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Abstract

Background: The BED Capture Enzyme Immunoassay, believed to distinguish recent HIV infections, is being used to
estimate HIV incidence, although an important property of the test – how specificity changes with time since infection – has
not been not measured.

Methods: We construct hypothetical scenarios for the performance of BED test, consistent with current knowledge, and explore
how this could influence errors in BED estimates of incidence using a mathematical model of six African countries. The model is
also used to determine the conditions and the sample sizes required for the BED test to reliably detect trends in HIV incidence.

Results: If the chance of misclassification by BED increases with time since infection, the overall proportion of individuals
misclassified could vary widely between countries, over time, and across age-groups, in a manner determined by the
historic course of the epidemic and the age-pattern of incidence. Under some circumstances, changes in BED estimates over
time can approximately track actual changes in incidence, but large sample sizes (50,000+) will be required for recorded
changes to be statistically significant.

Conclusions: The relationship between BED test specificity and time since infection has not been fully measured, but, if it
decreases, errors in estimates of incidence could vary by place, time and age-group. This means that post-assay adjustment
procedures using parameters from different populations or at different times may not be valid. Further research is urgently
needed into the properties of the BED test, and the rate of misclassification in a wide range of populations.
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Introduction

To date, HIV prevalence has been the main measure used in

monitoring HIV epidemics, but it is neither timely nor easily

interpreted, especially since antiretroviral treatment can increase

prevalence without concomitant increases in the spread of the

virus [1,2,3,4]. A measure of incidence would provide a better tool

to plan and evaluate HIV programmes [5], but cohort studies are

prohibitively expensive and often unrepresentative. Mathematical

models provide an indirect way to estimate incidence [6,7], but a

practical and valid method of measuring incidence from cross-

sectional surveys would be ideal, and a number of assays have

been developed in the hope of serving this purpose [8].

The underlying principle of these assays is that the immuno-

logical response to HIV evolves over the first months of infection,

and by measuring the quantity, proportion or avidity of HIV

antibody, recent infections can be discriminated from older ones.

The most widely used of these assays is the BED capture enzyme

immunosorbent assay (‘BED test’), in which the optical density

varies according to proportion of IgG that is anti-HIV antibody

[9]. A recent infection is usually defined as one for which the

optical density of the test is less than 0.8, which corresponds to

approximately 150–187 days after seroconversion [10,11,12] – in

this article, this period is denoted V. Assuming that all (or a known

proportion of) the detected recent infections have occurred within

a period V preceding the survey, the number of incidence infection

occurring in the last year can be estimated [10].

BED-derived estimates of incidence have been compared with

gold-standard measures of incidence in a range of settings [10,13].

BED estimates are typically substantially too high [13,14], leading

to calls for caution in the use and interpretation of the test [15]. It

has become clear that this is because the test misclassifies some

individuals infected for more than one year as being recently

infected [14]. Current guidelines [16] support using a post-assay

correction calculation, using an empirical measurement of the

fraction of individuals infected for more than a year are

misclassified as recent (labelled e by Hargrove et al. [14]). It

follows that the success of this correction procedure will be

dependent on the accuracy of the value used for e [17].

e has been measured in a small number of populations

[13,14,17,18,19] and values vary between 1.7% (South Africa

[17]) and 27% (Rwanda and Zambia [13]). Estimating incidence
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using the correction formulae and values of e measured in one

population to estimate incidence in another, had lead to seemingly

unrealistically high estimates of incidence estimates in Cote

d’Ivoire [18], South Africa [17,20], Uganda [21] and Kenya

[22], and unrealistically low estimates in Kwazulu-Natal in South-

Africa [17]. There have been calls for further studies measuring e
[15,16], but if it is found that it varies widely, necessitating

measurement in every population in which the BED test is used,

then the usefulness of the BED test would be limited.

