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Abstract

Background: The traditional approach to studying complex biological networks is based on the identification of
interactions between internal components of signaling or metabolic pathways. By comparison, little is known about
interactions between higher order biological systems, such as biological pathways and processes. We propose a
methodology for gleaning patterns of interactions between biological processes by analyzing protein-protein interactions,
transcriptional co-expression and genetic interactions. At the heart of the methodology are the concept of Linked Processes
and the resultant network of biological processes, the Process Linkage Network (PLN).

Results: We construct, catalogue, and analyze different types of PLNs derived from different data sources and different
species. When applied to the Gene Ontology, many of the resulting links connect processes that are distant from each other
in the hierarchy, even though the connection makes eminent sense biologically. Some others, however, carry an element of
surprise and may reflect mechanisms that are unique to the organism under investigation. In this aspect our method
complements the link structure between processes inherent in the Gene Ontology, which by its very nature is species-
independent.

As a practical application of the linkage of processes we demonstrate that it can be effectively used in protein function
prediction, having the power to increase both the coverage and the accuracy of predictions, when carefully integrated into
prediction methods.

Conclusions: Our approach constitutes a promising new direction towards understanding the higher levels of organization
of the cell as a system which should help current efforts to re-engineer ontologies and improve our ability to predict which
proteins are involved in specific biological processes.
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Introduction

The study of biological systems at different levels of organization

is a rapidly emerging area of computational biology. The majority

of research in this field has focused on partitioning genes into

biological pathways or processes [1–8]. The next hurdle in moving

towards the goal of understanding the cell at a systems level is to

determine how these partitioned cellular processes work together

to achieve the cell’s objectives.

With the aim of helping to decipher this higher order

connectivity we propose a new methodology for gleaning patterns

of interaction between biological processes, manifested by a

significantly enriched web of protein-protein interactions, tran-

scriptional coordination or genetic interactions.

At the heart of the methodology described in the paper are the

concept of Linked Processes and the resultant new network of

biological processes, the Process Linkage Network (PLN), whose nodes

correspond to biological process terms in the Gene Ontology (GO)

database. Using this methodology and exploiting various exper-

imental data and annotations, we are able to uncover different

interactive and cooperative relationships between processes. Many

of these linked terms are distant from each other in the GO-

hierarchy, suggesting perhaps a need to revisit the philosophy to

organize biological data as a single taxonomy.

We construct and analyze different types of PLNs based on

physical protein-protein interactions (PPI-PLN), transcriptional co-

expression (expression-PLN) and genetic interactions (GI-PLN). An

analysis of the different PLNs yields intriguing findings: Many of

the processes that were found to be linked in the various networks

are consistent with biological knowledge, while other links are

suggestive of further research to elucidate their very existence and

meaning. The process ‘‘protein ubiquitination’’ (GO:0016567), for

example, is predicted to be PPI-linked to processes related to

protein catabolism while it is expression-linked to processes related

to rRNA-processing and GI-linked mainly to cell cycle related

processes. A biological explanation for these links is offered in the

Results section. More generally, many links connect processes that

appear unrelated to each other when only the GO hierarchy is

considered, even though the connection fits well with current

biological knowledge. This may be attributed in part to the fact
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that the postulated links are generated for a specific organism

whereas the Gene Ontology is meant to be universal, Therefore,

these links enrich and complement the relations between processes

inherent in the GO hierarchy.

Prediction of functional annotation for proteins is another area

in which the knowledge obtained from our new methodology

provides potential benefits. The relations between the GO-processes

derived from the ontology are utilized in the functional prediction

methods, hence it is only natural to utilize in addition the links

between processes found by our method. We show that such a

careful integration of the links into functional prediction methods

increases both the coverage and the accuracy of the methods.

As a further application of PPI-links and expression-links

between processes we show that the probability of two S. cerevisiae

genes to genetically interact is significantly increased once it is

known that the two genes participate in PPI-linked processes or

expression-linked processes.

