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Abstract

TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family that participates in HIV-1 pathogenesis
through the depletion of CD4+ T cells. TRAIL is expressed on the cell membrane of peripheral immune cells and can be
cleaved into a soluble, secreted form. The regulation of TRAIL in macrophages during HIV-1 infection is not completely
understood. In this study, we investigated the mechanism(s) of TRAIL expression in HIV-1-infected macrophages, an
important cell type in HIV-1 pathogenesis. A human monocyte-derived macrophage (MDM) culture system was infected
with macrophage-tropic HIV-1ADA, HIV-1JR-FL, or HIV-1BAL strains. TRAIL, predominantly the membrane-bound form,
increased following HIV-1 infection. We found that HIV-1 infection also induced interferon regulatory factor (IRF)-1, IRF-7
gene expression and signal transducers and activators of transcription 1 (STAT1) activation. Small interfering RNA
knockdown of IRF-1 or IRF-7, but not IRF-3, reduced STAT1 activation and TRAIL expression. Furthermore, the upregulation
of IRF-1, IRF-7, TRAIL, and the activation of STAT1 by HIV-1 infection was reduced by the treatment of type I interferon (IFN)-
neutralizing antibodies. In addition, inhibition of STAT1 by fludarabine abolished IRF-1, IRF-7, and TRAIL upregulation. We
conclude that IRF-1, IRF-7, type I IFNs, and STAT1 form a signaling feedback loop that is critical in regulating TRAIL
expression in HIV-1-infected macrophages.
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Introduction

TNF-related apoptosis-inducing ligand (TRAIL) is a member of

the TNF superfamily and an important immune regulatory factor

capable of inducing apoptosis [1–3]. TRAIL is expressed on the

cell membrane of CD4+ T lymphocytes, natural killer cells, and

mononuclear phagocytes (monocytes and macrophages) and can

be cleaved into a soluble, secreted form [4]. The plasma levels of

TRAIL are increased in HIV-1-infected patients compared to

uninfected individuals, and patients receiving anti-retroviral

therapy show decreased plasma TRAIL levels that correlate with

reduced viral load [5]. Increased TRAIL expression is an

important contributor to HIV-1-mediated apoptosis in bystander

CD4+ T cells [6–9]. Furthermore, recombinant human TRAIL

has been found to induce apoptosis in HIV-1-infected macro-

phages and cultured neurons as we have previously reported

[10,11]. Although the apoptotic signaling events of TRAIL have

been studied extensively, including our recent work [10–13], the

upstream molecular stimuli, particularly those that are responsible

for HIV-1-mediated TRAIL upregulation, remain unclear.

Macrophage (M)-tropic HIV strains preferentially infect mono-

nuclear phagocytes, a cell type critical to HIV-1 replication in the

disease [14,15]. Infected mononuclear phagocytes disseminate virus

to lymph nodes where CD4+ T lymphocytes become infected and to

tissues, including the lung and central nervous system, where they

serve as viral reservoirs [16–19]. TRAIL expression is induced by

interferon (IFN)-a, -b, and -c in monocytes [20], by IFN-a and -b
but not -c, in Jurkat cells [21], and by IFN-b in CD4+ T cells [22].

However, limited information on how HIV-1 regulates TRAIL in

mononuclear phagocytes has been reported to date.

Type I IFNs IFN-a and -b are primarily induced by

plasmacytoid dendritic cells (pDCs) and in a lower amount by

monocytes and macrophages following viral infection [23,24]. All

type I IFNs interact with the IFN-a receptor (IFNAR), which

appears to couple to a uniform signal transduction cascade (for

review, see [25]). IFN-a/b binding triggers receptor dimerization

and activation, leading to phosphorylation of a tyrosine residue on

IFNAR. This phosphorylation stimulates the JAK/STAT pathway

leading to the formation of signal transducers and activators of

transcription 1 (STAT1) homodimers as well as heterodimers with
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STAT3 [26]. Activated STAT dimers translocate to the nucleus

and bind to interferon stimulated response elements of the

promoters for IFN-stimulated genes(for review, see [27]), including

TRAIL [28].

IFN regulatory factors (IRFs) are a family of transcription factors

that regulate the antiviral response. IRFs are closely related to type I

IFNs and consist of nine mammalian proteins characterized by an

amino-terminal DNA-binding domain [29]. Gene knockout of IRF-

1, IRF-3, or IRF-7 results in high susceptibility to infectious agents

[30–32]. IRF-1 and IRF-7 were identified by their ability to induce

the transcription of type I IFN and IFN-inducible genes, and both

are induced by HIV-1 [33–36]. IRF-1, IRF-3, and IRF-7 are

constitutively expressed in most cell types, whereas the expression of

IRF-1 and IRF-7 are more inducible following exposure of cells to

IFNs [37]. In addition, IRF-1, IRF-3, and IRF-7 have been linked to

TRAIL transcription [38–41]. However, the exact role of IRFs in

the promotion of TRAIL expression, especially in mononuclear

phagocytes, remains unclear.

Using a monocyte-derived macrophage (MDM) model, we

investigated how TRAIL expression is upregulated in macrophag-

es during HIV-1 infection. Our results demonstrated that

upregulation of TRAIL expression in HIV-1-infected MDM was

predominantly membrane-associated. HIV-1 infection induced

IRF-1 and IRF-7 gene expression and STAT1 phosphorylation in

macrophages. Small interfering RNA (siRNA) knockdown of IRF-

1 or IRF-7 but not IRF-3 reduced STAT1 activation and TRAIL

expression. Treatment with various cytokines identified IFNs as

the critical factors stimulating TRAIL expression. The upregula-

tion of IRF-1, IRF-7, and TRAIL, and the activation of STAT1

by HIV-1 infection was reduced by the treatment of type I

interferon neutralizing antibodies. In addition, inhibition of

STAT1 by fludarabine abolished IRF-1, IRF-7, and TRAIL

upregulation. These data suggest that IRF-1, IRF-7, Type I IFNs,

and STAT1 form a signaling feedback loop and cooperatively

regulate TRAIL expression in macrophages during HIV-1

infection. Understanding the signaling events in HIV-1-infected

macrophages may lead to the development of new therapies to

alleviate macrophage-mediated HIV-1 pathogenesis by reducing

the expression of death ligand TRAIL.

