and the negative y-direction for a thymine, and proceed

likewise for each succeeding base in the sequence, starting each

step from the end of the last one taken. This way a succession of

bases in the original DNA sequences is represented by a succession

of points in the 2D plot, the overall trace being a representation of

the distribution of bases in the DNA sequence (see e.g., Fig. 1 –

human beta globin). The axes essentially represent the excess of

guanine over adenine along the x-axis and the excess of cytosine

over thymine along the y-axis; thus the plots are basically of

instantaneous values of intra-pyrimidine, intra-purine differences

as we proceed along the sequence. The end point of such a curve

will be given by (NG-NA, NC-NT), where by NA, NC, NG, NT we

mean the total number of adenines, cytosines, guanines and

thymines in the sequence being plotted. GC-rich sequences

therefore plot mostly in the first quadrant, AT-rich sequences in

the third quadrant on this axes system.

Once the co-ordinates are available, we use an Excel

spreadsheet to plot the graph and apply the Add Trendline feature

of the Excel software to fit the best polynomials for our analysis,

with axes transformation where required to conform to the

software’s curve fitting engine.

Results

Fig. 1 shows a plot of the human beta globin gene complete cds

generated using the above algorithm. We note that a DNA

sequence that consists of a succession of short segments each

having a complete mix of a,g,c,t with equal contributions of each

of the bases within each of the segments would be expected to

generate a dense cluster of points around the origin; a random

distribution of the a,g,c,t along the sequence could be expected to

generate a random walk. The human beta globin gene sequence

complete cds inclusive of all introns and exons (Fig. 1) shows a

distinct pattern where the bases appear to follow one another with

some regularity, with the total extent of the representative plot

arising from the non-equal composition of the bases in the

sequence; other beta globin sequences produce similar plots

implying that the human beta globin gene cds is not an arbitrary

random sequence. Fig. 2 shows the close similarity of the shapes of

the plots of three sequences of histone H4 genes of wheat, maize

and chicken, demonstrating that these sequences are not random

but have a close kinship in base distribution. A randomisation of

the bases in the human beta globin gene [29] produces, on the

other hand, a simple linear plot (Fig. 3) in the third quadrant of the

axes system as can be intuitively expected for an unorganised

mixture of the four bases along the sequence.

To further demonstrate that the base distribution in these gene

sequences are non-random, and generally true for conserved gene

Figure 1. 2D graphical representation of the human beta
globin gene, complete cds from HUMHBB (GenBank). Intron
regions are coloured green, exons blue. The axes are A, C, G, T clockwise
along the four cardinal directions starting from the negative x-direction
as explained in the Methods section.
doi:10.1371/journal.pone.0006829.g001

Figure 2. 2D graphical representations of three histone H4
sequences: Wheat (brown), maize (pink) and chicken (blue). The
three plots can be seen to have similarities in shape.
doi:10.1371/journal.pone.0006829.g002

Intra Pu-Py Relationship
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sequences, we have generated graphical representations of several

conserved genes, a selection of which are shown in Fig. 4. Plots of

several alpha globin genes are included here to show that there is

shape similarity between the same genes from different species

indicating that entire gene sequences inclusive of introns and exons

have close similarities. This can also be seen in the plots of several

histones, tubulins and heat shock proteins, of which some

representative samples are given in Figs. 4 and 5.

With our observation that the sequences of the conserved genes,

both intronless and with-introns, have close similarities, we can

start to enquire whether these sequences have any discernible

patterns. We notice that the general nature of the DNA walks on

the 2D representation as per the Nandy prescription [11] shown in

the above figures is directional and curvilinear. A simple 2nd

degree polynomial produces reasonable fits. A selection of the plots

with the trendlines is shown in Fig. 6 and 7 corresponding to the

sequences shown in the previous two figures. A list of the details of

the fits and statistics are given in Table 1.

While this nature of the base distributions is found across many

different sequences of eukaryotic genes, it is also very much

evident in the case of viral sequences like the H5N1 neuraminidase

which are known to mutate very rapidly; other plots from a sample

of over 600 sequences of the H5N1 neuraminidase show similar

quadratic forms. Interestingly, plots of the wheat, maize and

chicken histone H4 genes, which are also intronless genes, can also

be fitted by polynomials of degree 2, similar to the case of the viral

genes. Chicken beta globin gene with intron sequences that are

quite different compared to the mammalian genes plot in the first

quadrant, but it also can be fit by a quadratic polynomial.

