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Abstract

Dairy cattle breeds have been subjected over the last fifty years to intense artificial selection towards improvement of milk
production traits. In this study, we performed a whole genome scan for differentiation using 42,486 SNPs in the three major
French dairy cattle breeds (Holstein, Normande and Montbéliarde) to identify the main physiological pathways and regions
which were affected by this selection. After analyzing the population structure, we estimated FST within and across the three
breeds for each SNP under a pure drift model. We further considered two different strategies to evaluate the effect of
selection at the genome level. First, smoothing FST values over each chromosome with a local variable bandwidth kernel
estimator allowed identifying 13 highly significant regions subjected to strong and/or recent positive selection. Some of
them contained genes within which causal variants with strong effect on milk production traits (GHR) or coloration (MC1R)
have already been reported. To go further in the interpretation of the observed signatures of selection we subsequently
concentrated on the annotation of differentiated genes defined according to the FST value of SNPs localized close or within
them. To that end we performed a comprehensive network analysis which suggested a central role of somatotropic and
gonadotropic axes in the response to selection. Altogether, these observations shed light on the antagonism, at the
genome level, between milk production and reproduction traits in highly producing dairy cows.
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Introduction

As for other domestic animals, both natural and artificial

selection have resulted over a short period of time in a broad

phenotypic variety and in genetic differentiation of numerous

different cattle breeds. This recent history provides a unique

opportunity for the identification of loci subjected to adaptive

selection. Following domestication, about ,10,000 years ago,

early breeders might have imposed a so-called ‘‘unconscious’’

selection ‘‘which results from every one trying to possess and breed

from the best individual animals’’ [1]. Following innovative

farmers such as Robert Bakewell (1725–1795), selection recently

became more methodical in industrialized countries, in particular

with the opening of the first herd-books which strictly defined the

breed standards. Subsequent advances in theoretical understand-

ing of the inheritance of quantitative traits and their application to

genetic improvement have made it possible to reach a high degree

of specialization in several breeds for the last fifty years. A

spectacular example of success of such genetic improvement

programmes is offered by dairy cattle breeds [2].

Currently, more than 95% of the cows milked in France belong

to Holstein (HOL), Normande (NOR) or Montbéliarde (MON)

breeds. The herd-book of these three different breeds were created

in 1922, 1883 and 1872 respectively using individuals originated

from distant areas (North of Europe, North-western France and

Mid-eastern France). Since the middle of the twentieth century,

these three breeds have been subjected to strong artificial selection

mainly oriented towards an improvement of dairy abilities.

Nonetheless, because of varying local breeder objectives and

herding systems, these breeds displayed some differences in most

of their milk production traits (quantity and quality of milk) and on

other morphological characteristics (color, stature) as broadly

summarized in Table 1. On the other hand, although highly

effective, enhancement of milk production abilities in highly

producing dairy cows has also been accompanied by a marked

decline for other functional traits such as reproductive perfor-

mances [3,4]. For instance, negative genetic correlations (from

20.30 to 20.50) between milk quantity and Artificial Insemina-

tion (AI) success have been reported in a large scale study

performed in HOL, NOR and MON [5].

The advent of high throughput and cost-effective genotyping

techniques allows evaluating the response to these various selective

pressures at the genome level. For instance, comparing allele

frequencies or differentiation among different breeds is straight-

forward to identify footprints of selection which are characterized

by an unexpectedly high level of divergence, relatively to the

neutral hypothesis [6,7]. Recently, Hayes et al. [8] proved the

efficiency of such an approach with the analysis of 9,323 SNPs

genotyped on samples from a dairy and a beef cattle breed. Most

beneficial mutations are likely to be quite old relatively to the very
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recent breed formation times, as exemplified by the DGAT1

K232A mutations underlying a QTL with major effect on dairy

traits and still segregating in several dairy cattle breeds [9–12]. A

variant selected in one breed is thus expected to exhibit frequency

differences when compared to other breeds in which it might have

only been subjected to genetic drift. In addition, these differences

are expected to be the most extreme for variants initially at low

frequency and with strong effect in some of the populations

considered. Alternatively, even if similar selection goals might have

driven to fixation the same variant in all the breeds compared,

different SNP alleles might still be associated to it at more distant

loci. Indeed, Linkage Disequilibrium (LD) across breeds was

shown to only persist over few kb [13,14] which is still below the

available density of current SNP chips. Hence, analyzing

differentiation among breeds with similar breeding objectives is

expected to be efficient in identifying loci which were early

selected while providing results easier to interpret in the light of

their shared selective pressure.

The goal of this study was to perform a genome scan for SNP

differentiation, by considering 42,846 SNPs genotyped in HOL,

MON and NOR dairy cattle breeds, to identify the main regions

affected by the strong and recent artificial selection they have been

subjected to. To that end we applied and extended previously

proposed approaches [6,7]. Finally, based on a list of several genes

displaying high evidence of selection, we further carried out a

detailed and comprehensive functional and network analysis,

under a systems biology framework, to characterize the main

targeted physiological pathways.