Materials and Methods

Reagents
Recombinant proteins, neutralizing antibodies, and chemicals

were obtained as follows: IL-1b, TNF-a, IFN-c, IFN-b neutral-

izing antibody, and Mouse IgG1 (R&D Systems, Minneapolis,

MN); IFN-a, IFN-b, and IFN-a neutralizing antibody (PBL

Interferon Source, Piscataway, NJ); Aidovudine (AZT, HIV-1

reverse transcriptase inhibitor), fludarabine, and lipopolysaccha-

ride (LPS) (Sigma-Aldrich, St. Louis, MO).

Monocyte cell culture and HIV-1 infection
Human monocytes were isolated from peripheral blood

mononuclear cells of HIV-1, -2, and hepatitis B seronegative

donors after leukopheresis and counter current centrifugal

elutriation [42]. Monocytes were cultured as adherent monolayers

at a density of 1.16106 cells/well in 24-well plates and cultivated

in Dulbecco’s modified Eagles medium (DMEM, GIBCO

Invitrogen Corp, Carlsbad, CA) with 10% heat-inactivated pooled

human serum (Cambrex Bio Science, Walkersville, MD), 50 mg/

ml gentamicin, 10 mg/ml ciprofloxacin (Sigma-Aldrich, St. Louis,

IL), and 1000 U/ml highly purified recombinant human macro-

phage colony stimulating factor (M-CSF) (a generous gift from the

Wyeth Institute, Cambridge, MA).

Seven days after plating, MDM were infected with HIV-1 strains

ADA, BAL, or JR-FL at a multiplicity of infection (MOI) of 0.1. On

the second day after infection, media were removed and substituted

with MDM culture media (DMEM with 10% heat-inactivated

pooled human serum, 50 mg/ml gentamicin, and 10 mg/ml

ciprofloxacin) [42]. Stock virus was screened for mycoplasma and

endotoxin using hybridization and Limulus amebocyte lysate assays,

respectively. Five days after infection, cells were changed to 0.5 ml/

well fresh medium for 24 hours. Culture supernatants were obtained

and subsequently stored at 280uC until assayed. Filtration of

supernatants was performed with Amicon Ultra 100 K nominal

molecular weight limit devices (Millipore, Billerica, MA).

Measurements of HIV-1 reverse transcriptase (RTase)
activity

HIV-1 RTase activity was determined in triplicate samples of

cell culture fluids. Supernatant (10 ml) was incubated in a reaction

mixture of 0.05% Nonidet P-40, 10 mg of poly(A)/ml, 0.25 mg of

oligo(dT)/ml, 5 mM dithiothreitol, 150 mM KCl, 15 mM MgCl2,

and [3H]TTP in Tris-HCl buffer (pH 7.9) for 24 h at 37uC.

Radiolabeled nucleotides were precipitated with cold 10%

trichloroacetic acid on filter paper plates in an automatic cell

harvester and washed with 95% ethanol. Radioactivity was

estimated by liquid scintillation spectroscopy [18].

RNA extraction and TaqMan real-time RT-PCR
Total RNA was isolated with TRIzol Reagent (Invitrogen) and

RNeasy Mini Kit (QIAGEN Inc., Valencia, CA). Assays-on-Demand

primers for human TRAIL (ID#, Hs00234356_m1), IRF-1 (ID#,

Hs00971965_m1), IRF-3 (ID#, Hs00155574_m1), IRF-7 (ID#,

Hs00185375_m1), and human GAPDH (ID#, 4310884E) were

purchased from Applied Biosystems, Inc. (Foster City, CA). Real-time

reverse-transcription polymerase chain reaction (RT-PCR) was

carried out using the one-step quantitative TaqMan Real-time RT-

PCR system (Applied Biosystems). TRAIL, IRF-1, IRF-3, and IRF-7

mRNA levels were determined and standardized with a GAPDH

internal control, and normalized to uninfected cells using compar-

ative DDCT method. All primers used in the study were tested for

amplification efficiencies and the results were similar.

TRAIL and CCL5 ELISA
Supernatants from MDM were collected for TRAIL and CCL5

determination by ELISA (R&D Systems) as described previously

[10,43]. The sensitivity of soluble TRAIL and RANTES ELISA is

10 pg/ml. To assess concentrations of TRAIL in cell lysates of

macrophages, we replaced the cell lysis buffer in the ELISA system

with a lysis buffer from Pierce (Rockford, IL), which provides

better lysis effect for membrane protein; the sensitivity for this

assay was 100 pg/ml for TRAIL.

Western blot analysis
Cell lysates from macrophages were prepared with M-PER

Mammalian Protein Extraction Buffer (Pierce). Protein concen-

tration was determined using the BCA Protein Assay Kit (Pierce).

Protein (30 mg) was electrophoresed on pre-cast 8% SDS-PAGE

and transferred to an Immuno-Blot PVDF membrane (Bio-Rad,

Hercules, CA). Antibodies specific for Phospho-STAT1 at tyrosine

701, total STAT1, IRF-3, and retinoic acid-inducible gene I (RIG-

I) were from Cell Signaling Technology, Inc. (Danvers, MA).

