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Abstract

Background: Y-SNP haplogroup G (hgG), defined by Y-SNP marker M201, is relatively uncommon in the United States
general population, with only 8 additional sub-markers characterized. Many of the previously described eight sub-markers
are either very rare (2–4%) or do not distinguish between major populations within this hg. In fact, prior to the current
study, only 2% of our reference Caucasian population belonged to hgG and all of these individuals were in sub-haplogroup
G2a, defined by P15. Additional Y-SNPs are needed in order to differentiate between individuals within this haplogroup.

Principal Findings: In this work we have investigated whether we could differentiate between a population of 63 hgG
individuals using previously uncharacterized Y-SNPs. We have designed assays to test these individuals using all known hgG
SNPs (n = 9) and an additional 16 unreported/undefined Y-SNPS. Using a combination of DNA sequence and genetic
genealogy databases, we have uncovered a total of 15 new hgG SNPs that had been previously reported but not
phylogenetically characterized. Ten of the new Y-SNPs are phylogenetically equivalent to M201, one is equivalent to P15
and, interestingly, four create new, separate haplogroups. Three of the latter are more common than many of the previously
defined Y-SNPs. Y-STR data from these individuals show that DYS385*12 is present in (70%) of G2a3b1-U13 individuals while
only 4% of non-G2a3b1-U13 individuals posses the DYS385*12 allele.

Conclusions: This study uncovered several previously undefined Y-SNPs by using data from several database sources. The
new Y-SNPs revealed in this paper will be of importance to those with research interests in population biology and human
evolution.
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Introduction

Single nucleotide polymorphisms (SNPs) are the smallest and most

abundant type of human DNA polymorphisms [1]. SNPs have been

extensively used in the study of human evolutionary and migratory

patterns [2] and are increasingly being used in genome-wide

association studies [3]. Y-SNPs, in particular, are of interest due to

their paternal inheritance, lack of recombination, abundance, and

low mutation rate and are currently being investigated for

characterizing male population structure and ethnogeographic origin

in forensic science [4–10]. These unique polymorphisms within the

non-recombining region (NRY) of the Y-chromosome (mainly SNPs)

have created population specific paternal lineages (commonly called

haplogroups) that have persisted throughout human history. Large

scale parsimonious phylogenetic trees representing world wide Y

chromosomal variation have been constructed and comprise the

major haplogroups A-T [11–13]. The rules for naming haplogroups

have been designed to adjust for new SNPs that are continuously

being identified and characterized to be added to the tree and

potentially reshaping it as in the most recently published y-

chromosomal haplogroup tree [13]. Although some are rare (e.g.

[14]), some can still be useful for individual identification especially if

found at higher frequencies in certain defined populations. Many of

these polymorphisms have proven highly informative in tracing

human prehistoric migrations and generating new hypotheses on

human colonization and migrations [15].

This study recruited 54 hgG men from the pool available in

Ysearch.org (http://www.ysearch.org) in addition to 9 that we

possessed in-house. We have uncovered a total of 15 new hgG

SNPs, four of which create new sub-haplogroups with the hgG

clade. Additionally, we have also discovered that the Y-STR

DYS385*12 is present in (70%) of the new hg G2a3b1-U13

individuals and only 4% of non-G2a3b1-U13 individuals.

Results

Phylogenetic trees were constructed to show the evolutionary

relationships between the previously characterized hgG SNPs and
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15 newly characterized hgG SNPs (Figure 1A and 1B). The

population frequencies of Haplogroup G individuals in sub hgG

groups without (Figure 1A) and with the newly characterized Y-

SNPs are also shown (Figure 1B). Eleven of the new Y-SNPs were

phylogenetically indistinct from the current G-M201 and G2a-P15

markers. However, four newly characterized SNPs (U8, U16, U1,

U13) permitted the definition of four new sub-clades of hg G

(G2a3*, G2a3a, G2a3b*, G2a3b1) which, in our population

sample, increased the number of observable hg G genotypes by

80% (from five to nine). To ascertain the extent to which the new

markers are useful for differentiating hgG individuals, the

probability of discrimination (DP) obtained by typing individuals

with and without the four new informative markers was calculated

[16]. The DP was increased 72%, from 0.40 to 0.69, in our

Caucasian sample set.