Results and Discussion

Population structure and distribution of FST among SNPs
and populations

As expected from the recent breed history, unsupervised

clustering of the 2803 bulls belonging to HOL, MON and NOR

breeds (Table S1) highlighted their nearly complete genetic

isolation by confirming an almost complete absence of admixture

(Figure 1). Indeed, when considering K = 3 unknown parental

populations, each cluster could be unambiguously assigned to a

breed. The average (median) proportions of HOL bulls member-

ship was respectively 96.0% (97.8%) in cluster 1, 96.1% (97.7%)

for NOR bulls in cluster 2 and 95.7% (97.0%) for MON bulls in

the cluster 3. In addition, both the average values of cluster

differentiation (0.134 for ‘‘HOL’’ cluster, 0.125 for the ‘‘NOR’’

cluster 2 and 0.155 for the ‘‘MON’’ cluster 3) and the net

nucleotide distances among cluster pairs (from 0.046 between the

first and the second cluster to 0.055 for the first and third cluster)

suggested similar level of differentiation among the underlying

three breeds. We thus estimated FST under the pure-drift model

proposed by Nicholson et al. [15] for 42,286 SNPs both within and

across the three breeds (Table S2). Note that under this model,

population-specific FST are computed relatively to the ancestral

population and their inverse might thus be interpreted as an

effective size of bottleneck (see Material and Methods). Overall,

the average FST across breeds was equal to 0.0709 (from 0.0576 for

BTA27 to 0.0840 for BTA05) and population-specific FST were all

close to this average value (0.0696 for MON, 0.0688 for NOR and

0.0743 for HOL). The slightly higher HOL average FST might

reflect the more distant geographic origin (Northern Europe) of

animals from which this breed originates, compared to NOR

(North-Western France) and MON ones (Eastern France).

As mentioned above, such levels of population differentiation

would be expected from a common ancestral population with a

bottleneck starting 25 generations ago (,150 years ago if we

assume a generation time of about 6 years in dairy cattle) and a

constant (haploid) effective population size varying from 340 (in

HOL) to 360 (in NOR). These effective population size estimates

appeared somewhat upwardly biased when compared to those

derived from the extent of LD [14]. Likewise, simulations under a

simple pure-drift model required a marked decrease in simulated

population sizes to give a good fit with observed data (see

Methods). Although the SNP ascertainment scheme chosen in our

study could explain such apparent discrepancies, the main

explanation might rather be related to the downward bias

introduced by the methods of moments’ estimators [15] since it

imposes, in particular, the ancestral allele frequency estimates to

be within the range of the current populations’ ones. Simple

simulations under the inference model confirmed that the more

the populations considered are differentiated the higher the bias

(data not shown). Similarly, the average FST across populations

was substantially lower than the one (0.0710 against 0.103)

computed when using the Weir and Cockerham estimator

[6,16,17], the estimates of the individual SNP FST being

nevertheless highly correlated (r = 0.961) between the two

methods. This suggested that the resulting classification of SNPs

is rather insensitive to bias introduced by our estimation

procedure, the main advantage of this latter being the simple

computation of population-specific estimates. Therefore, providing

populations are well but not too much differentiated (low

admixture), this procedure might be thought of as a straightfor-

ward way to compare allele frequencies across several populations.

Distributions of SNP-specific FST across and within the three

breeds are given in Figure 2 for the real and simulated data set. In

all cases an overall good adjustment was observed suggesting that

most SNPs might behave neutrally and making it difficult to

identify outliers SNPs based solely on the empirical distribution as

previously proposed [6]. In addition, due to the low level of

differentiation (FST,0.1), the mode of the empirical (and

simulated) distributions was very close to zero, hindering the

identification of SNPs under balancing selection (with low FST).

Yet, very highly differentiated SNPs (FST across breeds .0.5) were

overrepresented in the real data set (Figure 2A).

Table 1. General characteristics of the three breeds studied (http://www.brg.prd.fr).

Breed
Census Population
Size

Lactation Length
(in days)

Milk Yield
(in L)

Fat Percentage
(%)

Protein Percentage
(%)

Male Height (in cm)/
Weight (in kg)

Female Height (in cm)/
Weight (in kg)

N 1,799,200 317 7441 38.8 32.5 150/1100 144/700

NOR 2,106,000 316 6595 44.2 36.0 155/1100 142/800

HOL 11,535,378 331 8628 40.9 31.6 165/1100 143/700

Data were collected in year 2005.
doi:10.1371/journal.pone.0006595.t001
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Identification of loci under selection
Selection of a favorable variant is expected to result in a higher

level of differentiation for neighboring SNPs. As shown in Figure 3

and detailed in Figure S1, in several instances outlier SNPs tended

to cluster to similar regions (e.g. BTA05 or BTA06). At the

genome level, nonetheless, the correlation of FST between pairs of

SNPs as a function of marker distances, both within and across

populations, tended to drop quickly toward 0 when SNPs were

more than 200 kb apart (Figure S2). This trend of decline was only

slightly less pronounced than the one reported for the simulated

data set (Figure S2) and similar to the extent of LD within the

different breeds [7] in agreement with the hypothesis that most

regions might behave neutrally. Hence, in order to identify

footprints of selection at the regional level we adopted the strategy

proposed by Weir et al. [7] consisting in performing average of

SNP FST over sliding windows. However, because it remains

difficult to define, a priori, an optimal window size since it would

depend on the strength and timing of selection which are expected

to be highly variable, we proposed to smooth SNP-specific FST

values over each chromosome with a local variable bandwidth

kernel estimator (Figures 3, S3, S4 and S5). We also performed this

same analysis on the simulated data sets to evaluate to which

extent extreme scores are expected under neutrality, allowing in

turn the derivation of local q-values. As summarized in Table 2, 13

regions with extreme scores (q-value,0.05) were identified when

considering FST across populations (Figure 3), 6 of which being

also significant within at least one breed (Figures S3, S4 and S5 for

MON, NOR and HOL respectively). No additional regions were

identified when considering FST within each breed which

suggested less power to detect footprints of selection using

population-specific FST estimates.