This is however not true of all gene sequences. The mouse beta

globin gene sequence representation in the 2D framework gives a

very poor fit for the quadratic function (R2 = 0.06) but much better

statistics with a cubic polynomial (R2 = 0.53) (Table 1); the human

delta globin gene also shows very good statistics when fitted with a

cubic polynomial (R2 = 0.98). Some sequences where significantly

large segments are at variance with the overall pattern too cannot

be put into such slots. The rat myosin heavy chain gene sequence

where the intron sequences have been hypothesized to have grown

through accretion of large fragments [30], for example, presents a

highly compact form on the 2D plot [15] and cannot be fit by the

simple polynomials we have used so far. However, sufficiently

large numbers of sequences are seen to follow the apparent

quadratic relationship with good statistics that it is of interest to try

to understand the underlying pattern.

Discussion

The equations that fit the curvilinear patterns of the base

distributions with reasonable statistics are of the form

y~axzbx2 ð1Þ

and

x~cyzdy2 ð2Þ

where a,b,c,d are parameters,

x~nG{nA and y~nC{nT ð3Þ

and nA, nC, nG, nT are the instantaneous values of the numbers of

a, c, g, t present up to the particular position (x,y) on the sequence,

starting the count from the beginning, i.e. the 59-end, of the

sequence. These are our empirical equations connecting the intra-

purine (x) and intra-pyrimidine (y) numbers obtained from the

observations of the patterns on the 2D graphical plots. While the

majority of the plots shown are well-represented by such

polynomials of the second degree, the fits could be improved in

some instances by fitting higher degree polynomials as mentioned

earlier; e.g., in the case of the human beta-globin gene a

polynomial of the third degree yields better statistics (R2 = 0.94)

than the second degree (R2 = 0.81), for the human delta globin

gene the statistics for the quadratic and cubic fits are R2 = 0.87 and

R2 = 0.98, respectively. We, however, consider the second degree

form for now for conformity without excessive loss of statistical

significance.

The origin of such a relationship as in equations 1 and 2 could

be traced to mutational changes in a sequence, where we restrict

our analysis for the moment to transitional types of mutations since

this is the dominant mode. Consider a mutation of a cytosine to

thymine in one strand of a DNA in a GC-rich sequence. The

opposite strand, calling it strand 2 for convenience, will initially

have a bulge for the original paired guanine, and the event leads to

following possibilities [31]: (a) the DNA repair mechanism reverse

mutates the thymine to cytosine in strand 1, thus negating the

effect of the original mutation; (b) the guanine in strand 2 is

replaced by an adenine; and (c) a third possibility in case the

damage repair coincides with replication, that the DNA is

elongated by pairing the mutated thymine in strand 1 with a

new adenine in strand 2 and addition of a cytosine in strand 1 to

match the guanine in strand 2 left over after the original mutation,

i.e. creation of a T-A pair and addition of a new C-G pair. Such

an event would be quite rare, especially in coding regions since it

will alter the reading frames unless the total change leads to

addition of three base pairs; several intronless gene sequences

indeed show very small contribution from the quadratic term

compared to the interrupted genes, e.g. petunia hsp70G (Table 1).

The example of the mutation event of cytosine to thymine in

Figure 3. The 2D graphical plot of the randomised human beta
globin gene. This is done as per the on-line randomisation tool in
Ref.[14].
doi:10.1371/journal.pone.0006829.g003

Intra Pu-Py Relationship
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Figure 4. Plots of six selected conserved gene sequences in a 2D graphical representation. Axes representation as in Fig. 1 and also inset
in Fig. 4a. Intron segments are shown in green, exons in blue. (a)Wheat histone H4 TH091 gene (GenBank Locus ID WHTH4091) (b) Horse BI alpha-1
globin gene (HRSHBA22) (c) Rhesus monkey alpha-globin gene (MCHBA) (d) Human hemoglobin alpha 1 (HBA1) gene (from HUMHBA4) (e)
Trypanosoma cruzi hsp70 gene (HSHSP70) (f) Chicken beta-1 tubulin gene (CHKTUBB1)
doi:10.1371/journal.pone.0006829.g004