Examination of the allele distribution of DYS385 showed that

the allele DYS385*12 was over-represented in the G2a3b1-U13

samples (7/10 samples possess the 12 allele). Only two copies of

the DYS385*12 allele were found in the other 53 non-G2a3b1-

U13 samples (4%). Thus the DYS385*12 is highly predictive

(P = 0.70) of a G2a3b1-U13 individual if the individual is known to

belong to hgG. Such Y-STR information can sometimes facilitate

a speedier haplogroup assignment and differentiation than would

be available from a strict hierarchy-based SNP analysis.

In summary, we have characterized 15 new hgG SNPs that had

been previously reported but not phylogenetically defined. Ten of

the new Y-SNPs are phylogenetically indistinguishable from G-

M201, one is equivalent to G2a-P15 but four create new, separate

hg G sub-haplogroups. Three of the latter are more common than

many of the previously defined hgG Y-SNPs.

Discussion

Y-SNP haplogroup G (hgG), defined by the Y-SNP marker G-

M201, is relatively uncommon in the European American population

of the United States. This haplogroup is thought to have originated in

the Caucasus region of Eurasia, especially in the North Ossetians [17]

and specifically, the Digora population with an average frequency of

74% [18]. Also approximately 11% of individuals in Anatolia [19]

and 17% in Northern Sardenia [20] belong to hgG. In a study on Y-

chromosomes in the Caucasus, it was found that the hgG genotype

frequency ranges from 21%–74% in seven different populations of

the north Caucasus region while it is only found within 3 populations

in south Caucasus region (at frequencies of 11%, 18%, and 31%)

[18]. It has been proposed that the peoples from these regions

originated from West Asia rather than Europe due the high

frequencies of the G, J2* and F* haplogroups [17].

Prior to this study, only 8 sub-markers had been described

within haplogroup G[11,19,21] with the most common hap-

logroup being G2a*, defined by P15. Many of the previously

described eight sub-markers are either very rare or do not

distinguish between major populations within this haplogroup. In

fact, prior to the current study, only 2% of our reference European

American population was within hgG and all of the individuals

were in sub-haplogroup G2a defined by the P15 polymorphism

[10]. In this work we have investigated whether we could

differentiate between a population of 63 hgG individuals using

previously uncharacterized Y-SNPs as well as their associated 19

marker Y-STR haplotypes. Here we describe the characterization

of new hgG sub-markers, four of which can further differentiate

between sub-populations within this hg.

Figure 1. Phylogenetic Trees Indicating the Frequencies of Haplogroup G Individuals with (B) and without (A) the Newly
Characterized Y-SNPs. The haplogroup names are assigned base on the most recent haplogroup tree by Karafet et al. [13].
doi:10.1371/journal.pone.0005792.g001
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The subjects were recruited from a selection of over 500

haplogroup G men available in public genetic-genealogy databases

in the fall of 2006. This was especially valuable in the case of a

somewhat rare European haplogroup like haplogroup G (about 2–

4% of the general population) [10,19,22,23]. The selection of hgG

men from already SNP typed populations provided a tremendous

savings in time and cost for this project. To have found this large

of a sample of HgG men without the resource of the genetic

genealogy community’s results would have necessitated the SNP

typing of approximately 1500 men. This study exemplifies the

success obtainable by productive collaboration between genetics

researchers and the genetic genealogy community.

Materials and Methods

This study was conducted according to the principles expressed

in the Declaration of Helsinki. The study was approved by the

Institutional Review Board of the University of Central Florida.

All participants provided written informed consent for the

collection of samples and subsequent analysis.

Candidate SNP Identification
DNA sequence traces from the NCBI Trace Archives were used

to identify SNPs of an individual from haplogroup G, in silico. Most of

the earliest mapping of the Y chromosome was done using the BAC

library from the California Institute of Technology called CTC. This

included the contigs: AC005942.2 CTC-298B15, AC002992.1

CTC-203M13, AC004617.2 CTC-264M20, AC002531.1 CTC-

486O8, AC004474.1 CTC-475I1, AC006565.4 CTC-484O7,

AC005820.1 CTC-494G17, and AC078938.3 CTC-480L15. The

Y-SNP marker M201 in contig AC004474 was seen to be derived

rather than ancestral in the reference sequence. This means that the

man used in the CTC library belonged to YCC haplogroup G. The

assumption was made that the contents of the NCBI Trace Archives

were not likely to contain the re-sequencing of any other haplogroup

G men (since G is seen in only about 3% of the males of European

descent). Candidate YSNPs were chosen on the basis of appearing in

only the above reference contigs and none of the traces in the Trace

Archives. Those candidate SNPs were typed and characterized in a

panel of 63 haplogroup G men. Additionally, all previously defined

hgG Y-SNPs were compiled from various publications and a 25

member candidate list of SNPs suspected to be polymorphic inside

haplogroup G was developed for assay development and subsequent

population studies.