For most of the 13 regions identified, we were able to propose

candidate genes on the basis of the gene content in the vicinity of

the peak location (Table 2). Interestingly, three of these regions

contained or were very close to genes in which mutations have

already been related to important function in dairy cattle. For

instance, the gene ABCG2 (37.35–37.42 Mb on BTA06) under-

lying a QTL affecting milk production in Norwegian Red Cattle

[18] and in Israeli Holstein [19] was localized about 500 kb

upstream the peak of region #7. Nevertheless, the only SNP

mapped within this gene could not be considered as an outlier

both when considering distribution of FST across and within

breeds. More recently, a QTL underlying calving difficulty in

Norwegian Red cattle was also finely mapped within this same

region [20]. In our study, the peak of region #7 was in fact

localized within LAP3 (37.96–3798 on BTA06) which was

considered as the most likely candidate in this latter study.

However, as shown below, LCORL which is localized 200 kb

Figure 1. Population structure. The triangle plot represents the estimated membership of each 2803 bulls in each of the 3 assumed clusters. Each
bull is represented by a point colored according to its breed of origin.
doi:10.1371/journal.pone.0006595.g001
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downstream displayed higher evidence of selection, in particular in

MON and NOR, and also appear to us as a better candidate since

it might control pelvis morphology. Indeed LCORL variants have

recently been shown to be strongly associated with hip axis length

variation in human [21]. The end of the region #12 was localized

150 kb upstream of GHR (33.89–34.20 on BTA20) (Figure 4D)

within which a mutation affecting several milk production traits in

HOL [22] and Finnish Ayrshire [23] breeds has been reported.

Although not significant when considering FST across breeds, 3

SNPs localized within this gene were each displaying high FST in

one breed (one SNP being in the NOR 1% upper tail distribution).

Finally, the interval #11 on BTA18 contained MC1R (13.776–

13.778 on BTA18) which is localized within a ,500 kb gap

between two consecutive SNPs (the peak corresponding to the

beginning of the gap). MC1R represents an obvious candidate

since it determines the ratio of eumelanin and pheomelanin and

corresponds to the locus Extension involved in coat color in cattle.

As reported by Seo et al. [24], three alleles have been identified to

date in cattle: the ED, E+ and e. The wild-type allele E+ is

responsible for combination of red and reddish brown color.

Individuals carrying the dominant ED are black and the recessive e

allele results in a red color. It has previously been shown that E+,

ED and e are respectively fixed in NOR, HOL and MON [25], in

perfect agreement with the absence of significant signal of

differentiation in NOR while it was significant in HOL and

MON (Table 2). Because of the primary importance of the

Figure 2. Observed and simulated distribution of SNP FST across (A) and within each of the three breeds (B, C, D).
doi:10.1371/journal.pone.0006595.g002
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coloration pattern for herd-book registration, underlying genes

might have been among the first to be under (very strong) selection

immediately after the definition of breed standard. This latter

result might thus be viewed as a proof of concept validating the

approach.

Identification and functional analysis of genes under
selection

For most of the regions identified above, it remained difficult to

propose candidate genes explaining the observed pattern of region

differentiation. Moreover, focusing on large regions might only

capture the strongest and/or most recent selection events. As

previously mentioned, unexpectedly high (low) level of SNP

differentiation might be interpreted as positive (balancing)

selection of the underlying genes. We thus computed scores for

each annotated RefSeq (see Methods) based on the FST of their

representative SNP(s) both across and within breeds. In addition,

significance of the departure of these scores from the value

expected under the neutral hypothesis was further evaluated by

considering simulated distributions. For each RefSeq, p-values of

the different scores adjusted for multiple testing [26] are reported

in Table S2. When controlling the global FDR at the 20%

threshold within each breed, we identified 91 RefSeq significant in

at least one breed (86 under positive and 6 under balancing

selection). More precisely, 20 (0), 25 (4) and 31 (2) RefSeq were

detected under positive (balancing) selection in HOL, MON and

NOR respectively, nine being shared by NOR and MON. When

considering the score based on the FST, across breeds only one

additional RefSeq score was found significant while more than half

of the 91 previously identified ones were also significant. The 43

annotated genes underlying these different RefSeq are given in

Table 3. Most of them were physically distantly related and only

Figure 3. Genome map of differentiated loci. For each SNP the across breed FST quantile estimated on the empirical distribution (Figure 2A) is
reported according to its chromosomal position.
doi:10.1371/journal.pone.0006595.g003
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14 (33%) were located within the 13 regions identified above

(Table 2). Out of the seven regions represented, three were

represented by only one gene (NUDCD3 for region #2, WDR51B

for region #3 and CD163 for region #5).