Intra Pu-Py Relationship
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strand 1 can be considered to change the intra-pyrimidine

difference, nC-T, in strand 1 and trigger a change in the intra-

purine difference, nG-A, in strand 2. The two changes can be

related by

DnG{A 2ð Þ
DnC{T 1ð Þ~pzqDnC{T 1ð Þ ð4Þ

where the first term on the right relates to the probability of the G

to A change in strand 2 and the second term to the probability of

the third type of response, i.e. DNA elongation by addition of a C

in strand 1; the (1) and (2) in equation 4 are strand identifiers and

we have defined

nC{T:nC{nT ð5Þ

nG{A:nG{nA ð6Þ

We expect q,p since the probability of DNA elongation will be

significantly lower than effecting only a replacement of the

Figure 5. Plots of four more sequences in continuation of Fig. 4. (a) Soybean heat-shock protein (Gmhsp26-A) gene (SOYHSP) (b) H5N1
neuraminidase of A/Indonesia/CDC10327/2007 (CY019402) (c) Human beta globin gene (from HUMHBB) (d) Human delta globin gene (from HUMHBB).
doi:10.1371/journal.pone.0006829.g005

Intra Pu-Py Relationship
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Figure 6. Plots of the six gene sequences in Fig. 4 with quadratic polynomial fits. Labels for (a) to (j) are given under Fig. 4.
doi:10.1371/journal.pone.0006829.g006

Intra Pu-Py Relationship
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guanine of strand 2 by an adenine. We then have

DnC{T 1ð Þ~ 1

p
DnG{A 2ð Þ{ q

p
DnC{T 1ð ÞDnC{T 1ð Þ ð7Þ

Using recursion and keeping up to first order terms in q/p,

equation (7) reduces to

DnC{T 1ð Þ~ 1

p
DnG{A 2ð Þ{ q

p

1

p
DnG{A 2ð Þ

� �2

zO3 ð8Þ

where by O3 we mean terms of higher orders (dropping the

conventional form O(3) so as not to confuse with the strand

number indicators). For many mutations over a long sequence, this

takes the form

nC{T 1ð Þ~anG{A 2ð Þzb nG{A 2ð Þ½ �2zO3 ð9Þ

where a,b are redefined constants with b,a. This equation relates

changes in the intra-pyrimidine numbers in strand 1 to intra-

purine numbers in strand 2 where the nC-T and nG-A are as

defined in equations 5 and 6 above.

Figure 7. Plots of the four sequences of Fig. 5 with polynomial fits. All are quadratic fits except for the human delta globin gene where the
cubic fit is shown.
doi:10.1371/journal.pone.0006829.g007

Intra Pu-Py Relationship

PLoS ONE | www.plosone.org 8 August 2009 | Volume 4 | Issue 8 | e6829



Now, Chargaff’s rule states that

nG 1ð ÞznG 2ð Þ~nC 1ð ÞznC 2ð Þ ð10Þ

nA 1ð ÞznA 2ð Þ~nT 1ð ÞznT 2ð Þ ð11Þ

and since from Watson-Crick rule we know nC 1ð Þ~nG 2ð Þ and

nC 2ð Þ~nG 1ð Þ, and similarly for A,T, then from the above we have

nC 1ð ÞznG 1ð Þ~nC 2ð ÞznG 2ð Þ ð12Þ

nA 1ð ÞznT 1ð Þ~nA 2ð ÞznT 2ð Þ ð13Þ

as a consequence of which,

nG{A 2ð Þ:nG 2ð Þ{nA 2ð Þ

~nG 1ð Þ 1z
nC 1ð Þ{nC 2ð Þ

nG 1ð Þ

� �
{nA 1ð Þ 1{

nT 1ð Þ{nT 2ð Þ
nA 1ð Þ

� �

Excluding some pathological cases or very short segments where

one or the other type of nucleotide is conspicuous by its absence,

e.g., as in poly-adenylation segments where only A’s dominate and

the others are absent, in a real gene sequence we can expect the

second term within each of the square brackets above to be%1,

implying that

nG{A 2ð Þ&nG 1ð Þ{nA 1ð Þ:nG{A 1ð Þ ð14Þ

which transforms Eq. (9) to

Table 1. Gene sequences and coefficients of polynomial fits.