One key property of the BED test is the relationship between

the chance that an infection is misclassified as recent (Proportion

False Positive), and the time since infection (denoted PFP(t)). (Note

that the eof Hargrove et al. is not time-variant.) This property has

not been fully quantified, but there is mounting evidence that the

chance of misclassification is higher for those with advanced

infections. One reason is that the proportion of IgG that is HIV

antibody could fall below the threshold in response to either the

onset of opportunistic infections or treatment with antiretroviral

therapy [23,24,25]. In small prospective studies, some individuals

have been observed to revert to false positive result after months of

infection. Treatment initiation also leads to regression past/

towards the optical density cut-off [13,24,25]. Furthermore, a new

study shows that the chance of misclassification is much higher for

individuals indicated to start therapy and with low CD4 cell

counts, than those with established infection but without

symptoms [26]. In one study of post-partum women, the rate of

misclassification was not associated with age or CD4 cell count

(although there were low numbers of women with the lowest CD4

counts) [14], but this is not necessarily inconsistent with an up-turn

in PFP many years after infection (fertility declines steeply with

time infected with HIV [27], and most women in this study would

probably have been infected in the previous few years). Another

reason why misclassification could increase with time since

infection would be if the individuals with fully developed

immune-responses that are misclassified as recent live for longer

than others. This is supported by observations of elite viral

suppressors, that live for longer than those with higher viral loads,

being more often misclassified as recent than others [23,28].

To explore the influence that the relationship between PFP and

time since infection could have on e and ‘corrected’ BED estimates

of incidence, we constructed a mathematical model describing

HIV incidence, prevalence and the distribution of time since

infection across a population, and represented a range of

epidemics from six countries in sub-Saharan Africa (Kenya,

Lesotho, Mozambique, Nigeria, Uganda and Zambia). We

evaluated e in the different settings, and compared the simulated

incidence rates with the corresponding corrected BED-derived

estimates that would arise from surveys of the modelled

population, making alternative assumptions about how the PFP

varies over longer times since infection. We then explored how

reliably the BED test could track changes in incidence over time

by modelling an instantaneous change in incidence by a factor 0.5,

0.75, 1.0, 1.25 or 1.5. Finally we calculated the required sample

sizes in the surveys for a trend to be statistically significant.

Methods

A system of partial differential equations was used to track

numbers of susceptible and infected individuals in each sex and

age-group over time (Text S1). Incidence rates in six African

countries across all ages, 1985–2005, were calculated using

Spectrum software [29] and UNAIDS estimates of prevalence

[1], and were input to the model (Figure S1). The relative rate of

incidence according to sex and age groups was based on recent

empirical observations in eastern Zimbabwe [30] (Table S1) and it

was assumed that this pattern is approximately constant over time.

Net survival with HIV is assumed to be Weibull distributed and

dependent on the age at infection [31] (Table S2). Background

mortality rates (from causes other than HIV) and fertility rates are

based on observation in African population in the pre-AIDS era

[32] (Table S3).

To understand the properties of the BED test that determine the

accuracy of derived incidence estimates, we define the ‘BED

response function’ x wð Þ as the fraction of blood samples from

individuals who are alive and have been infected for w years that

the BED test classifies/misclassifies as ‘recent’. As described above,

the period after infection for which infections should be classified

as recent by a perfect test is V. In this way, we write that the

sensitivity of the test is: r wð Þ~x wð Þ Vvw, and the specificity of

the test to infections that are w years old as:

r wð Þ~1{x wð Þ wwV. (For complete definitions of sensitivity

and specificity using this notation, see Appendix.) The BED

response function can be approximately parameterised from data

for the first two years after infection (Figure 1). V is taken to be 0.5

years; r 0vwƒVð Þ~0:8, and r Vvwƒ2Vð Þ~0:2 (i.e. ‘recent’

infections are less than 0.5 years old, and sensitivity to recent

infections is equal to 1-specificity for infections between 0.5 and

1.0 years old [14]). [10,14]. Beyond this time, PFP as a function of

time since infection has not been directly observed, so we construct

two hypothetical scenarios (Figure 1); it stays constant over time

since infection at 5% (as implied by Hargrove et al. [14]: Scenario A),

or it increases over time since infection to 50% after 20 years

(Scenario B).

In the model analyses, the distribution of time since infection for

the people living with HIV is described with respect to age and

time for each of the six African countries considered. The extent of

potential misclassification by the BED test was quantified as the

proportion of individuals infected with HIV for at least one year

that would be wrongly classified as recent infections, correspond-

ing to the value of e in Hargrove et al. The ‘‘Spectrum incidence

rate’’ was compared with the estimate from the BED test, making

alternative assumptions about the BED response function, and

using the post-assay correction formulae assuming a constant value

of e~5%. We note that the accuracy of the Spectrum incidence

estimates compared to the real world is not known, but that, within

this modelling exercise, they do represent the gold-standard

against which to compare the corresponding simulation of the

BED estimates. Indicative sample sizes required to statistically

detect changes were calculated naively using standard formulae for

differences in proportions [33].