Loading control b-actin proteins were detected using anti-b-actin

(Sigma-Aldrich) antibodies. Membranes were treated overnight

with primary antibody at 4uC followed by a horseradish

peroxidase-ligand secondary anti-rabbit (Cell Signaling Technol-
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ogy) or anti-mouse (Cell Signaling Technology) antibody for

1 hour at room temperature. Antigen-antibody complexes were

visualized by enhanced chemiluminescence (Amersham Biosci-

ences, Piscataway, NJ) and captured with CL-X PosureTM Film

(Pierce). For data quantification the films were scanned with a

CanonScan 9950F scanner; the acquired images were then

analyzed on a Macintosh computer using the public domain

NIH image program (http://rsb.info.nih.gov/nih-image/).

siRNA transfection
Pre-designed siRNA duplexes for IRF-1 (ID#, 115266), IRF-3

(ID#, 115222), or IRF-7 (ID#, 115481) were synthesized by Ambion

Inc. (Austin, Texas). Two days post-infection MDM were transfected

with 120 nM siRNA duplex for 48–96 hours in the presence of

siIMPORTER (Upstate Cell Signaling Solutions, Charlottesville,

VA) according to the manufacturer’s instructions. A validated

Silencer Negative Control #1 siRNA (Ambion Inc.) was also

transfected at the same concentration as IRFs siRNA. To evaluate

transfection efficiency, control and HIV-1-infected MDM were

transfected with Silencer FAM-labeled Negative Control #1 siRNA

(green fluorescence tagged siRNA) (Ambion Inc.). At 48 hours post-

transfection, cells were incubated with Hoechst 33342 (Sigma) for

nuclear staining, transfected and total cells were counted.

Immunocytochemical assays
Human MDM were plated on 15 mm cover slips in 24-well

plates. Five days after infection, cells were fixed with 4%

paraformaldehyde at room temperature then incubated with

methanol for 20 minutes at 220uC. Fixed cells were blocked with

3% BSA in PBS and then incubated with primary antibodies to

TRAIL (human TRAIL specific polyclonal, Santa Cruz Biotech-

nology, Inc., Santa Cruz, CA) mixed with antibody to p24

(monoclonal mouse anti-human p24, IgG, DAKO Corp, Carpin-

teria, CA) at 4uC overnight. Normal mouse or rabbit IgG with

matched isotype were used as negative controls for the staining.

Cultures were washed and secondary antibodies, anti-mouse IgG

(coupled with green dye, Alexa Flour 488, Molecular Probes,

Eugene, Oregon), or anti-rabbit IgG (coupled with a info-red dye,

Alexa Fluor 647, Molecular Probes) were added for 1 hour at

room temperature. Nuclei DNA were labeled with Hoechst 33342

(Sigma-Aldrich) for 10 minutes at room temperature. Cover slips

were mounted on glass slides with mounting medium (Sigma-

Aldrich). Triple immunostaining was examined by a Bio-Rad

MRC1024ES lASER scanning confocal microscope using a triple

laser line and simultaneous triple display mode of the Bio-Rad

LaserSharp imaging program.

Statistical tests
Data were analyzed as means6standard deviation (SD) unless

otherwise specified. The data were evaluated statistically by the

analysis of variance (ANOVA), followed by the Tukey-test for

paired observations. Significance was considered with a p value

less than 0.05. All experiments were performed with at least three

donors to account for any donor specific differences. Assays were

performed at least three times in triplicate or quadruplicate.

Results

HIV-1-induced upregulation of TRAIL expression is
predominantly membrane-associated and dependent on
productive HIV-1 infection

Upregulation of TRAIL expression by HIV-1-infected macro-

phages has been previously reported [7,10]; our current study

investigated the mechanisms behind this upregulation. We used

macrophage-tropic HIV-1 strains HIV-1ADA, HIV-1JR-FL, and

HIV-1BAL to infect human MDM. Five days after infection,

culture supernatants were collected and HIV-1 viral infectivity

was determined by the HIV-1 RTase activity assay. HIV-1ADA

and HIV-1BAL demonstrated higher infectivity as compared to

HIV-1JR-FL (Fig. 1A). AZT, a HIV-1 reverse transcriptase

inhibitor, completely blocked HIV-1 reverse transcription of all

strains tested (Fig. 1A). The investigated macrophage-tropic viral

strains all strongly upregulated TRAIL expression levels as

indicated by real-time RT-PCR, and this upregulation was then

blocked by reverse transcriptase inhibitor AZT (Fig. 1B). HIV-

1ADA strain was used thereafter and referred to as HIV-1.

To determine the effects of HIV-1 infection on TRAIL mRNA

and protein levels in MDM, we used real-time RT-PCR and an

ELISA-based detection system, respectively. As the infection

progressed from day 1 through day 7 the HIV-1 RTase activity

continued to increase (Fig. 1C). TRAIL mRNA expression was not

significantly changed at 1 day post-infection but was significantly

upregulated on days 3, 5, and 7 as compared to uninfected control

(Fig. 1D). TRAIL mRNA upregulation peaked at day 5 and was

7.3-fold higher in HIV-infected MDM as compared to uninfected

control. To determine the protein levels of TRAIL, whole-cell

lysates were collected 1, 3, 5, and 7 days after HIV-1 infection and

then subjected to ELISA detection. TRAIL protein levels

increased starting at 3 days and peaked at 5 days after infection

(Fig. 1E). After 7 days of infection, cultures underwent significant

macrophage cell death (approximately 50% loss in cell viability,

data not shown) and the protein level of TRAIL decreased

accordingly. TRAIL ELISA was also used to measure soluble

TRAIL protein within the HIV-1-infected and uninfected MDM

supernatants and no significant changes in TRAIL concentrations

were found (Fig. 1F). These results indicate TRAIL upregulation is

associated with membrane-bound TRAIL rather than the soluble

form.

We further specified that the membrane-bound form of TRAIL

is upregulated following HIV-1 infection by using immunocyto-

chemistry and confocal microscopy. During the progression of

MDM HIV-1 infection, the percentage of infected cells continued

to increase. At days 5, staining of uninfected MDM was positive

for TRAIL (Fig. 2A, D) and negative for p24 (Fig. 2B, D). HIV-1-

infected MDM culture showed a dramatic increase in TRAIL

staining (Fig. 2E, H), particularly those MDM that were adjacent

to p24-positive multinucleated giant cells expressed high levels of

TRAIL surface staining (Fig. 2E, F, H). Thus, it is likely that

uninfected macrophages increase TRAIL protein synthesis in

response to diffusible factor(s) released by infected cells.