Gene Sequences, complete cds GENBANK Locus Sequence type Polynomial Coefficients R2

Linear Quadratic Cubic

Quadratic Fits

Trypanosoma cruzi hsp70 HSHSP70 GC-rich 1.0934 7.00E-05 0.9809

Petunia hsp70G PHHSP70G AT-rich 0.2847 4.00E-06 0.846

C elegans hsp16C CEHSP16C AT-rich 1.1824 0.0002 0.9848

D pseudobscura hsp82 DPHSP82 AT-rich 1.4998 0.0041 0.9097

Soyabean hsp 26-A SOYHSP AT-rich 0.6283 0.0009 0.9473

Human alpha globin 1 HUMHBA4 GC-rich 2.2858 20.0085 0.8912

Horse alpha globin HRSHBA22 GC-rich 2.1736 20.0022 0.9316

Rhesus monkey alpha globin MCHBA GC-rich 1.9069 20.0053 0.9044

Goat adult alpha-globin GOTHBAI GC-rich 0.5345 0.0087 0.9705

Chicken alpha globin V00410 GC-rich 4.8816 20.0456 0.7963

Human alpha 1 pseudogene HUMHBA4 (HBAP1) GC-rich 3.4216 20.0487 0.538

Chicken beta-1 tubulin gene CHKTUBB1 GC-rich 0.9464 0.0063 0.9761

Wheat histone H4 WHTH4091 GC-rich 20.0071 0.0481 0.8479

Maize histone H4C13 MZEH4A GC-rich 0.9235 - 0.8235

Chicken histone H4 CHKHIST4A GC-rich 0.7713 0.0153 0.9383

Human beta globin HUMHBB AT-rich 20.631 -0.0045 0.8073

Goat alanine beta globin GOTHBBAA AT-rich 21.4243 20.0121 0.6786

Mouse beta-1 globin V00722 AT-rich 21.2538 20.0093 0.0612

Chicken beta globin V00409 GC-rich 0.9817 20.0049 0.7268

Oppossum beta globin beta-M OPOHBBB AT-rich 0.5623 5.00E-05 0.9431

X tropicalis larval beta globin Y00501 AT-rich 1.5184 0.0013 0.9493

H5N1 neuraminidase genes:

Duck/Guangdong/07/2000 AY585404 AT-rich 1.4465 0.0075 0.7659

Duck/China/E319-2/03 AY518363 AT-rich 1.2828 0.0071 0.8776

Bar-headed goose/Qinghai/0510/05 DQ137874 AT-rich 1.3274 0.0081 0.8022

Indonesia/CDC10327/2007 CY019402 AT-rich 1.6888 0.0094 0.9126

Peregrine falcon/Hongkong/2142/2008 CY036271 AT-rich 1.2120 0.0060 0.8586

Cubic Fits

Mouse beta-1 globin V00702 AT-rich 22.6112 0.0404 20.0002 0.5286

Human beta globin HUMHBB AT-rich 21.7856 0.0214 25.00E-05 0.94

Human delta globin HUMHBB AT-rich 21.3405 0.0231 27.00E-05 0.9757

doi:10.1371/journal.pone.0006829.t001
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nC{T 1ð Þ~anG{A 1ð Þzb nG{A 1ð Þ½ �2zO3 ð15Þ

or, dropping the strand number indicator since all quantities now

refer to the same strand,

nC{T~anG{Azb nG{A½ �2zO3 ð16Þ

From similar considerations for the AT-rich sequences consid-

ering the mutations of adenine to guanine for example, we can

obtain the equation

nG{A~cnC{Tzd nC{T½ �2zO3 ð17Þ

where nC-T and nG-A are as defined in Eqs. 5 and 6. Equations 16

and 17 are similar to equations 1 and 2 and conform to the general

shapes of the sequence plots. This shows that the path traced out

by the nucleotide sequence of a gene follows some pattern that can

be ascribed to the accumulated effects of spot mutations over

evolutionary time scales. The actual plots of the gene sequences in

the 2D grid representation show reasonable conformity with the

predicted curves with variations that could be ascribed in part to

the higher order terms and other factors described below. It is to

be noted that equations 16, 17 have been derived independent of

any graphical representations or reference frames, and they are

functions of the instantaneous values of the base counts only. The

2D Nandy representation here used happens to be a natural and

convenient reference frame to plot the outcome of these equations.