Biological Sample Donors
Buccal swabs were obtained from a total of 74 individuals

including 63 human males belonging to Y-SNP hgG, one human

female, one male chimp, and one human individual from each of

the following hgs: A, B, C, E3a, F, H, I, J, and R1b. Fifty-four of

Table 1. List of Y-SNPS, their associated database references, and location of the SNP within the product for the indicated primers.

SNP Name rs # or AC#: SNP{
Product Size
(bp)

Position
(bp) Forward (59-39) Reverse (59-39)

M201 AC004474.1: G.T 310 199 CATGGGTAATTCGGTTGTTACC GCCCTTTGGTGGCATAGTA

P15 AC007876.2: C.T 75 34 GAATAGAGCCAATGCTTGAGGT TATGGGAATCACTTTTGCAACT

P16 AC068541.7: A.T 84 34 GTCGTTTATTTGGTGCCTGAA CTATGACCTCAGCAGAATGGA

P18 AC016698.3: C.T 141 80 GGTTGGGATTGTGACTCCTCT CTGGGCAAATTTACCTGTCTC

P20 AC016698.3: C.del 141 30 GGTTGGGATTGTGACTCCTCT CTGGGCAAATTTACCTGTCTC

M285 AC007678.3: C.G 188 63 GAGCCGTTGTCCCTGTGTTT TGCAGGCATCAGCTAGATTGT

M287 AC007678.3: A.T 188 93 GAGCCGTTGTCCCTGTGTTT TGCAGGCATCAGCTAGATTGT

M286 AC007678.3: G.A 188 123 GAGCCGTTGTCCCTGTGTTT TGCAGGCATCAGCTAGATTGT

M342 AC007876.2: C.T 103 40 AACAGGGCGTAACAAATAGGT TGGCTCTATTCATGTGAGGAA

M377 AC004474.1: A.G 195 93 TCGGTTGTTACCTTGAGCATT CGAAAAACCTCAGTTGATACTGG

U1 rs9785956: A.G 189 118 TTTCTGCTCCAAATCTGCTG CACCTGTAATCGGGAGGCTA

U2 rs9786712: G.A 150 123 AGCTCATCTTCACGGGTGTG ACAGGGCAAAGGAATCGTTA

U3 rs11799152: A.G 153 45 CTTGAACCCAAGACGAGGAG CAACAGTGGATCCCACATCA

U6 rs2740980: G.A 71 43 CCTCAGTCTCTCCGATTCCTT CTTTCATCTCCAACCCCCATC

U5 rs2178500: T.G 64 24 CTATCACCCAGAGACCCCTCA GAATCGGGTCCCATAACAAT

U7 rs7067251: G.C 222 124 GATCCCACAGAGTGCTCAGG CATGGGGTAAGAGAATGGGTA

U8 rs7892988: T.C 70 45 TATAACCAAAAATGGCACGAT GGATTAAGGTTGCCATCAGG

U12 rs9786640: A.C 162 43 CTATGAGCATTTGGGGGCTTA CCTTGTATCCTCCCTCCCTTT

U13 rs9786706: C.T 81 48 GTGGTAACAGCTCCTGGTGAG TGCTGCTTTGGTTAACTGTCC

U16 rs35474563: C.T 107 30 CTCATTTGACTTCCCGCTGT CTAGGACGCAGACGTCTTACC

U17 rs34742138: C.T 175 150 CAGTTGTGCATCAACCATTCA AACCTAGGTACTTCTTCCACTTCTC

U21 AC005820.1: C.T 98 53 CTGGCACCTCCTCTCACTTC TCAAGGAGCTTCCACTCACG

U20* rs16648: AG.del 119 61 AGACAAAGTCGGGGTTTTGA GATCTGCCTCTTTCCCAAAAT

U23* rs9786460: G.A 181 58 GGTGGGAGAATTACCTGAACC AGCTTCCTGAGTTCCCTTTTT

U33* rs1125978: C.G 94 68 CCCAATGTCCCTCTTTCCTT ACCCACTTTGACCCAATCTG

{SNP is listed as: ancestral.derived.
*U20 and U33 were amplified at 56uC annealing temperature and U23 was amplified at 57uC for only 35 cycles.
doi:10.1371/journal.pone.0005792.t001
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the individuals were recruited from the list of individuals whose 37