HIV-1 infection induces IRF-1, IRF-7 gene expression and
STAT1 phosphorylation in macrophages

To determine the molecular mechanisms that mediate TRAIL

expression, we studied the signaling pathways in the macrophage

innate immunity that respond to HIV-1 infection. First, we

examined the regulation of the IRF transcription factors after

HIV-1 infection of MDM. The expression levels of IRF-1 and

IRF-7 increased upon HIV-1 infection and the increase occurred

as early as 3 days after infection (Fig. 3A, C). In contrast, the

expression levels of IRF-3 remained the same except at 5 days

after infection, where an average 26% reduction in IRF-3

expression was found (Fig. 3B). We also treated MDM with

IFN-a and observed an increase in IRF-1, IRF-3, and IRF-7 gene

expression, confirming all these genes are IFN-stimulated genes

(Fig. 3A–C).

HIV-1, TRAIL, and Macrophage
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IRF-1 and IRF-7 are able to induce the production of type I

IFNs, which primarily activate STAT1/STAT2 signaling mole-

cules. We next determined the phosphorylation at Tyr701 of

STAT1 that is obligatory for STAT1 activation. HIV-1 induced

STAT1 phosphorylation 3 days after infection, and the phos-

phorylation persisted for 4 additional days (Fig. 3D, E). HIV-1

infection also increased total STAT1 at 5 and 7 days after infection

(Fig. 3D, F). Together, these data demonstrate that HIV-1

infection induces activation of STAT1 through phosphorylation

of Tyr701 as well as an increase in total STAT1 protein levels in

MDM. The similar kinetics of IRF-1, IRF-7 expression, STAT1

activation, and TRAIL production indicates these molecules may

associate with the same signaling pathway.

siRNA knockdown of IRF-1 and IRF-7 reduces TRAIL
expression in HIV-1-infected macrophages

To further elucidate whether increased levels of IRFs mediate

the increase in TRAIL transcription, we transfected IRF-1, IRF-3

or IRF-7 siRNA, and a nonspecific siRNA as a control in MDM

cultures. siRNA was successfully delivered into both control and

HIV-1-infected MDM, as demonstrated by FAM-labeled control

Figure 1. TRAIL expression in human macrophages increases when infected with HIV-1. A–B. Human MDM were infected with HIV-1ADA,
HIV-1JR-FL, or HIV-1BAL in the presence or absence of AZT. Cells (total RNA) and culture supernatants were collected 5 days after infection. A.
Supernatants were tested for HIV-1 RTase activity. B. TRAIL expression was determined by real-time RT-PCR. Results were normalized to GAPDH
expression and shown as fold change over control. ** indicates p,0.01 when compared to control; ## indicates p,0.01 when compared to
corresponding HIV-1 group. C–F. Human MDM were infected with HIV-1ADA. Samples were collected 1, 3, 5, and 7 days after infection. C. Supernatants
were tested for RTase activity. D. TRAIL expression was determined by real-time RT-PCR. E–F. TRAIL protein levels in cell lysate (E) and culture
supernatants (F) were measured by TRAIL ELISA. Open bars represent control MDM and solid bars represent HIV-1-infected MDM. ** indicates p,0.01,
* indicates p,0.05 when compared to the corresponding control. Data are representative of three donors.
doi:10.1371/journal.pone.0005397.g001
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siRNA (Fig. 4A). The transfection efficiency, measured by

counting FAM-positive cells within 200 total cells, was approxi-

mately ,70% for both control and HIV-1-infected MDM. The

levels of IRF-1, IRF-3, and IRF-7 following siRNA delivery in

HIV-1-infected macrophages were 33%, 14%, and 28% of non-

specific siRNA-transfected HIV-infected MDM, respectively

(Fig. 4B–D). STAT1 phosphorylation was significantly reduced

after IRF-1 or IRF-7 knockdown in HIV-infected MDM, but was

unchanged after IRF-3 knockdown when compared with control

siRNA (Fig. 4E). Similarly, TRAIL expression levels remained

unchanged after IRF-3 siRNA transfection, but were significantly

reduced after IRF-1 siRNA transfection and were blocked by IRF-

7 siRNA transfection (Fig. 4F). The viral replication in each group

was monitored by the HIV-1 RTase activity assay. Knocking

down IRF-1 with siRNA decreased the HIV-1 infection levels,

whereas the IRF-7 knockdown increased HIV-1 infection levels.

Infection levels in IRF-3 knockdown remained unchanged

(Fig. 4G). These data demonstrate that IRF-1 and IRF-7 are

critical to the activation of STAT1 and the upregulation of TRAIL

expression in HIV-1-infected macrophages.

One unexpected finding in these IRF siRNA knockdown

experiments was that IRF-3 was not required for IFN induction. It

is well established that IRF3 is involved in IFN and IFN target

genes inductions [31]. We further analyzed the protein knockdown

of IRF-3 and found that the IRF-3 siRNA transfection reduced

IRF-3 protein level by 60% in HIV-1-infected MDM (Fig. S1A).

To further demonstrate the function of IRF-3 has been impaired

after IRF-3 knockdown, we tested CCL5, a chemokine whose

transcription is controlled by IRF-3 [44], and found that CCL5

was significantly downregulated after IRF-3 knockdown in HIV-1-

infected MDM(Fig. S1B). These data suggest that knocking down

IRF-3 is not sufficient to block HIV-1-induced STAT1 activation

and TRAIL expression.

IFNs potently increase macrophage TRAIL levels
Macrophages release various inflammatory cytokines such as

IL-1b and TNF-a upon HIV-1 infection [45,46]. We previously

reported LPS- and IFN-c-treated macrophages have higher levels

of cell-surface TRAIL through analysis by flow cytometry [10]. In

this study, we used quantitative TRAIL ELISA and evaluated

whether TRAIL synthesis by macrophages is mediated by

inflammatory cytokines, such as IL-1b and TNF-a. We treated

MDM with a panel of inflammatory cytokines and LPS. LPS has

been reported to increase both forms of TRAIL in MDM, and it

served as positive control in our TRAIL detection system [47].

