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Abstract

Genetic toggle switches are widespread in gene regulatory networks (GRN). Bistability, namely the ability to choose among
two different stable states, is an essential feature of switching and memory devices. Cells have many regulatory circuits able
to provide bistability that endow a cell with efficient and reliable switching between different physiological modes of
operation. It is often assumed that negative feedbacks with cooperative binding (i.e. the formation of dimers or multimers)
are a prerequisite for bistability. Here we analyze the relation between bistability in GRN under monomeric regulation and
the role of autoloops under a deterministic setting. Using a simple geometric argument, we show analytically that bistability
can also emerge without multimeric regulation, provided that at least one regulatory autoloop is present.
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Introduction

Bistability is known to pervade key relevant biological

phenomena [1]. Many relevant examples can be found including,

e.g. the determination of cell fate in multicellular organisms. This

occurs with Xenopus oocytes, which convert a continuously variable

concentration of the maturation-inducing hormone progesterone,

into an all-or-none biological maturation response [2]. Stem cells

on the other hand present a switch where the expressions of the

involved transcription factors (OCT4, SOX2, and NANOG) are

stabilized by a bistable switch. When they are expressed and the

switch is ON, the self-renewal genes are ON and the differentiation

genes are OFF. The opposite holds when the switch is OFF [3]. A

third example is the cell-cycle regulation, which exhibits a

temporally abrupt response of Cdc2 to non-degradable cyclin B

[4]. This capacity of achieving multiple internal states is at the core

of a plethora of regulatory mechanisms, often associated to small

genetic circuits, including both switches [5,6,7,8,9] and oscillators

[10,11]. Understanding their logic and how it changes under

parameter tuning are two important goals of systems biology.

A general consensus indicates that such switches are based on a

mutual regulation of two transcription factors (figure 1), e.g.

mutual inhibition: protein A inhibits the synthesis of protein B and

vice versa [12]. Depending on the type of regulation they can be in

two different stable states and may change from one to the other

spontaneously or due to an external signal [12,13,14,15]. For

example, during the embryonic development of Drosophila

melanogaster the expression of the hp gene responsible for hunchback

formation is activated by Bicoid (Bcd) protein. In early

embryogenesis, the diffusion of Bcd, translated from the mRNA

located at the anterior end of the egg, forms an exponential

concentration gradient, establishing the anterior–posterior axis.

Upon this signal, a bistable mechanism allows for large changes in

hb promoter occupancy under small changes in Bcd concentration

across some threshold generating an on–off expression pattern.

This bistable mechanism explains the sharpness of the Hb

expression, from highest to lowest values taking place in a spatial

scale spanning just 10% of the egg length [16]. In other natural

scenarios bistability can be implemented by non-transcription

factors. However, even in these cases mutual regulation is

required. An example of bistable systems based on mutual

inhibition of non-transcription factors can be found in signalling

pathways. In Saccharomyces cerevisiae, signal transduction pathways

involved in sensing external stimuli often share the same or

homologous proteins, e.g. high osmolarity pathway and phero-

mone pathway. Despite potential cross-wiring, cells show specific-

ity of response. This specificity can be achieved, among other

mechanisms, by mutual inhibition of the shared proteins. When a

single cell is exposed to osmostress and pheromone induction

simultaneously, only one of the two pathways is activated

inhibiting the activation of the other pathway. In this case, the

activated pathway corresponds to one of the two possible stable

states of the bistable system (see [17] and references therein).

Focusing on two-components genetic circuits, their regulatory

proteins are known to form homodimers (or multimers) to be

effective transcription factors allowing to turn ON or OFF the

state of target genes [12,18,19]. Multiple examples can be found in

natural systems e.g. in the lambda-phage where the change from

lysogenic to lytic behaviour in response to environmental changes

is regulated by a switching two-component circuit. In this case, the

two transcription factors involved, CI and Cro, must form

homodimers to be effective [20,21]. The same requirements allow
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for bistability in synthetic designs. This is the case of the genetic

toggle switch in Escherichia coli, where bistability of the toggle arises

from the mutually inhibitory arrangement of the repressor genes.

The regulatory transcription factors TetR and LacI form

homodimers and homotetramers respectively. The transition from

one to the other stable state is triggered by external inducers (aTc

and IPTG) [6].