In order to characterize the main physiological pathways

underlying genes harboring footprints of positive selection we

carried out a network analysis under a systems biology framework

(see Methods). Indeed, because HOL, MON and NOR have been

selected according to a similar breeding goal, we speculated that

genes identified could be involved in few biological networks. We

first performed three separate network analyses for each breed-

specific gene sets. For HOL, MON and NOR respectively 7 (out

of 8), 13 (out of 17) and 14 (out of 19) genes were eligible for

network analysis leading to the identification of only one

significant network per breed (N_HOL, N_MON and N_NOR

respectively) (Figure 5). N_HOL was centered on HNF4,

DLGAP1 and IGF1, N_MON on TGFB1, retinoic acid and

CDKN1A and N_NOR on PI3K and IL1B. Interestingly,

although no genes under positive selection were in common

between these three different networks, both N_MON and

N_NOR contained the Growth Hormone gene (GH) while

N_HOL contained the Insulin Growth Factor gene (IGF1).

IGF1 and GH represent key molecules of the somatotropic axis

which controls milk production, lipolysis and tissue maintenance

[27]. In particular, in the mammary gland, GH induces an

increase of blood flow and synthesis and a decrease of involution.

Hence these results suggested that similar biological pathways

were targeted within the three breeds. This led us to extend these

network analyses by considering jointly all the 40 genes displaying

footprints of positive selection in at least one breed. Two highly

significant and interconnected networks were then identified and

further merged into a single global network termed GN in the

following (Figure 6). Only three genes (WRD51B, KCTD8 and

GABRG2) among the 31 eligible ones were not included in GN.

As expected, GN contained several genes involved in the

somatotropic axis. In addition to GH1, other important molecules

participating to the different GH signal transduction pathways

[28] belonged to GN such as GRB2, PLCH2, PLCL2, PLCB4,

PLCG1 and SRC or PIK3C2G and PLCZ1, these two latter

displaying footprints of selection. GN also contained TGFB1

which is an intramammary auto/paracrine inhibitor of mammary

epithelial cells growth and an inducer of apoptosis, which plays a

critical role during mammary gland involution [29]. Note that in

bovine mammary epithelial cells, GH is also able through its

interaction with GHR to suppress expression of TGFB1. Although

GHR appeared as a good candidate to explain the signal observed

for the region #12 (see above) it was not included in our network

analysis but can be connected to GN through 6 molecules

(Figure 6).

Besides, several GN molecules are involved in the gonadotropic

axis, in particular through the b-estradiol which is a key driver of

reproduction. Hence b-estradiol could be connected to 21 GN

molecules (Figure 6), four of them (CCND2, NCOA3, PDGFRA

and PIK3C2G) being specified by genes displaying footprints of

positive selection. Among these four latter genes, NCOA3 interacts

with estrogen receptors in a ligand-dependent fashion, enhanced

estrogen-dependent transcription and may contribute to develop-

ment of steroid-dependent cancers [30]. PIK3C2G (such as SRC

and STAT4) belongs to PI3K/AKT signaling pathway, one of the

main signaling cascades activated by the non genomic activity of

estrogen/estrogen receptor [31]. In the bovine mammary paren-

chyma, in particular, PI3K/AKT was recently demonstrated to be

regulated by estrogen [32]. Similarly, this previous study also

identified two estrogen regulated networks centered on CDKN1A

and TGFB1 respectively, which are both present in GN but did not

display signal of positive selection. In addition to their connection

with b-estradiol, CCND2 and PDGFRA are also associated with

cell proliferation or cell death. In particular, an effect of CCND2 on

mammary gland development during pregnancy and involution was

demonstrated in transgenic mice [33]. Note that among the three

genes under positive selection not included in GN, GABRG2 is a

receptor of gamma-aminobutyric acid, one of the mediators of b-

estradiol action in brain [34]. Finally, both GH and b-estradiol can

regulate level of calcium, a key molecule involved in milk

metabolism. Interestingly, GN contained several other molecules

related to calcium metabolism such as CAPN1, SYT1 and PLCZ1

which are specified by genes under positive selection. More

precisely, CAPN1 is an intracellular protease that requires calcium

for its catalytic activity and SYT1 is a calcium sensor in

neurotransmitter release [35]. PLCZ1 participates to the PLC/

PKC signaling pathway [28] used by both estrogen/estrogen

receptors and GH/GHR.

Table 2. Description of the regions under selection based on smoothed FST across breeds.

# BTA Start-End (peak position) in Mb FST at the peak position (qvalue) candidate gene Breeds within which region is also significant

1 3 57.084–58.505 (58.343) 0.375 (0.0298) CCCBL2

2 4 78.833–80.43 (79.701) 0.667 (0.0298) NUDCD3

3 5 20.301–23.091 (21.02) 0.483 (0.0298) na NOR, HOL

4 5 97.803–100.826 (98.26) 0.557 (0.0298) PIK3C2G NOR, HOL

5 5 108.461–109.236 (109.182) 0.403 (0.0401) CD163

6 5 110.286–111.861 (111.552) 0.46 (0.0435) ANO2

7 6 37.433–38.756 (37.963) 0.566 (0.0298) LAP3/LCORL MON

8 6 66.599–66.935 (66.809) 0.165 (0.0435) na

9 6 68.938–76.32 (72.024) 0.616 (0) PDGFRA NOR

10 14 22.02–25.567 (22.634) 0.591 (0) na MON, NOR

11 18 12.987–14.058 (13.36) 0.632 (0) MC1R MON, HOL

12 20 31.964–33.757 (32.277) 0.523 (0.0298) GHR

13 26 22.137–23.191 (22.983) 0.509 (0.0298) C10ORF76

doi:10.1371/journal.pone.0006595.t002
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Some of the genes under positive selection belonging to GN