Equations 16–17 have been developed on the basis of transition

type mutations only. Transverse mutations are much less frequent

than the transition mutations and will affect these equations to a

smaller extent. Consider a mutation of a cytosine to an adenine.

This will result again in a bulge in the guanine in the opposite

strand and the repair mechanism will either re-establish the

cytosine or replace the guanine with a thymine, or replace the

guanine in strand 2 with a thymine and add a CG base pair to the

DNA thus elongating it. This will reduce the nC-T(1) by 1 unit and

also reduce the nG-A(2) by 1 unit as well as have, as before, a small

probability of adding an extra guanine in strand 2 by virtue of the

additional base pair elongating the DNA. Thus we will have an

equation of the type of Eq.4 again except that the coefficients in

this instance will be much lower in value than for these parameters

in the transition type mutation case. Again, we end up with

equations of the form 16 to 17, this time for transverse type

mutations, but with much smaller parameter values, so those

equations can be considered to be quite general.

It is also possible that as a result of mutations more than one

base pair are added during the repair and replication phases. Such

actions can be expected to lead to further higher order terms being

added to equations 16, 17. That the third order terms seem to be

required for good fits to some of the gene sequences has already

been noted earlier. Such modifications to the intra-purine, intra-

pyrimidine relationship can result in deviations from the smooth

distribution that first order approximation equations like Eq.16, 17

would imply. This could be the underlying reason for the

deviations between the actual representative plots of the various

sequences and their fitted curves observed in several graphs.

There is a further assumption that underlies the applicability of

this analysis. We assume that in the case of the conserved gene

sequences inclusive of introns and the coding segments, extensive

restructuring through recombinations have not taken place.

Indeed the first order formalism developed here implicitly assumes

that all changes to a DNA sequence that have resulted in the form

that we observe now have taken place through mutational changes

only, and recombinations and transpositions have not had any

major impact on the sequences.

A couple of points of interest arising from these equations may

be mentioned here. First, homologous sequences of conserved

genes of the intronless or with-introns varieties that have the same

general shape on the 2D plots therefore have similar describing

equations, and the coefficients of the variables have similar order

of magnitude values. This would seem to indicate that these gene

sequences have inherent characteristics that are expressed by the

values of the parameters of the describing equations, whereby

major deviations in base distributions that necessitate large

departures from the characteristic values could be inimical to

the functioning of the gene and thus would either be rejected, or

would render the gene ineffective. A case could be made from the

human alpha globin 1 pseudogene: although it shares a reasonable

degree of homology with the functional alpha 1 globin gene and

has the 3 exon-2 intron architecture of the globin family, its 2D

plot shows a wide variation in base distribution from the alpha

globin gene (Fig. 8), and the coefficients of fitted polynomial also

are quite different from the other mammalian alpha globin family

fits (Table 1). It may also be mentioned that transposons are found

in many instances to insert segments into genes which are then

excised out in successive replication cycles. If DNA sequences have

inherent characteristics, which are encapsulated by the polynomial

expression, and the inserted segments lead to incompatibility with

such characteristics, then such excisions can be understood.

We note that reversion of mutated genes to ancestral forms is

not totally unknown. A case in point is the recent study of

reversion of mutant hothead gene in Arabidopsis thaliana to genes

that existed in plants of two or more generations ago [32]. The

authors have hypothesized that a template-directed restoration of

ancestral DNA passed on in an RNA cache could underlie the

mechanism of such reversion; the existence of such a mechanism

that lies outside the DNA genome could lead to the high-frequency

modification of DNA sequences in a template-directed manner,

perhaps by the postulated RNA cache that could allow it to persist

for several generations. While Lolle et al’s RNA cache [32] would

Figure 8. Plot of the human alpha globin 1 pseudogene. The
plot shows the introns and exons and the quadratic fitted curve in
separate colours.
doi:10.1371/journal.pone.0006829.g008
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need to carry an exact duplicate of the ancestral sequence, in the