TRAIL mRNA increased in response to LPS stimulation (Fig. 5A),

and TRAIL protein increased modestly in the cell lysates and

supernatants in response to LPS treatment (Fig. 5B, C). Treatment

of MDM with individual cytokines IL-1b (50 ng/ml) or TNF-a
(100 ng/ml) did not change membrane-bound or soluble TRAIL

protein levels nor were TRAIL mRNA levels affected. In contrast,

IFNs, including IFN-a, IFN-b, and IFN-c, caused a significant

increase in TRAIL protein and mRNA levels (Fig. 5A–C).

Macrophages do not typically produce type II IFNs, thus type I

IFNs remained the focus of our investigation.

Increased TRAIL expression in HIV-1-infected
macrophages is dependent on type I IFN activity

STAT1 activation is essential for the cells to response to type I

IFNs [48,49]. STAT1 activation in MDM by HIV-1-infection

suggests there are type I IFNs in the culture supernatant acting in

autocrine and paracrine manner. To test whether type I IFNs were

responsible for STAT1 activation and the subsequent increase in

TRAIL levels after HIV-1-infection of MDM, type I IFN-

neutralizing antibodies were administered. The type I IFN-

neutralizing antibodies worked effectively because inhibition of

IFN-a-induced STAT1 phosphorylation was found to be 92% for

IFN-a-neutralizing antibodies, and inhibition of IFN-b-induced

STAT1 phosphorylation (54%) were observed by IFN-b-neutral-

izing antibodies (Fig. 6A). In addition, TRAIL expression was

reduced by 97% and 79% after the treatment with the IFN-a- or

IFN-b-neutralizing antibodies, respectively (Fig. 6B). We then

added type I IFN-neutralizing antibodies to HIV-1-infected MDM

every 24 hours after HIV-1 infection until the fifth day. The

Figure 2. Membrane-bound TRAIL increases in HIV-1-infected macrophage culture. Human MDM were infected with HIV-1 for 5 days and
then stained with antibodies to p24 (HIV-1 infection marker, green) and TRAIL (red). Nuclei (blue) were labeled with Hoechst 33342. A–D. Control
uninfected MDM. E–H. HIV-1-infected MDM. Panels D and H are merged pictures of A–C and E–G, respectively. Images were acquired from a Bio-Rad
MRC1024ES LASER scanning confocal microscope. Magnifications: A–H. 6006. Panels are representative of 4 separate donors.
doi:10.1371/journal.pone.0005397.g002

HIV-1, TRAIL, and Macrophage

PLoS ONE | www.plosone.org 5 April 2009 | Volume 4 | Issue 4 | e5397



neutralizing antibodies did not appear to change the RTase

activity, but partially blocked HIV-1-stimulated STAT1 phos-

phorylation (54% inhibition, Fig. 6C). Moreover, membrane-

bound TRAIL and TRAIL levels were reduced by the neutralizing

antibodies as compared to IgG control antibody (Fig. 6D, E). The

addition of neutralizing antibodies against type I IFNs partially

blocked HIV-1-induced IRF-1 and IRF-7 expression (Fig. 6F, G).

These data further support the hypothesis that increased IRF-1,

IRF-7, and TRAIL expression after HIV-1 infection is reliant on

type I IFNs.

To validate type I IFNs were the diffusible factors that regulated

TRAIL, we transferred supernatant from HIV-1-infected MDM to

uninfected MDM. Exposure of control MDM to HIV-1-infected

supernatants for 2 hours led to a dramatic activation of STAT1

similar to that seen in HIV-1-infected MDM (Figs. 3 and 6I).

Because binding of HIV-1 virions or gp120 may also activate

STAT1, we used centrifugal filters with 100 kDa molecular weight

pores to separate HIV-1 virions and gp120 from lower molecular

weight compounds. After filtration, HIV-1 RTase activity was

completely lost (data not shown), suggesting successful removal of

virions. The lower molecular weight fraction after filtration

induced strong STAT1 phosphorylation (Fig. 6H), confirming

diffusible factors (,100 kDa) are capable of activating STAT1.

Interestingly, IFN-a-neutralizing antibody reduced STAT1 acti-

vation (48% inhibition) and significantly reduced TRAIL

expression levels, whereas IFN-b-neutralizing antibody treatment

Figure 3. HIV-1 infection induces IRF-1 and IRF-7 gene expression and STAT1 phosphorylation at Tyr701 in macrophages. MDM were
infected with HIV-1 and cell lysates and RNA were collected 1, 3, 5, and 7 days after infection. A–C. Real-time RT-PCR was used to detect IRF-1 (A), IRF-
3 (B), and IRF-7 (C). Open bars represent control MDM and solid bars represent HIV-1-infected MDM. IFN-a (1000 Units/ml) was also used to stimulate
MDM for 24 hours, the effect on IRFs expression is shown in each panel as the diagonal striped bar. D. Phospho-STAT1 (p-STAT1, Tyr701) and total
STAT1 were detected by Western blotting. b-actin was used as a loading control. E. Levels of p-STAT1 were normalized as a ratio of p-STAT1 to STAT1
after densimetrical quantification of panel D and shown as fold change relative to control (1 dpi). F. Levels of STAT1 were normalized as a ratio of
STAT1 to b-actin and shown as fold change relative to control (1 dpi). Results are shown as the average6SEM in experiments performed with three
different donors. *, p,0.05 compared with day-matched control. **, p,0.01 compared to day-matched control.
doi:10.1371/journal.pone.0005397.g003
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did not cause a statistically significant decrease in STAT1

activation or TRAIL expression (Fig. 6I, J). These data

demonstrate that type I IFNs, likely IFN-a, is released by

macrophages upon HIV-1 infection resulting in increased TRAIL

levels.