Results

Comparing the distribution of time since infection for those

HIV infected by 1995 and ten years later, in 2005, there is a

general increase in the proportion infected for a long time, but this

varies greatly by country and age-group (Figure 2). Across

countries, recent infections are more frequent in countries that

have experienced recent epidemic growth (e.g. Mozambique) and

late infections are more frequent following epidemic stabilisation

and decline (e.g. Uganda and Kenya). Early in the epidemic, the

distribution of time since infection is similar across all ages, but

over time recent infections become relatively more common in

young adults.

These distributions results in substantial variation in the level of

misclassification by the BED test, if the PFP increases with time

since infection (scenario B in Figure 1). Figure 3 shows estimates of

e, in the different countries over time (Figure 3(a)) and across age-

BED Estimates of HIV Incidence
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Figure 1. The influence of time since infection on the proportion of BED test results that would be positive. The pattern over the first
year is informed by observational data, but pattern over the remaining time is uncertain and two hypothetical scenarios were used in our modelling
(scenarios A and B).
doi:10.1371/journal.pone.0005720.g001

Figure 2. Distributions of time-since-infection for the HIV-infected populations across six African countries (Kenya, Lesotho,
Mozambique, Nigeria, Uganda and Zambia) in (a) 1995 and (b) 2005; and across age-groups in Uganda in (c) 1995 and (d) 2005.
Categories are (from base upwards): ,4months (dark blue); ,1 y (light blue); ,4 y (cyan); ,8 y (green); ,12 y (yellow); ,16 y(orange); 16+y (dark red).
doi:10.1371/journal.pone.0005720.g002
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groups in 2005 (Figure 3(b)). The extent of misclassification

increases with time, especially in countries where the epidemic has

declined. The rate of increase is related to the timing of epidemic

spread, and varies between countries giving a range, in 2005, of

6% (Mozambique) to 17% (Uganda). Across age in 2005, the

misclassification rate is stable (5%) for 15–24 year-olds, and

sharply increases between ages 25–39 years (up to 30% in Uganda

and 7% in Lesotho). However, this pattern with respect to age is

dynamic, and the relative value of e between the different age-

groups also evolves over the course of the epidemic. The

corresponding graphs for BED response scenario A shows a

constant misclassification rate of 5%, as per the assumption.

The estimated incidence that would come from using the BED

test, corrected using a constant value of e~5% [14], is compared

with the Spectrum incidence rate (Figure S2). For scenario A (PFP

constant over time since infection) incidence is detected approx-

imately correctly in all settings. In contrast, for Scenario B (PFP

increases over time since infection), incidence is over-estimated in

the period 1995–2005 in most countries. The extent of the over-

estimate in 2005 is negligible in some countries (Lesotho and

Mozambique – though it increases later) and highest in Kenya (3-

times too high) and Uganda (5-times too high). Across countries,

the extent of the bias with respect to age is highly variable. In

general, the bias is modest in all settings among ages 15–29, but

increase sharply at older ages, and is greatest for the 35–39 years

age-group.

Figure 4 shows the relationship between trends in Spectrum and

BED estimates of incidence following instantaneous changes in the

incidence rate. For Uganda (a declining epidemic) and BED

response scenario A, Spectrum trends in incidence are only

roughly reflected in changes in the BED estimates (green line

poorly approximates diagonal grey line) (Figure 4(a)). In the ‘no-

change’ simulation (1.0 on the horizontal axis) the BED test falsely

indicates a reduction in incidence, which is generated by the

shifting distribution in time since infection among the infected

population. For Scenario B, the relationship between actual

changes in incidence and changes in the BED-estimates of

incidence shows only a weak positive correlation. For Zambia

and Mozambique (stable and growing epidemics, respectively), the

performance of the BED estimates using scenario A is good, with

no false detection of a trend in incidence and a close relationship

between actual trends in incidence and that recorded in the BED

test (Figure 4(b)). In Zambia and Mozambique there is a weak

correlation between actual trends in incidence trends and changes

in BED estimate using scenario B.