For general systems without any specific assumptions, multi-

meric regulation was assumed to be essential to obtain bistable

behaviour [22,23]. The inability to exhibit bistability in mono-

meric circuits without autoloops, was previously demonstrated

[24]. These results indicate that linear or Michaelis-Menten

kinetics cannot provide bistability and higher degree of non-linear

genetic regulation is required. Different mechanisms can introduce

this non-linearity. Positive cooperativity of binding is one such

mechanism. It can result from non-independent binding at two

adjacent operator sites. A similar effect results if a repressor is

effective only as a dimer (or multimer) and the monomer-

monomer affinity is weak [24]. Several models of bistable systems

involving only positive regulation also require cooperativity of

binding [25,26]. Despite the above, monomeric bistability has

been found in particular, bimolecular systems with Michaelis-

Menten kinetics under the indispensable key-assumption of

constancy of the total amount of proteins [27]. Also, some kind

of multistability is possible in a stochastic scenario without

cooperative binding [13,28], but under fully symmetric interac-

tions. However, the flips between the two states are also stochastic

and the observed alternative states cannot be stabilized (as it

occurs in real biological switches) due to the effectively monostable

character of the system without noise.

In deterministic dynamics, bistability requires the existence of

three fixed points. In this paper we demonstrate, to our knowledge

for the first time, that deterministic bistability can emerge for two-

component gene circuits by considering solely auto-regulatory

loops. This is unlike the previously briefly mentioned cases [13,27],

where bistability is not generated by the intrinsic topology of the

circuits. In other words, we demonstrate that bistability in

monomeric two-component circuits can be implemented exclu-

sively by the topology of interactions, with no additional

constraints, being a single autoloop enough to obtain it. Our

analysis is based on simple geometrical features associated to the

system’s nullclines and their crossings. As shown below, the

presence of an autoloop introduces essential geometrical constrains

responsible for the existence of three fixed points. Our results can

help understanding the essential role of autoloops in small natural

circuits and their synthetic counterparts.

Results

Geometrical features
In order to perform a general analysis of the nullclines, as

introduced in Materials and Methods, we study the single

components (numerator and denominator) of the expressions

independently, see figure 2(a). The numerator is a parabolic

function having two analytically well defined crossing points (j+.0

Figure 1. Schematic representation of a general genetic circuit
with two components. In (a) a genetic circuit with monomeric
autoloops and cross-regulation involving two genes (GA, GB) coding for
two proteins (A, B) acting as transcription factors. Under certain
conditions, this type of genetic circuit can show bistability. Here all
possible regulatory modes are shown (+/2). (b) Simplified diagram
summarizing the logic of this system.
doi:10.1371/journal.pone.0005399.g001

Figure 2. Qualitative shapes of the nullclines. (a) Graphical representation of the nullcline’s components. The numerator is the parabolic curve
and the denominator the straight line. Two feasible scenarios are shown: the solid line denotes j+.Q, the dashed line corresponds to j+,Q. (b),(c)
Qualitative behaviour of the nullclines applying the two possible conditions.
doi:10.1371/journal.pone.0005399.g002
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and j2,0 ) with the horizontal axis given by

j+~
{dAzaA

l cAvA
l +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The denominator is a lineal function crossing the horizontal axis

in Q= cAa
B

c/dA. The points Q and j+ are the upper and lower

bound of the protein concentrations of the system within the

biological meaningful region. Combining the two components,

two different scenarios are feasible, Q,j+ or Q.j+, comprising

different geometrical features. In both cases we find two crossing

points with the horizontal axis in j6, no inflection points, and the

nullclines tending towards their oblique asymptotes with an

identical slope m = 2vA
l/v

B
c for both settings AR6‘. From this

expression we see that the autoloop is related with certain

geometrical features. Systems without auto-regulatory loops

(vA
l = 0) do not exhibit oblique asymptotes, but horizontal. As

shown later the existence of oblique asymptotes is closely related

with the number of possible fixed points and bistability.

In the first case, j+.Q, we obtain a vertical asymptote in Q with

its lateral behaviour given by limARQ6(B)dA/dt = 0 = 6‘ For the

second case, j+,Q, we find similar asymptotes with opposite

lateral behaviour according to limARQ6(B)dA/dt = 0 = 7‘. In order

to determine possible extrema of the nullcline (dB/dA = 0), we

find, after some algebra, that the inequality

dA aB
c {1

� �
zaB

c cAvA
l aB

c {aA
l

� �
§0 ð5Þ

must be met to provide valid solutions, hence extrema. Rewriting

the conditions Q.j+ and Q,j+ by using the previous expressions

for Q and j+ we conclude that only Q.j+ satisfies condition (5) and

hence provides extrema. However, according with the vertical

asymptotic behaviour and the existence of only one crossing point

(j+) within the positive domain, we conclude that the extrema are

located within B,0. Hence, no extrema can be obtained within the

biologically meaningful domains, i.e. by imposing the biological

constraint that the levels of proteins must be positive (A.0, B.0),

for either scenario. In figure 2(b),(c) the two different types of

possible behaviour are shown. Furthermore, a similar analysis has

been performed for a system without basal transcription and the

geometrical features are not affected qualitatively.