This multi-scale perspective on biological networks, examining

relationships between the elementary parts as well as ‘‘modules’’ in

the form of biological processes suggests a promising new direction

for developing a deeper insight into biological function.

Results

PPI-Process Linkage Network for the yeast S. cerevisiae
We initiated our study by using protein-protein interaction data

to identify links between processes in S. cerevisiae. Process a is called

PPI-linked to process b if the number of proteins belonging to

process b that interact with proteins belonging to process a is

considerably larger than expected by chance (measured by p-

value). The prediction method and the statistical significance

procedures are described in the Methods section and the

Supplement (Text S1 and Figure S1). A new network, named

Process-Linkage-Network (PLN) is then constructed. In this

directional network, nodes represent process-terms and there is

an edge from node a to node b, if process a is found to be linked to

process b. The PPI-PLN constructed for S. cerevisiae contains

21,097 edges (links) connecting 1,161 processes (nodes), at a p-

value of 0.001. The corresponding q-value (using the FDR

correction) is 0.06. The characteristics of this network are given in

the Supplement (Text S2 and Figure S2).

In order to get a feel for relative locations in the GO hierarchy,

of the terms that a link connects, we employ the semantic similarity

measure proposed by Lin [9]. This similarity measure takes on values

between 0 and 1 (see Methods section), with the similarity between

two terms being 0 if their only common ancestor in the GO-hierarchy

is the hierarchy root term: ‘‘biological process’’ (GO:0008150).

Many of the predicted pairs of PPI-linked processes fit well with

extant knowledge of cellular function. Some of these pairs link

processes that are very similar biologically, in spite of their having

very little semantic similarity, meaning that they are distant from

each other in the GO structure.

Consider the link between the processes ‘‘response to DNA

damage stimulus’’ (GO:0006974) and ‘‘chromatin modification’’

(GO:0016568), as one example. This link reflects the fact that

chromatin and histone modification is utilized in the DNA damage

response pathway [10]. However, the common ancestor of these

two term processes is the hierarchy root term, therefore their

semantic similarity is 0.

Fifteen additional examples of PPI-linked processes are given in

Table 1. Many of these linked terms are not similar semantically,

although the link between them makes perfect sense biologically.

Some of the other PPI-links are less intuitive. For example, the

PPI-link of ‘‘main pathways of carbohydrate metabolism’’

(GO:0006092) to the process ‘‘response to stress’’ (GO:0006950)

(semantic similarity 0). This link is of particular interest, since it

was recently reported that upon oxidative stress the regulator Stb5

shunts carbohydrate metabolism from glycolysis to the pentose

phosphate pathway [11]. Interestingly, Stb5 is currently not

annotated to ‘‘response to stress’’ or to ‘‘main pathways of

carbohydrate metabolism’’ and therefore it took no part in the

prediction of this link. Figure 1 presents the proteins that

participate in one of these two processes and interact with each

other. Additional less intuitive links are given in the next section.

Some links clearly enrich the universal GO structure with links

that are unique to the organism at hand. For example, a link

between ‘‘hyperosmotic response’’ (GO:0006972) and ‘‘regulation

of MAPK activity’’ (GO:0043405) (shown in details in the

Supplement: Text S1 and Figure S1) appears only in the yeast

PPI-PLN and not in the PPI-PLNs we constructed for other

organisms. Indeed, utilizing the MAPK cascade to regulate the

response to hyperosmotic shock is not a universal mechanism, but

a known one for the S. cerevisiae.

All linked processes are accessible via our site: http://www.cs.

bgu.ac.il/̃dotna/ProcssLinkageNetworks.

Comparison of PPI-linkage, expression-linkage and GI-
linkage of processes in the yeast Saccharomyces
cerevisiae

In order to gain a broader perspective on linked processes we

constructed two additional linkage-networks. The first was an

expression-PLN, derived from a transcriptional correlation

network assembled using expression levels of the yeast genes

measured along a cell-cycle [12]. The transcriptional correlation

network contains an edge connecting two genes if their expression

profiles are highly correlated (see Methods section). The second

was a GI-PLN, based on genetic-interaction data. Two genes are

called genetically interacting if their mutations have a combined

effect not exhibited by either mutation alone (see Methods section).