STAT1 is essential for IRFs and TRAIL expression in HIV-1-
infected macrophages

We next determined whether STAT1 modulates HIV-1-

induced TRAIL expression in MDM. Fludarabine, a compound

that has been shown to specifically inhibit STAT1 activation and

induce loss of STAT1 mRNA and proteins [50], was used to block

HIV-1-mediated STAT1 activation. When used at 1 mM,

fludarabine abolished HIV-1-induced phosphorylation of STAT1

as well as HIV-1-induced increase in total STAT1 (Fig. 7A).

Accordingly, HIV-1-induced gene expression of TRAIL (Fig. 7B),

IRF-1 (Fig. 7C), and IRF-7 (Fig. 7D) were completely blocked by

fludarabine treatment. These results suggest that STAT1 is

essential for IRF-1, IRF-7, and TRAIL expression in HIV-1-

infected macrophages.

Discussion

The molecular mechanisms of TRAIL induction by HIV-1 in

macrophages are not completely understood. Here we investigated

the regulation of TRAIL as well as the upstream molecular events

responsible for TRAIL induction in HIV-1-infected macrophages.

We demonstrated that upregulation of TRAIL expression in HIV-

1-infected MDM was predominantly membrane-associated (Fig. 1,

2). HIV-1 infection induced IRF-1, IRF-7 gene expression and

activated STAT1 in macrophages (Fig. 3). IRF-1 and IRF-7

promoted Type I IFNs production and subsequent STAT1

activation (Fig. 4). Type I IFNs and STAT1 activation further

increased IRF-1 and IRF-7 gene expression (Fig. 6, 7). Blocking

signaling factors, including IRF-1, IRF-7, type I IFNs, or STAT1,

significantly reduced TRAIL gene expression (Fig. 4, 6, 7). These

data provide insight to the detailed regulation of TRAIL and

identify IRF-1, IRF-7, type I IFNs, and STAT1 as critical

signaling intermediates for TRAIL induction. Although IRFs have

been reported to regulate type I IFNs, we were surprised to find

that IRF-3 is not as critical as IRF-1 or IRF-7 in the signaling

cascade (Fig. 4). Instead, a positive feedback loop between

intracellular IRF1, IRF-7, STAT1 and soluble type I IFNs exists

and cooperatively regulates TRAIL in HIV-1-infected macro-

phages (see scheme in Fig. 8).

We [10,11], as well as others [6–9] have identified TRAIL-

induced apoptosis in several cell types during HIV-1 infection.

The exact pathological consequences of the increased membrane-

bound TRAIL in macrophages and in other cell types remain to

be established. Given that TRAIL preferentially kills HIV-1-

infected macrophages, it is plausible that the initial increase in

TRAIL is part of the innate immune response directed toward the

elimination of HIV-1-infected cells. Other unexpected target of

TRAIL, particularly uninfected CD4+ T cells, may add to the

complexity of TRAIL-mediated cell death. The increased

membrane-bound form of TRAIL in macrophages may team

together with either membrane-bound or soluble form of TRAIL

in monocytes and CD4+ T cells, possibly causing apoptosis of

bystander CD4+ T cells. This adverse effect of TRAIL on the

adaptive immune system during HIV-1 infection may help to

explain why HIV-1 persists even in the presence of elevated

soluble and membrane-bound TRAIL.

Members of the IRF family are important antiviral transcription

factors. IRF-3 and IRF-7 participate in immune responses and are

primarily associated with Type I IFNs [30–32]. In addition, IRF-1,

IRF-5, and IRF-8 can also contribute to type I IFNs induction (for

review, see [51]). Increased IRF-1 expression has been reported in

HIV-1-infected Jurkat and primary CD4+ T cells [52]. IRF-7 is

increased in HIV-1-infected individuals in plasmacytoid dendritic

cells, another mononuclear phagocyte cell type and the major

IFN-producing cells [36]. However, limited information on the

regulation and function of IRFs in HIV-1-infected macrophages

has been reported to date. Our data show increased IRF-1 and

IRF-7 expression in HIV-1-infected macrophages (Fig. 3), and that

IRF-7 knockdown in macrophages facilitated HIV-1 replication

(Fig. 4F), highlighting the importance of IRF-7 in the antiviral

response of macrophages. In contrast, knockdown of IRF-1

inhibited HIV-1 replication (Fig. 4F). The difference between

IRF-1 and IRF-7 on HIV-1 replication may be due to the

requirement of IRF-1, but not IRF-7, for full NF-kB transcrip-

tional activity at the HIV-1 long term repeat enhancer [53]. The

unique roles of IRF-1 in the enhancement of HIV-1 replication

and induction of death ligand TRAIL provide a potentially novel

therapeutic target, and inhibition of IRF-1 may simultaneously

reduce HIV-1 viral load and alleviate macrophage-mediated HIV-

1 pathogenesis.

IRF-1 and IRF-3 have been shown to regulate TRAIL

transcription in tumor cell lines [38–40]. More recently,

overexpression of IRF-7 has been found to enhance TRAIL

transcription in macrophages [41]. When we applied siRNA to

knockdown IRF-1, IRF-3, or IRF-7 gene expression in human

macrophages, the increase of TRAIL expression by HIV-1

infection was reduced by the IRF-1 and the IRF-7 knockdown,

but not by the IRF-3 knockdown (Fig. 4G). This is, to the best of

our knowledge, the first report of IRFs knockdown in HIV-1-

infected macrophages. Knockdown of IRF-1 and IRF-7 reduced

STAT1 phosphorylation, an essential component for type I IFNs

responsiveness (Fig. 4E). However, type I IFNs-neutralizing

antibodies did not completely block TRAIL upregulation in

HIV-1-infected culture (Fig. 6D, E), suggesting the involvement of

a type I IFNs-independent pathway in the induction of TRAIL.

These type I IFNs-dependent and -independent mechanisms may

work concomitantly in HIV-1-infected culture to induce TRAIL

expression. Our analysis also found that IRF-5 gene expression

could be induced upon HIV-1 infection in macrophages but in

lower abundance. In addition, IRF-8 gene expression was not

induced by HIV-1 infection but was expressed at a higher amount.