Fixed point analysis
Using the previous geometrical approach, we are in the position

to reassemble both nullclines within the biological meaningful

region determining how many crossing points between both

nullclines can arise under different regulatory conditions. The

crossings between nullclines define the so called fixed points, i.e.

the levels of proteins A and B such that dA/dt = 0 and dB/dt = 0

simultaneously, thus no changes in protein concentration will take

place Four possible cases are obtained based on the symmetry of

the expressions for nullcline dA/dt = 0 and dB/dt = 0. They are

shown in figure 3. For the cases [j+.Q]dA/dt = 0 ‘ [j+,Q]dB/dt = 0

and [j+,Q]dA/dt = 0 ‘ [j+.Q]dB/dt = 0 (3(a) and 3(b), respectively),

equal geometrical arguments apply. In both cases the nullclines

exhibit opposite monotonies and opposite curvatures within the

entire domain due to the absence of extrema and inflexion points.

These conditions solely allow for a single crossing, hence

monostability. In the case [j+,Q]dA/dt = 0 ‘ [j+,Q]dB/dt = 0,

depicted in figure 3(c), the nullclines exhibit opposite curvature,

but equal monotonies. Again, the absence of extrema and

inflection points does not allow for three crossings, however under

the special condition of [j+]dA/dt = 0 = [j+]dB/dt = 0 = 0 two crossing

point arise. In accordance with expression (4), these conditions can

be satisfied, if 4diciv
i
l = 0 with i = {A, B}. Since ci.0 and di.0,

only vi
l can be zero and in this case (for a system without autoloop

regulation) the nullclines’ expressions now read:

B~
cA{dAA

vB
c dBB{cAaB

c

� �

A~
cB{dBB

vA
c dAA{cBaA

c

� �
ð6Þ

where the fixed points can be analytically solved. The solutions are

determined by the roots of a polynomial of second degree allowing

for two possible fixed points at most. However, the polynomial

crosses the vertical axis at 2cA cBv
A

ca
A

c forcing one of the roots to

be located within the negative domain. Hence, without autoloops

only monostability is possible in monomeric gene circuits. This

result is consistent with analysis previously reported [24]. For the

setting [j+.Q]dA/dt = 0 ‘ [j+.Q]dB/dt = 0 both nullclines show the

same type of curvature and monotony. Due to the oblique

asymptote, introduced by the autoloop, no analytical constraints

prevent the existence of three crossing points. In figure 3(d) we

show an example of bistability with monomeric regulation.

In order to determine the impact of the number of autoloops on

bistability, we have numerically analyzed the effect of downsizing the

system from two to one autoloop (vi
l = 0, vj

l = 0). As figure 4 shows,

only one autoloop is required to allow bistability. In figure 4(a) the

nullclines of a circuit with two autoloops are depicted and three fixed

points appear for a given set of parameters. The stability analysis

reveals two stable fixed points separated by an unstable one resulting

in the corresponding basins of attraction. Figure 4(b) shows a system

with a single autoloop. These numerical examples demonstrate that

genetic circuits with monomeric regulation are able to exhibit

deterministic bistability, whereby only a single autoloop is required to

satisfy the necessary geometrical constraints.

Impact of regulation type on monomeric bistability
In the previous sections the type of regulatory interactions, given

by ai
l and ai

c was handled generally. However, the individual

regulatory interactions, i.e. activation or inhibition, introduce

additional constraints for the emergence of bistability. Applying

some algebra to condition Q,j+ (bistability), we obtain an

equivalent expression as in (5) with the opposite inequality.

Focusing on the type of regulation, it can be rewritten as

aA
l waB

c {
1{aB

c

� �
dA

aB
c cAvA

l

ð7Þ

This leads us to two different instances: (a) if aB
c.1, then

aA
l.aB

c and (b) if aB
c,1, then aA

l.aB
c ~ aA

l,aB
c. As a

consequence systems with inhibitory regulation in the autoloop

and activatory cross-regulation can not exhibit bistability. In all

the other cases no geometric impediments are present. Figure 5

shows all possible regulatory topologies which cannot exhibit

bistability, irrespective of the specific set of parameters used.

Discussion

To summarize, a general, analytic set of conditions for

bistability in simple two-element genetic circuits has been derived
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for monomeric regulation. Although previous work suggested that

such kind of mechanism would be unlikely to be observed, here a

simple geometric argument reveals that wide parameter spaces

allow monomeric regulation to generate multiple stable states.