could also be related to functions not directly associated with

metabolism or reproduction. In particular, CD163 localized under

the peak of the previously identified region #5 (Table 2), is

involved in innate immune response and clearance of plasma

hemoglobin [36]. Similarly, XKR4, TOX and EPB42 are related

to erythrocyte structure and functions. Indeed, XKR4 belongs to

the Kell blood group complex, TOX variants are associated with

HbF levels in sickle cell anemia [37] and EPB42 variants with

erythrocytes membrane abnormalities such as hereditary sphero-

cytosis [38]. Notice that some other blood group antigens have

been shown to be subjected to balancing selection in human

populations [39,40]. In our study, two genes were found under

balancing selection (PPP1R12A in NOR and FER in MON) but

not included in the network analysis. Among these, only

PP1R12A, a protein phosphatase, can be connected to GN via

three molecules (YWHAG, GRB2, FYN) while FER is a tyrosine

kinase with a putative role in the regulation of innate immune

response [41].

Overall, most of the genes under selection were found to be

involved in the gonadotropic system, a key driver of reproduction,

and somatotropic system which affects in particular milk

Figure 4. Whole genome map of regions under selection based on the FST across populations. For each of the 29 bovine autosomes, the
smoothed FST is plotted against the chromosomal position (green line). For significant positions (q-value,0.05), non smoothed SNP FST are indicated
by a red star.
doi:10.1371/journal.pone.0006595.g004
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metabolism. The antagonistic relationship between milk produc-

tion and reproductive performances has been largely reported in

highly producing dairy cows [4,5,42,43]. In the three breeds

considered, artificial selection which might have targeted most of

these genes was mainly oriented towards improvement of milk

production. Our results thus illustrate how both milk metabolism

Table 3. Genes underlying RefSeq found under positive or balancing selection (corrected p-values,0.2) across breeds (indicated
by *) or within HOL, MON or NOR (indicated by the corresponding breed name).

Gene
(number of underlying RefSeq) Position in Mb

Region
(Table 2)

Significant score
(positive selection)

Significant score
(balancing selection)

MED12L (1) BTA1:118.233–118.642 MON

CNTNAP5 (3) BTA2:79.729–80.761 HOL*

UBR4 (1) BTA2:138.077–138.214 HOL

FAM40A (2) BTA3:36.051–36.07 NOR*

C1ORF123 (2) BTA3:99.723–99.741 MON

AGBL4 (2) BTA3:103.227–104.637 NOR

NUDCD3 (2) BTA4:79.666–79.736 2 HOL*

SYT1 (1) BTA5:9.355–10.991 NOR

PPP1R12A (2) BTA5:11.278–11.447 NOR

WDR51B (2) BTA5:21.893–22.053 3 NOR*

MUC19 (1) BTA5:43.716–43.899 NOR*

PLCZ1 (2) BTA5:98.02–98.073 4 NOR

PIK3C2G (3) BTA5:98.088–98.641 4 NOR*

CD163 (4) BTA5:109.175–109.211 5 NOR

CCND2 (2) BTA5:112.625–112.653 MON*

LAP3 (2) BTA6:37.962–37.987 7 MON*

LCORL (3) BTA6:38.199–38.378 7 MON/NOR*

KCTD8 (2) BTA6:65.617–65.881 MON/NOR*

FRYL (2) BTA6:69.759–70.029 9 NOR*

SCFD2 (3) BTA6:71.168–71.566 9 MON/NOR*

PDGFRA (2) BTA6:72.299–72.346 9 MON*

KIAA1211 (1) BTA6:74.151–74.298 9 *

SRD5A2L2 (2) BTA6:83.061–83.252 NOR*

FER (4) BTA7:109.803–110.277 MON*

EPB42 (3) BTA10:38.36–38.38 NOR

TSHR (2) BTA10:95.115–95.25 HOL

EML5 (2) BTA10:103.345–103.505 MON*

KIAA1217 (1) BTA13:24.029–24.91 NOR

NCOA3 (3) BTA13:76.95–77.072 NOR

KIAA0146 (1) BTA14:18.787–19.064 HOL

XKR4 (2) BTA14:22.691–22.808 10 MON*

FAM110B (2) BTA14:24.095–24.237 10 MON

TOX (2) BTA14:24.763–25.075 10 MON/NOR*

KIF1B (4) BTA16:40.119–40.27 HOL

PRDM16 (3) BTA16:46.921–47.267 MON

RPS6KC1 (1) BTA16:68.227–68.431 HOL

ELF2 (2) BTA17:19.903–19.976 MON*

ZNF605 (1) BTA17:46.454–46.486 MON

GABRG3 (1) BTA21:3.054–3.828 NOR

DLGAP1 (6) BTA24:38.968–39.268 HOL*

CSMD1 (1) BTA27:2.108–2.51 MON

ROBO3 (1) BTA29:29.794–29.886 NOR

CAPN1 (3) BTA29:45.215–45.242 MON*

Further details are provided in Table S2.
doi:10.1371/journal.pone.0006595.t003
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and reproduction physiological pathways are inter-related at the

genetic level. Such relationships might represent one of the main

constitutive barriers preventing efficient selection on both traits. In

addition, although centered on the same physiological pathways,

set of differentiated genes were almost not overlapping among the

breeds. This suggests a kind of plasticity in the genome allowing

different solutions to respond to a similar breeding goal.