Figure 4. siRNA knockdown of IRF-1 and IRF-7 reduces STAT1 phosphorylation and TRAIL expression in HIV-1-infected
macrophages. Two days after HIV-1 infection, MDM were transfected with siRNA for IRF-1, -3, or -7. A. Forty-eight hours later, successful
transfections were confirmed by Silencer FAM-labeled Negative Control #1 siRNA transfection indicator (green). Hoechst 33258 (nucleus marker,
blue) was used to visualize the total cell number. B–D. Total RNA was collected 48 hours post-transfection and mRNA levels of IRF-1(B), -3(C), or -7(D)
were determined by real-time RT-PCR. E. Ninety-six hours after transfection, p-STAT1 and total STAT1 were detected by Western blotting. b-actin was
used as a loading control. F. TRAIL expression levels were determined by real-time RT-PCR. Results were normalized with GAPDH and shown as the
fold change over non-specific siRNA control. G. Supernatants were tested for HIV-1 RTase activity. ** indicates p,0.01 when compared to control; #
indicates p,0.05 when compared to HIV group with siRNA control; ## indicates p,0.01 when compared to HIV group with siRNA control. Data are
representative of three donors.
doi:10.1371/journal.pone.0005397.g004
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The role of these additional members of IRFs in the type I IFNs

production and TRAIL regulation remains to be elucidated.

The upstream molecular mechanisms resulting in the activation

of IRF-1 and IRF-7 during viral infection have begun to be

elucidated in recent years. Toll-like receptors (TLRs) and RIG-I-

like receptors are two separate classes of pattern-recognition

receptors (PRRs) that detect viral infection and initiate signaling

cascades including IRFs and type I IFNs (for review, see [54]).

However, TLR signaling cascade, which can be activated in

plasmacytoid dendritic cells, fails to promote activation in

macrophages in response to HIV-1 [55]. We suspect that other

viral sensing pathways may lead to IRFs activation in HIV-1-

infected macrophages. We tested RIG-I, a TLR-independent

PRRs, and found that HIV-1 infection increased RIG-I protein

levels, and the increase occurred as early as one day after infection

(Fig. S2). Activation of RIG-I leads to a signaling results in the

activation of IRF-3 and IRF-7 [56–58]. Furthermore, melanoma

differentiation-associated gene 5, another RIG-I like receptor, has

been reported to activate IRF-1, -3, and -7 [57,59]. Despite our

extensive studies, we cannot exclude the potential roles of TLRs in

the regulation of IRF-1 and IRF-7 during HIV-1 infection. The

upregulation of RIG-I by HIV-1 infection in macrophages is novel

and interesting, however its relationship with IRF-1 and IRF-7

regulation remains the subject of further investigation.

Recently HIV-1 accessory proteins, VPR and Vif, have been

reported to degrade IRF-3 through ubiquitin-associated proteo-

some pathway [60]. If IRF-3 degradation occurred in our HIV-1-

infected MDM culture, it could skew the interpretations of our

current results. To discount this, we have tested the IRF-3 protein

levels by Western blotting and found no dramatic degradation of

IRF-3 in our MDM during the HIV-1 infection course (data not

shown). In fact, there is a transient increase of IRF-3 at 5 days post

HIV-1 infection (Fig. S1A). This is more comparable with a

previous publication, which showed neither degradation nor

activation of IRF-3 in HIV-1-infected macrophages [55]. This

inconsistency in the literature may be explained by the differences

in cellular models and stages of HIV-1 infection. In addition, a cell

type-specific role for IRF-1 to supplant the requirement for IRF-3

in macrophages has been reported recently [61]. Whether

upregulation of IRF-1 and IRF-7 could potentially restore the

function of IRF-3 awaits future investigation.

Our results identify type I IFNs as a critical component of the

signaling cascade regulating TRAIL expression. In HIV-1

infection, type I IFNs are produced mainly by plasmacytoid

dendritic cells and in lower amounts by monocytes and

macrophages [23,24,62]. Interestingly, type I IFNs have been

tested in clinical trials for HIV-1 treatment and resulted in a

transiently decreased viral load and increased hematologic toxicity

and peripheral neuropathy [63]. Although type I IFNs activate

macrophages and improve the immune function of macrophages,

our data found endogenous type I IFNs do not significantly

decrease viral replication in infected MDM cultures (data not

shown). This contradiction suggests that there is a complex

interaction between HIV-1 and macrophages, where the innate

immune response may contribute to viral replication.

Figure 5. IFNs are potent stimulators of TRAIL expression in
macrophages. Human MDM were infected with HIV-1 or stimulated
with different inflammatory cytokines IL-1b (50 ng/ml), TNF-a (100 ng/

ml), IFN-a (1000 Units/ml), IFN-b (1000 Units/ml), IFN-c (100 ng/ml), or
LPS (100 ng/ml). Cell lysates and culture supernatants were either
collected 5 days following HIV-1 infection or 24 hours following
stimulation. A. TRAIL expression was determined by real-time RT-PCR.
B–C, TRAIL protein levels in cell lysate and culture supernatants were
measured by ELISA. * indicates p,0.05, ** indicates p,0.01 when
compared to control. Data are representative of three donors.
doi:10.1371/journal.pone.0005397.g005
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STAT1 activation in HIV-1-infected MDM and peripheral

blood mononuclear cells has been reported and correlated with

HIV pathogenesis [64,65]. STAT1 activation seems to primarily

be involved in the response to type I and II IFNs and involves

phosphorylation of Tyr 701 and/or Ser727 [48,49]. Tyr701 is

obligatory for STAT1 activation, while Ser727 may be required

for the maximal induction of STAT1-mediated gene activation

[26,66]. We have demonstrated that HIV-1 infection increased

STAT1 phosphorylation at Tyr701 and total STAT1 expression

(Fig. 3) and that the activation of STAT1 is essential for IRF-1 and

IRF-7 expression and TRAIL induction (Fig. 7). The potential

mechanism(s) linking upstream STAT1 activation to IRF-1 and

IRF-7 is not investigated in the current study. The activation of

STAT1 could directly bind to the IRF-1 or IRF-7 promoter and

turn on gene transcription [67–69]. Moreover, a reciprocal build

up between IRF and IFN in the later stages of infection may

contribute to the changes of gene expression and STAT1

activation. In addition, it should be noted that other cytokines

such as epidermal growth factor, platelet-derived growth factor,

and interleukin-6, along with HIV-1 virions and viral proteins

such as gp120, Tat, and Nef may be secreted by HIV-1-infected

macrophages thereby mediating type I IFNs production or

STAT1 activation [7,8,65,70–72]. Nevertheless, our data strongly

support a critical role for IRF-1, IRF-7, and type I IFNs in the

induction of macrophage STAT1 activation during HIV-1

infection.