locus Y-STR haplotypes and Y-SNP haplogroups are available in

http://www.ysearch.org. All DNA samples were obtained with the

individual’s informed consent in accordance with the University of

Central Florida’s Institutional Review Board.

Genomic DNA isolation
A small piece of the buccal swab was cut and placed in a Spin-

ease tube (Gibco-BRL, Grand Island, NY) and incubated

overnight at 56uC in 400 mL DNA extraction buffer (100 mM

NaCl, 10 mM Tris-HCl, pH 8.0, 25 mM EDTA, 0.5% SDS, and

0.1 mg/ml Proteinase K). The cut material was then removed

from the tube and placed in a Spin-ease basket and the basket was

then placed back in the original tube and centrifuged (Eppendorf

Centrifuge 5415D) at 13,200 rpm for 5 min. The extract was then

purified and isolated using 25:24:1 phenol/chloroform/isoamyl

achohol (Fisher Scientific, Norcross, GA) followed by filtration

using MicroconH 100 centrifugal filter devices (Millipore, Bedford,

MA) according to the manufacturer’s instructions. Samples were

brought to a final volume of 50 mL in TE24 (10 mM Tris-HCl

and 0.1 mM EDTA, pH 7.5) and stored at 4uC until analysis.

DNA was quantified by gel electrophoresis in a 1% Agarose gel.

Samples were visualized using the VMega 12icTM Gel documen-

tation system (Ultra-Lum, Claremont, CA). Quantification was

accomplished by a comparison of the fluorescence intensity of the

unknown bands to a set of known quantity standards that were run

simultaneously.

SNP Primer Design and PCR
Assays were developed to amplify regions flanking the SNP for

use with pyrosequencing technology. Extracted female DNA was

also tested to ensure male specificity. All SNPs were tested against

individuals from hgs A, B, C, E, F, H, I, J, and R for haplogroup

determination and ancestral vs. derived states. A male chimp was

also tested to facilitate determination of the ancestral vs. derived

states. PCR primers were designed using a combination of

Primer3[24] and SNP Primer Design Pyrosequencing AB

v.1.0.1.software. The 50 mL PCR reaction contained: 1 ng

DNA, 0.2 mM each primer, 125 mM dNTPs, 1X PCR Buffer II

(10 mM Tris-HCl, pH 8.3, 50 mM KCl), 2.0 mM MgCl2, 10 mg

non-acetylated BSA (Sigma, St. Louis, MO) and 1.5 units of

AmpliTaqH Gold Polymerase (Applied Biosystems, Foster City,

CA). Cycling conditions were: (1) 95uC for 10 min, (2) 40 cycles:

95uC for 15 s, 54uC for 30 s, 72uC for 15 s, and (3) final extension

at 72uC for 5 min, unless otherwise noted.

Table 1 provides details of the SNP loci used and the PCR

primers used.

SNP/STR Genotyping and Phylogenetic Analysis
SNP genotyping was performed by pyrosequencing on a

PSQTM 96 MA instrument according to the manufacturer’s

recommendations (Biotage, Uppsala, Sweden, http://www.bio-

tage.com). SNP genotype data were collected and the phylogenetic

relationships were depicted in a phylogenetic tree showing the

corresponding frequencies for each haplogroup observed. Hap-

logroups were assigned based on the most recent comprehensive Y

chromosomal haplogroup tree published by Karafet et al. [13]. All

STR genotyping (19 locus haplotypes) was performed on a

Macintosh-based ABI Prism 310 capillary electrophoresis system

using two validated multiplex systems, MP I and MP II, as

previously described [25,26]. For two individuals whose STR

haplotypes were not determined as just described, some Y STR

data were available from http://www.ysearch.org. The probability

of discrimination (DP)[16] was calculated as: DP = 12gpi
2, where

pi is the observed frequency of the derived allele at each of the sub

hg G haplogroups.
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