Methods

Ethics Statement
DNA needed for the study was previously extracted from

commercial AI bull semen straws. No ethics statement is thus

required.

Genotyping data and quality control
A total of 2,803 AI bulls (1,578 from HOL, 641 from NOR and

584 from MON) were genotyped on the Illumina BovineSNP50

chip assay [44] at the Centre National de Génotypage (CNG)

platform (Evry, France) using standard procedures (http://www.

illumina.com). As detailed in Table S1, these bulls were organized

within each breed into large half-sib families of identical sire, a

pedigree structure common in dairy cattle because of the

widespread use of AI [45]. Bulls were born within a period

covering less than 20 years, corresponding to about two

generations. Pedigree information was available for more than 6

generations for most individuals allowing the computation of

inbreeding coefficient using standard approaches [46]. The within-

breed average inbreeding coefficient among the different bulls

(,0.05 in the three breeds) was in agreement with those previously

reported in the corresponding whole populations [47]. Thirteen

animals genotyped on less than 90% of the SNPs were discarded

from further analysis. Among the remaining individuals, 26 pairs

appeared redundant (.99.9% of identical SNP genotypes). Ten of

these pairs clearly corresponded to actual twins (recorded as full

sibs and probably resulting from embryo transfer manipulations)

allowing assessment of the genotyping error rate at 0.06%. Only

one individual per pair was kept for further analysis. For the 16

other pairs, individuals were declared as half-sibs and might

correspond to sample duplication (their DNA was extracted

approximately at the same time). The 32 corresponding

individuals were thus discarded.

Figure 5. Representation of the gene networks N_MON (A), N_NOR (B) and N_HOL (C). Symbols corresponding to candidate genes are
colored in red. Genes colored in grey were represented in our study but did not display any evidence of selection.
doi:10.1371/journal.pone.0006595.g005
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A total of 728 SNPs mapping to the X chromosome and 1,672

other SNPs (,3%) which were genotyped on less than 90% of the

individuals in at least one breed were not considered in the

analysis. An exact test for Hardy-Weinberg Equilibrium (HWE)

[48] was carried out within each breed separately on the 51,601

remaining SNPs. Based on the obtained p-values, q-values [49]

were estimated for each SNP using the R package qvalue (http://

cran.r-project.org/web/packages/qvalue/index.html). A total of

829 SNPs exhibiting q-value,0.01 in at least one breed were then

discarded from further analysis.

Estimation of allele frequencies
Although the number of families and individuals considered

within each breed was large, we took into account the half-sib

pedigree structure in estimating population allele frequencies by

considering only maternally inherited allele. Indeed, dams were

more representative of the population and less related than the

bulls (Table S1). Within each breed, population allele frequencies

were then estimated by a simple counting algorithm run

iteratively. At each step, the most likely sire genotypes were first

estimated conditionally on the bull genotypes and allele frequen-

cies (estimated for the first step by simple counting on all bulls) and

allowing a 1% genotyping error rate. Each maternally inherited

allele was then identified to update population allele frequencies.

The procedure was stopped when no change in deduced

genotypes for all sires was observed. Because genotyping data

were available for 14 out of the 64 bull sires considered, we could

estimate the prediction error rate as being equal to 1.2% (assuming

no genotyping error in genotyping data), similar rates being

observed on simulated data. This procedure also allowed

computing the number of mendelian inconsistencies which was

found similar to the observed genotyping error rate as estimated

above (0.02% versus 0.06%). Thus, allele frequencies could be

considered as estimated with high precision and relied upon on

average 485 (from 281 to 579) maternally inherited alleles in

MON, 520 (320–635) in NOR and 1,293 (882–1293) in HOL.

Finally, only SNPs displaying a MAF above 0.001 in the three

breeds were retained for further analysis resulting in a total of

42,846 SNPs.

Population Structure
Assessment of population structure was performed by the

standard unsupervised Bayesian clustering approach implemented

in the software STRUCTURE 2.2 [50]. Among the 42,846

available SNPs, only 8,342 SNPs (selected to achieve a minimal

inter-marker distance above 200 kb) were included in the analysis

Figure 6. Representation of the gene network GN. Symbols corresponding to genes under selection are colored in red. Genes colored in grey
were represented in our study but did not display any evidence of selection. Links between GH1, GHR and b-estradiol and other GN molecules are
colored in light blue, blue and green respectively.
doi:10.1371/journal.pone.0006595.g006
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and marker position information was considered. STRUCTURE

2.2 was then run 3 times with a single prior value of K = 3 for the

number of clusters, and a burning period of 5000 iterations

followed by 10,000 iterations. The three replicated analyses were

then aligned using default options of the CLUMPP software [51].

Estimation of FST

Estimation of SNP and population-specific FST were based on

the pure drift model proposed by Nicholson et al. [15] which

allowed relaxing the assumption of an identical level of

differentiation across populations [52]. Briefly, the frequency aij

of a given reference allele at SNP i within population j is modeled

as a truncated Gaussian: aij , N(pi , cj pi (1-pi )) where pi can be

interpreted as the frequency of the allele in the population

ancestral to the three breeds considered and cj represents a

differentiation parameter (relatively to the ancestral population)

analogous to a FST coefficient for low level of differentiation [15].