These results permit to predict the expected scenarios where a

reliable switch could be obtained. Current efforts in engineering

cellular systems [29,30,31] would benefit from our general

analysis. In this context, although dimerization seems to be a

widespread mechanism in GRNs, our study indicates that

potential scenarios for monomeric regulation could be easily

achieved. The current state of the art in synthetic biology allows

for a customized engineering of monomeric transcription factors

e.g. Zinc finger TFs can be easily designed to bind different DNA

sequences [32]. Building these monomeric transcription factors in

a properly designed network [33], the experimental implementa-

tion of monomeric bistable circuits seems thus to be feasible.

Finally, further work should explore how noise can act on these

types of dynamical systems. In eucaryotic cells, dimerization has

been shown to provide a source of noise reduction at least at the

level of simple GRNs [34]. Future studies should see how our

monomeric circuits are affected by noise and what types of

limitations and advantages can be obtained.

Materials and Methods

Genetic circuit
We focus our analysis on the most general system formed by two

genes. Gene A is expressed under the constrains of two different

monomeric regulatory modes. Protein A exhibits an auto-

regulatory loop by binding to its own promoter, as well as a

cross-regulation mediated by protein B. Gene B expression is

analogously regulated (see figure 1). We consider the general case

without any specific assumptions about the type of regulatory

interactions, i.e. activation or inhibition, but introduce them as a

tunable parameters a. The basic dynamical properties of the

circuit can be described by the following set of ODEs obtained

Figure 3. The four possible scenarios of nullcline combinations. Dashed line corresponds to nullcline dA/dt = 0, solid line to dB/dt = 0, QA and
QB denote the location of the asymptote for dA/dt = 0 and dB/dt = 0, respectively. Due to the symmetry of the nullclines’ expressions, the vertical
asymptote of dB/dt = 0 corresponds to the horizontal of dA/dt = 0. Analogously, jA

+ and jB
+ are the crossing points with the axis. (d) The geometrical

features of the nullclines allow for two possible cases. Three crossing points (depicted) or a single crossing (not depicted).
doi:10.1371/journal.pone.0005399.g003
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from the set of biochemical reactions:

dA

dt
~cA

1zvA
l aA

l AzvB
c aB

c B

1zvA
l AzvB

c B

� �
{dAA

dB

dt
~cB

1zvB
l aB

l BzvA
c aA

c A

1zvB
l BzvA

c A

� �
{dBB

ð1Þ

We are assuming basal transcription, the standard rapid

equilibrium approximations supposing that binding and unbinding

processes are faster than synthesis and degradation, and constancy

of the total number of promoter sites. Furthermore, the concentra-

tion of the other biochemical elements involved remains constant

during time and can be subsumed in the kinetic constant ci. The

binding equilibrium of the autoloop and the cross-regulators are

denoted by vi
l and vi

c, respectively. Furthermore a i
l and a i

c denote

the regulatory rates with respect to the basal transcription, for the

autoloop and cross-regulation respectively. Values,1 correspond to

inhibitory regulation, whereas .1 accounts for activation. Finally, di

is the degradation rate of protein i. For a detailed description of this

type of calculus, see [21].

Nullcline analysis
In order to analyze the system’s dynamics we obtain the

following expressions for the nullclines imposing dA/dt = 0 and

dB/dt = 0 considering monomeric regulation:

B~
cAzcAvA

l aA
l A{dAA{dAvA

l A2

vB
c dBB{cAaB

c

� � ð2Þ

A~
cBzcBvB

l aB
l B{dBB{dBvB

l B2

vA
c dAA{cBaA

c

� � ð3Þ

The number of crossing points between (2) and (3) defines the

number of different fixed points within the system. Both nullclines

have mathematically symmetric expressions, tunable by the set of

parameters. This symmetry facilitates their analysis due to

interchangeability of the characteristic features. Hence, the

problem can be evaluated by reducing the analysis to one

expression. Here (2) is analyzed.

Figure 4. Numerical simulations and stability analysis. In (a) circuit with two autoloops and in (b) circuit with one autoloop are shown. Circle
denotes a stable, square an unstable fixed point. The basins of attraction are shown in grey and white. The following sets of parameters have been
used: (a) cA = 1, dA = 1, aA

l = 10, vl
A = 1, vB

c = 1, aB
c = 0, cB = 1.1, dB = 0.1, aBl = 2.1, vB

l = 0.1, vA
c = 1.1, aA

c = 0 and (b) cA = 5, dA = 8, aA
l = 9, vl

A = 1,
vB

c = 1, aB
c = 0, cB = 8.5, dB = 1, aB

l = 0, vB
l = 0, vc

A = 1, aA
c = 0.

doi:10.1371/journal.pone.0005399.g004
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