Biologically active forms of TRAIL include membrane-bound

TRAIL and soluble TRAIL [4,28,73]. In our study, both

Figure 6. Type I interferon from HIV-1-infected macrophages induces STAT1 phosphorylation, IRF-1, IRF-7, and TRAIL expression.
A. MDM were treated with IFN-a (1000 Units/ml) or IFN-b (1000 Units/ml) with or without their corresponding neutralizing antibodies. Cell lysates
were collected 2 hours later and subjected to Western blotting for p-STAT1 and STAT1. b-actin was used as a loading control. B. 24 hours after the
treatment, TRAIL expression was determined by real-time RT-PCR. ** denotes p,0.01 compared with IgG control; ## indicates p,0.01 compared
with the corresponding IFN group. Experiments are representative of duplicate assays from two different donors. C–G. Human MDM were infected
with HIV-1 for 5 days with or without type I IFNs-neutralizing antibodies and total RNA and cell lysates were collected. C. Cell lysates were subjected
to Western blotting for p-STAT1 and STAT1. D. TRAIL expression was determined by real-time RT-PCR. E. TRAIL protein levels in cell lysates were
detected by ELISA. Experiments are representative of three different donors. *, p,0.05 compared with neutralizing antibodies treatment. F–G. IRF-
1(F) and IRF-7(G) expression were determined by real-time RT-PCR. Results were shown as the average6SEM in experiments performed with three
different donors. H. Supernatants from HIV-1 culture were collected 5 days after infection and filtered with 100 k centrifugal filter device. The flow-
through was transferred to control MDM for 2 hours and STAT1 phosphorylation was determined by Western blotting. I. Supernatants from HIV-1
culture were transferred to control MDM culture with or without IFN-a- or IFN-b- neutralizing antibodies. Cell lysates were collected 2 hours later and
subjected to Western blotting for p-STAT1 and STAT1. J. Twenty-four hours after the treatment, TRAIL expression was determined by real-time RT-
PCR. ** indicates p,0.01 when compared to IgG control; #, p,0.05, ##, p,0.01 compared with IgG/HIV-1 group.
doi:10.1371/journal.pone.0005397.g006

Figure 7. Fludarabine blocks HIV-1-induced STAT1 activation and gene expression of IRF-1, IRF-7, and TRAIL in macrophages. A.
MDM were treated with fludarabine at 1 mM 3 days after infection. P-STAT1 and total STAT1 were detected by Western blotting at 5 days after
infection. b-actin was used as a loading control. B–D. Real-time RT-PCR was used to detect TRAIL (B), IRF-1 (C), and IRF-7 (D). **, p,0.05 compared
with DMSO control. ##; p,0.01 compared to DMSO-treated HIV-1 group.
doi:10.1371/journal.pone.0005397.g007
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transcription and membrane-bound levels of TRAIL were

significantly increased in HIV-1-infected or IFN-treated MDM

but not by inflammatory cytokines TNF-a- or IL-1b-mediated

activation (Fig. 5). Notably, soluble TRAIL was secreted by

macrophages following type I interferon treatment but not by

HIV-1-infected macrophages (Fig. 1). This is consistent with a

previous report that there was no soluble TRAIL production upon

exposure to HIV-1 [5]. The low production of soluble TRAIL

despite the dramatic increase of transcription and membrane-

bound TRAIL is probably cell type-specific and the regulation

mechanisms warrants future investigation.

In summary, our current study revealed the signaling mecha-

nisms of TRAIL upregulation in HIV-1-infected macrophages.

The role of IRF-1, IRF-7, type I IFNs, and STAT1 in the

regulation of TRAIL during HIV-1 infection of macrophages is

important and adds to our understanding of pathogenesis of HIV-

1. Identifying cytotoxicity in the antiviral response to type I IFNs

and its signaling mechanism would potentially provide targets for

therapeutic interventions for HIV-1 infection.

Supporting Information

Figure S1 siRNA knockdown of IRF-3 reduces CCL5 produc-

tion in HIV-1-infected macrophages. Two days after HIV-1

infection, MDM were transfected with siRNA for IRF-3. A.

Ninety-six hours after transfection, IRF-3 was detected by Western

blotting. b-actin was used as a loading control. Levels of IRF-3

were normalized as a ratio of IRF-3 to b-actin after densimetrical

quantification and shown as fold change relative to non-specific

siRNA control. B. CCL5 levels were determined by ELISA. **

indicates p,0.01 when compared to non-specific siRNA control;

## indicates p,0.01 when compared to HIV group with siRNA

control. Data are representative of three donors.

Found at: doi:10.1371/journal.pone.0005397.s001 (0.85 MB

DOC)

Figure S2 Infection with HIV-1 induces an increase of RIG-I in

macrophages. MDM were infected with HIV-1 and cell lysates

were collected 1, 3, 5, and 7 days after infection. RIG-I was

detected by Western blotting and b-actin was used as a loading

control. Levels of RIG-I were normalized as a ratio of RIG-I to b-

actin after densimetrical quantification and shown as fold change

relative to control (1 dpi). Results are shown as the average6SEM

in experiments performed with five different donors. *, p,0.05

compared with day-matched control. **, p,0.01 compared to

day-matched control.

Found at: doi:10.1371/journal.pone.0005397.s002 (0.72 MB TIF)
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