These authors proposed a standard method of moments’ estimator

for cj as F̂F
j
ST~ĉcj~

1
I

PI

i~1

aij{p̂pið Þ2
p̂pi 1{p̂pið Þ where p̂pi~

1
J

PJ

j~1

aij , I represents

the total number of SNPs and J the total number of populations.

Note that aij corresponds to the observed allele frequencies and no

correction for sample size was performed since sample sizes were

large (see above). Based on simulated data, Nicholson et al. [15]

showed that the method of moments estimator of cj performed well

providing levels of differentiation are similar across populations.

We further simply estimated the F
ij
ST for SNP i within population j

as F̂F
ij
ST~

aij{p̂pið Þ2
p̂pi 1{p̂pið Þ and across populations as F̂F i

ST~ 1
J

PJ

j~1

F̂F
ij
ST .

Mapping information and anchorage of SNPs
Among the 42,846 SNPs, 41,777 mapped to a bovine autosome

on the latest bovine genome assembly Btau_4.0 (http://www.hgsc.

bcm.tmc.edu/projects/bovine/), the others 1,069 belonged to

unassigned contigs. As shown in Table S3, on average one SNP

every 60.8 kb (from 53.7 kb on BTA25 to 72.6 kb on BTA05) was

available allowing dense and homogeneous genome coverage.

More precisely, few large gaps remained since only 2.81% of the

inter-marker intervals are larger than 200 kb (the size of the larger

gap being 2 Mb) and the 99th (95th) percentile of the inter-marker

distance distribution was equal to 278 kb (159 kb). Conversely,

few short gaps between successive SNPs were observed: the 1st (5th)

percentile of the inter-marker distance distribution being equal to

20.1 kb (21.7 kb).

Simulated data set
Simulations were carried out using the coalescent program

GENOME [53] to obtain the genome-distribution of parameters

of interest under a selectively neutral model. For each population

100 individual genomes consisting of 29 100-Mb chromosomes

were simulated, each being composed of 4,000 segments separated

by 25 kb (assuming a recombination rate of 1028 per bp). To

reflect breed formation the demographic scenario consisted in

three completely isolated populations separated t = 25 generations

ago from an initial common population with an effective

population of Ne = 5,000. Note that under the pure drift model

described previously, the population specific differentiation

parameter cj~F
j
ST might be thought of as the inverse of an

effective bottleneck size cj = t/Nj where Nj represents the (haploid)

effective population size of population j [15] providing a natural

estimate in our demographic scenario for each population size

after their splitting. However because our F
j
ST estimator is

somewhat downwardly biased, these population sizes needed to

be adjusted until matching of the observed and simulated FST both

computed within and across populations. Effective chromosome

size (twice the effective population size) retained for simulations

was respectively 215, 220 and 180 for MON, NOR and HOL.

Finally, for each chromosome we fixed the number of mutations to

4,000. The resulting 126,000 SNPs were subjected to the same

ascertainment scheme as the one adopted for real data

(MAF.0.001 in the three populations) leading to a simulated

data set containing 55,591 SNPs. Marker coverage was close to the

real data set one (on average one SNP every 51.8 kb) with a

similar proportion of large gaps (only 3.04% above 200 kb). The

estimated FST across the three simulated populations was 0.0707

and respectively 0.0693, 0.0683 and 0.0745 for the simulated

MON, NOR and HOL populations, almost identical to the one

computed on the real data sets (see Results).

Identification of regions under selection
In order to identify regions under selection (with an unexpect-

edly high proportion of SNPs subjected to selection), we followed

the locally adaptive procedure which allows to account for

variations in distance between the different tested positions [54].

Individual SNP FST values were first smoothed over each

chromosome with a local variable bandwidth kernel estimator

[55]. A similar approach was performed on the simulated data sets

to estimate the whole genome distribution of the score under the

neutral hypothesis. Based on this distribution, local q-values were

then calculated using the R package qvalue (http://cran.r-project.

org/web/packages/qvalue/index.html) to identify significant out-

lier regions (q-value,0.05).

SNP Annotation
Because the annotation of the bovine genome is still sparse, the

gene content information was derived from the TransMap cross-

species alignments available in the UCSC Genome Browser

(http://genome.ucsc.edu/). For closer evolutionary distances, the

alignments are created using syntenically filtered BLASTZ

alignment chains, resulting in a prediction of the orthologous

genes in cow. In total, 46,598 different RefSeq identifiers were

anchored in the latest bovine genome assembly (http://genome.

ucsc.edu/). Considering that most consecutive SNPs on the map

were separated by more than 20 kb and the high correlations

between the F̂F i
ST for closely related SNPs (see Results), a SNP was

considered as representative of a gene if it was localized within the

boundaries positions of the gene extended by 15 kb upstream and

downstream. According to this criterion, the 17,833 SNPs out of

the 41,777 SNPs were representative of 18,986 different

TransMap RefSeq identifiers (out of the 46,598 ones) detailed in

Table S2. On average they were represented by 2.30 SNPs (from 1

to 54), 7,723 (41%) being represented by at least 2 SNPs.