case of gene sequences of the types considered here that may or

may not contain intron segments and could be quite large, we

could postulate existence of some as yet unknown mechanism for

monitoring conformity with the overall intra-purine intra-pyrim-

idine base distribution pattern, as perhaps for long range

correlations [7,33]. In this connection it is also interesting to

consider the possibility of the existence of some error correcting

code in DNA sequences as speculated upon by Liebovitch et al

[34]. They considered the DNA sequence as a digital code of four

symbols and speculated that since the integrity of modern

information encoding is secured by having error correcting codes

built in, DNA sequences might also have such codes to allow

repair enzymes to protect the fidelity of nonreplicating DNA and

increase the accuracy of replication. In such a case if a linear block

error correcting code is present in DNA then some bases would be

a linear function of the other bases in each set of bases. Although

the authors were unable to find any such simple code in the lac

operon and cytochrome c gene they investigated, the suggestion

remains an intriguing possibility nevertheless. Given that we are

considering highly conserved genes whose functions are important

to the survival of the organism, mechanisms such as these would

provide a survival advantage and could be used under conditions

that compromised the continued functioning of the organism or

the requirements of the monitoring process.

Second, the basic patterns, and therefore the describing

equations, have the same form irrespective of the intron content

of the genes considered here. This could be indicative of the

monitoring process hypothesized above also functioning irrespec-

tive of whether the sequences are intronless or intron-rich. Since

mutations and other evolutionary changes have led to modifica-

tions in the coding sequences within the requirements of

maintaining protein functionality, the introns may have a role to

play such as maintaining the structure of base arrangements so

that the restrictions implied by the equations 16, 17 can continue

to apply. We could perhaps consider for support for this

contention the globin genes where the beta globins separated

from the alphas quite late, but the introns of the beta globin cluster

are generally longer than the alpha globins while the coding

sequences, though with differences, remain at almost the same

length. If sustained, such a hypothesis could lend support to the

intron late theory.

We note in passing that for the majority of the gene sequences of

the vertebrates, the 2D plots display an overall shape that is

concave going in the clockwise direction; correspondingly, the

coefficient of the second degree variable is negative. This is seen

even in the case of the chicken beta globin gene where the large

intron component makes it GC-rich, the human beta globin gene

which is AT-rich, as also the alpha globin genes of the horse,

rhesus monkey and human which are all GC-rich. Plots of some

viral sequences such as the H5N1 neuraminidase, on the other

hand, have concavity in the opposite direction and the sign of the

coefficient of the second degree variable is positive. Interestingly

this is also seen in the case of the wheat histone H4 gene, which is

claimed by some authors to have viral features [35]; their origins

from before the eukaryote split could also be a factor. Whether this

is just chance coincidence or whether it is symptomatic of some

deeper characteristic arising from base composition and distribu-

tion differences in prokaryotic and eukaryotic sequences remains

an intriguing question.

In summary, our observations have shown that the 2D plots of

intra-purine versus intra-pyrimidine differences in conserved gene

sequences exhibit an apparent pattern in base distribution of the

sequences that mimic the behaviour essentially of a polynomial of

degree 2, and in some cases of degree 3. This is found over a wide

cross section of sequences, from e.g., the members of the globin

family, the histones, tubulins and heat shock proteins. Viral

sequences such as the H5N1 neuraminidase, although known to

mutate rapidly, also exhibit similar structure. We have seen that

this may arise from the non-symmetrical mutation repair

mechanism where e.g., a cytosine mutating to thymine in a GC-

rich sequence could lead to negating the mutation, to replacing the

original paired guanine with adenine, or elongating the DNA by

addition of a CG pair along with coupling the thymine with an

adenine. Equivalent considerations apply to AT-rich sequences as

well.

Since these observations appear true for intron-rich sequences

also, the intron sequences may play a regulatory role in preserving

sequence integrity as indicated by the intra-purine intra-pyrimi-

dine relationships permitting greater flexibility in changes in

coding sequences.

Not unexpectedly, we have seen that homologous genes have

characteristic equations where the coefficients of the describing

polynomials are quite close. Assuming that the DNA fidelity

processes fit to this scheme of preferential arrangement of bases in

conserved segments, our observations raise the possibility that

DNA fragments, introduced into such segments by processes such

as transpositions, that do not conform to the overall fit may be

preferentially excised by the replication machinery to retain the

integrity of the host sequence. If our observations here in gene

sequences are extendible further to genomic sequences then it

would imply that not all genetic modifications would be

sustainable.
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