In stabilised epidemics, where our modelling indicates that

actual changes in incidence could be reliably recorded in the BED

estimates of incidence assuming scenario A, we calculated the

sample sizes required to record a statistically significant difference

in two cross-sectional sero-surveys. In these calculations, we

require 80% chance of detecting a statistically significant

difference in the proportion of recent infections in a two-sided

test at the 5% significance level. For Zambia, where the rate of

incidence is relatively high, sample sizes for each survey of

approximately 12,000 and 54,000 are required to detect a 50% or

25% reduction in incidence respectively, assuming BED response

function scenario A. For Nigeria, where the rate of incidence is

much lower, sample sizes of approximately 52,000 and 220,000

would be required to detect a 50% or 25% reduction in incidence,

assuming BED response function A. Sample sizes calculations

using scenario B were not calculated since trends in BED estimates

of incidence under these test properties could not be reliably

interpreted.

Discussion

Although it is widely recognised that the BED test can

misclassify old infections as recent, there has been renewed

confidence in using BED-derived estimate of incidence if a post-

assay analytic correction procedure is used [14,16]. However, for

this to work, the proportion of non-recent infection that the test

misclassifies (e) must be known. In this modelling exercise we have

found that if the chance of misclassification by the test does not

change over time, then empirical measurements of e can be used

universally, and corrected estimates of incidence will be accurate.

However, we also find that if the chance of misclassification by the

test increases for those with very advanced infections, then this

quantity will vary by place, over time and across age-groups. It has

Figure 3. Proportions of infections at least one year old that are misclassified by the BED test for six African countries, (a) over time
(ages 15–49), and (b) over age (in year 2005) using BED response scenario B (increasing proportion false positive: panels c & f). Lines
show: Kenya (red line and circles), Lesotho (blue line and squares), Mozambique (green line and plus-signs), Nigeria (pink link and triangles), Uganda
(black lines and diamonds), and Zambia (brown line and crosses). The lines are dotted after 2005, since Spectrum incidence were not calculated after
2005: these results are based on assuming incidence remains constant at 2005 levels.
doi:10.1371/journal.pone.0005720.g003
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been shown that using an incorrect value of e to adjust BED test

results leads to substantial biases in ‘corrected’ estimates of

incidence [14,17]. Our modelling shows that comparisons of

incidence estimates within populations (over age, or factors

correlated with age such as marriage/widowhood), over time or

between populations may also be unreliable.

The exact nature of the relationship between misclassification

and time since infection is not known. There are observational

studies showing that individuals with low CD4 counts/high viral

loads are much more likely to be misclassified than infected

individuals with high CD4 counts/low viral loads [19,23,24,26].

Also, if the individuals with fully developed immune-responses that

are misclassified as recent live for longer than others, then

misclassification rates will also vary with time since infection

[23,28]. Moreover, the wide variation in the few empirical

measurements of e [13,14,17,18], the greater values measured in

Rwanda, Zambia, Uganda and Zimbabwe (where the epidemics

have stabilised/declined) than South Africa (where the epidemic

continues to grow) are consistent with the model predictions

assuming that PFP does increase with time since infection.

Furthermore, the empirical estimate of e in Uganda [19] and

the degree of apparent error in corrected BED estimate of

incidence in Uganda and Kenya [21,22], are also in close

quantitative agreement with our model predictions. Thus,

assuming that PFP is constant over time may not be safe, and

reported estimates of incidence should properly reflect the

uncertainty and potential for substantial error that would arise if

PFP increases with time since infection.