Subsequent annotation and analyses were carried out with the

web-based pathways analysis tool Ingenuity Pathway Analysis

(IPA) v7.0 (Ingenuity Systems Inc., USA, http://www.ingenuity.

com/). Among the 18,986 different TransMap RefSeq identifiers

(see above), 18,944 identifiers (99.8%) were represented in the

Ingenuity Pathway Knowledge Base (IPKB) and corresponded to

7,935 different genes further considered as the reference set.

Although because of RefSeq redundancy, most SNPs were

representative of several RefSeq, only 402 SNPs (out of the

17,806 ones) were representative of more than one gene.

Identification of genes under selection
A gene could be regarded as being under selection if it contained

an unexpectedly high proportion of highly (or lowly) differentiated

SNPs. First, each RefSeq was given a score corresponding to the FST

average of its representative SNPs. If the RefSeq was represented by
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only one SNP, its score was the corresponding FST. To evaluate the

distribution under the neutral hypothesis of each score we further

draw 50,000 independent samples of 17,806 FST (across and within

each populations) which were assigned to 18,986 ‘‘simulated’’

RefSeq by exactly mimicking the observed SNP RefSeq content. A

p-value was then computed for each RefSeq (both across and within

each population) by counting the number of times the observed

score was above or below the simulated ones. To deal with multiple

testing issues, we further applied a Benjamini and Hochberg

correction [26] on the resulting p-values as implemented in the R

package qvalue http://cran.r-project.org/web/packages/qvalue/

index.html). Note that our strategy considered SNPs are indepen-

dent from each others which might be reasonable under the null

hypothesis of neutrality given our marker density and background

LD within the different populations (see Results).

Networks Analyses of the differentiated SNP
IPA was used to organize genes showing evidence of selection

into networks of interacting genes and to identify pathways

containing functionally related genes. More precisely, network

analysis consists in searching for direct and indirect interactions

(known from the literature and manually curated by experts)

between candidate genes and all other molecules (genes, gene

products or small molecules) contained in IPKB. The complete list

of RefSeq identifiers with their respective scores (across and within

breeds) were uploaded into IPA and each were mapped to their

corresponding IPKB gene object (see above). Candidate genes are

eligible for network generation if there is at least one wild type

IPKB interacting molecule. Based on the information available for

eligible candidate genes (focus genes), IPA further constructs

networks by maximizing the number of focus genes and their

inter-connectivity in the limit of 35 molecules per network. Note

that additional highly connected non focus molecules are also

included. Finally, for each network, a right-tailed Fisher exact test

is implemented to evaluate how likely the focus genes it contains

might be found together by chance. Only those networks with a

score (-log(p-value)) greater than 3 were considered as significant.

In addition, networks might be inter-connected (sharing at least

one molecule) which strengthen the importance for the underlying

biological functions. Networks are graphically represented by

nodes with various shapes (according to the molecule type) and

edges (according to their biological relationships).

Supporting Information

Table S1 Sample description

Found at: doi:10.1371/journal.pone.0006595.s001 (0.00 MB

PDF)

Table S2 Description of the results for the 18,986 RefSeq

represented in the analysis. For each RefSeq, we report the

position on the genome, the underlying gene (based on IPA

annotation), the score derived from the FST values of the SNP

localized within it and the and p-values corrected for multiple

testing for positive and balancing selection tests both across and

within each breed. The interval number (Table 2) is reported if the

RefSeq is localized within a significant region previously reported.

Found at: doi:10.1371/journal.pone.0006595.s002 (1.87 MB ZIP)

Table S3 Genome coverage and SNP density.

Found at: doi:10.1371/journal.pone.0006595.s003 (0.01 MB

PDF)

Figure S1 Observed FST (across and within the three breeds)

for each SNP as a function of chromosome position (one page per

chromosome). The red (blue) dashed line corresponds to the 99%

(97.5%) threshold on the corresponding empirical distributions.

Found at: doi:10.1371/journal.pone.0006595.s004 (1.39 MB ZIP)

Figure S2 Correlation of FST (across and within each of the three

breeds) for pairs of markers as a function of physical distances in the

real (upper panel) and simulated (lower panel) data sets.

Found at: doi:10.1371/journal.pone.0006595.s005 (0.02 MB

PDF)

Figure S3 Whole genome map of regions under selection based

on the FST within MON. For each of the 29 bovine autosomes,

the smoothed FST is plotted against the chromosomal position

(green line). For significant positions (q-value,0.05), non

smoothed SNP FST are indicated by a red star.

Found at: doi:10.1371/journal.pone.0006595.s006 (0.22 MB ZIP)

Figure S4 Whole genome map of regions under selection based

on the FST within NOR. For each of the 29 bovine autosomes,

the smoothed FST is plotted against the chromosomal position

(green line). For significant positions (q-value,0.05), non

smoothed SNP FST are indicated by a red star.

Found at: doi:10.1371/journal.pone.0006595.s007 (0.22 MB ZIP)

Figure S5 Whole genome map of regions under selection based

on the FST within HOL. For each of the 29 bovine autosomes, the

smoothed FST is plotted against the chromosomal position (green

line). For significant positions (q-value,0.05), non smoothed SNP

FST are indicated by a red star.

Found at: doi:10.1371/journal.pone.0006595.s008 (0.23 MB ZIP)
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