Even though the level of the incidence estimate may be biased,

it has been suggested that patterns with respect to age and time in

BED estimates may used to identify risk groups and track changes

in the epidemic. The BED test was recently used to identify groups

at highest risk in Uganda [21], and the pattern of incidence over

age was surprising: whilst these data suggested that the ages of

peak incidence for women (35–39 years: 3.5/100pyar) was older

than for men (30–34 years: 2.8/100pyar), other empirical data

from Uganda and other countries in sub-Saharan African [34,35],

show that typically the age-groups with the highest incidence rates

are ten years younger, and at older ages for men than women. The

authors of a South African BED study also comment that

incidence in older age-groups was surprisingly high [20]. In both

cases, it was speculated that this may be due to patterns of

Figure 4. The ability of the BED test to detect changes in incidence. The incidence change estimated in 2006 five years after an
instantaneous change in incidence by a factor 0.5, 0.75, 1.0, 1.25 or 1.5 (i.e. decreased by half, decreased by a quarter, no change, increased by a
quarter, increased by half), using the alternative BED response scenarios: scenario A (stable proportion false positive: green squares); and, scenario B
(increasing proportion false positive: red triangles). The analysis is repeated for incidence patterns representative of Uganda (a); Zambia (b); and,
Mozambique (c). Note that a factor of 1.0 indicates no change in incidence. The thick diagonal grey line shows the 1:1 relationship expected if the
BED estimate perfectly tracks changes in incidence.
doi:10.1371/journal.pone.0005720.g004
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widowing and remarriage, but our modelling indicates that this

surprising pattern of incidence over age may, in fact, be due

misclassification increasing with time infected.

We investigated the ability for the BED estimates of incidence to

detect actual changes in incidence and found that, as anticipated

by earlier observations [14], in some settings (e.g. Uganda and

Kenya) declines in BED estimates of incidence can be spuriously

generated by natural changes in the distribution of time-since-

infection in the infected populations. In other settings (e.g.

Zambia), we found that under certain assumptions about the

BED response function (scenario A), changes in the BED estimate

of incidence can reliably reflect changes in the actual incidence

rate. However, the ability to record statistically significant changes

in BED-estimates of incidence requires samples sizes much larger

than are routinely used in existing surveys [21,22,36] (e.g. samples

of ,50,000 individuals per sero-survey in Zambia for a 25%

reduction in incidence, and much more in settings with lower

incidence). Another study has shown that when the uncertainty in

any calibrating parameters is also considered, sample sizes of at

least 10,000 are required even to identify greater changes in high-

incidence settings (reviewed in [37]). Nonetheless, with a third

survey a test for trend across time could be applied that may lead

to smaller sample sizes being required in each survey. Official

guidelines for the BED test do highlight the importance of using

sufficiently large samples [16], but this poses substantial logistic

difficulties in many settings.

Our modelling did not consider that the BED response scenario

could also vary by sex, age, pregnancy status, or viral sub-types. All

of these would lead to further variation in e by place, time and age.

It has also been shown that the measured sensitivity and specificity

of the test over the first two years will depend on the distribution of

time since infection [38], meaning that the biases in estimates

could be even more varied than suggested here. We have not

directly considered the use anti-retroviral treatment in the model,

which can also lead to misclassification. While some national

population-based surveys that have applied BED have not done

this, future sero-surveys should identify those in treatment so that

they could be excluded from the analyses. If the exclusion is not

fully effective, treatment could introduce an additional time-

variable bias, creating an exaggerated version of scenario B

(Figure 1).

Our modelling supports empirical work showing the BED test

can be used successfully with a locally and recently measured value

of e [14,39]. However, we have also shown that the value of e
quickly becomes ‘out-of-date’, and cannot easily be transferred to

other settings. Thus, for reliable results, e should be measured for

each population in which the test is used. CD4 cell count data

could help to exclude some individuals with long-term infections

but, in addition to the logistical challenges of doing this, the

variability in CD4 counts within and between individuals [40]

would make such a correction technical involved and likely

incomplete. Unfortunately, using reported behavioural data to

exclude confirmed long-term infection (such as date of first positive

HIV test) is not likely to lead to sufficient improvements in

specificity, since testing rates in Africa are currently low [41].

The relationship between misclassification and time since

infection could be directly observed by applying the BED assay

(and other similar assays) to sera collected from individuals with

known durations of infection ranging from 0 to 20 years. In

addition, further immunological research may describe the

underlying causes for changes in antibody composition over time,

which could help inform the shape of the BED response function.

This would provide the basis for making better assumptions made

about the BED response function, enabling more reliable forms of

post hoc correction.

From our analysis, we conclude that the current use and

correction of BED test data could well lead to errors in

understanding current patterns and trends in incidence. Much

more work needs to be done to understand the test properties and

such work should draw on longitudinal data from long-term

cohort studies.

Supporting Information
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Found at: doi:10.1371/journal.pone.0005720.s001 (0.19 MB

DOC)
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