A total of 545 processes appear in all three networks. The

intersection of the three networks (the number of common edges)

is many times larger than the size expected at random (see

Methods section and Supplement: Text S3 and Figure S3),

indicating that ‘‘linked processes’’ tend to physically interact, be

co-expressed and genetically interact with each other all at once.

The section on GI-prediction shows how this significant co-

occurrence of links can be used in the prediction of new genetic

interactions.

Table 1 presents examples of links that occur in at least two

PLNs, some of which carry an element of surprise. One of these is

the link between ‘‘bud site selection’’ (GO:0000282) and

‘‘ribosomal large subunit biogenesis ’’ (GO:0042273), and the link

between ‘‘nuclear mRNA splicing via U2-type spliceosome’’

(GO:0006374) and ‘‘ribosome biogenesis’’ (GO:0007046). These

links are predicted in both the PPI-PLN and the expression-PLN.

The semantic similarities between these linked processes are 0.27

and 0.07, respectively. Finally, there are a considerable number of

processes for which the links to other processes vary with the

underlying input graph, indicating that the different linkage

networks provide non-redundant information.

One example of the different links can be found for the process

‘‘protein ubiquitination’’ (GO:0016567). This process is PPI-linked

mainly to processes related to protein catabolism, while it is

expression-linked mainly to processes related to rRNA-processing,

and GI-linked mainly to cell cycle related processes. Given the role

of ubiquitination in protein degradation, it is reasonable that

proteins participating in the ubiquitination process will physically

interact with proteins participating in the degradation processes

PLNs
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and the regulation of this degradation. There are multiple lines of

evidence explaining the expression-linkage between protein-

ubiquitination and rRNA processing. At the highest level of

resolution, transcription, translation and degradation are processes

that are expected to be correlated in cell cycle gene expression

data. At the more specific level the main ribosomal protein, S27a is

synthesized as a C-terminal extension of ubiquitin. The synthesis

of ribosomal proteins as extensions of ubiquitin promotes their

incorporation into nascent ribosomes by a transient metabolic

stabilization and is required for efficient ribosome biogenesis [13].

Moreover, it has recently been shown that complexes associated

with pre-rRNA processing factors are ubiquitinated [14].

Although obtained from different underlying input graphs, all

three networks show very similar characteristics in terms of the

semantic similarities between the linked processes. Figure 2 shows

the distribution of these links as a function of the semantic

similarity between the linked processes. In all three networks more

than half of the links connect processes that are very distant from

each other in the ontology (semantic similarity below 0.1). The

reason for that is that our definition of a link specifically excludes

the case of a trivial link that can be deduced directly from the

ontology, or from the fact that genes have multiple annotations.

We conclude this section with the observation that many of the

genetically interacting gene pairs participate in PPI-linked

processes. The chance for a pair of S. cerevisiae genes with known

biological process to participate in specific processes that are PPI-

linked is 24% (we refer to a process as specific when at most 200 of

the S. cerevisiae annotated genes participate in it). This probability

increases to 59%, once it is known that the two genes were found

to genetically interact with each other.

Improved functional prediction using linked processes
Functional annotation of currently unannotated proteins is a

significant problem, since 35–55% of all newly sequenced genes

have no current functional assignment. When a gene without

known function is associated with some genes that have a function

in common, then it is natural to hypothesize that the same

function can be attributed to that gene. This principle is often

referred to as ‘‘guilt by association’’. Two of the most popular

associations used for functional prediction, are PPI and transcrip-

tional co-expression. Many algorithms based on PPI-data or

expression-data have been proposed in the past few years [15–21].

Typically, when the function of a protein G1 is to be predicted, the

algorithm takes into account each protein G2 which was judged to

have something in common with G1 (e.g. it interacts with G1, or

has a similar expression profile). If G2 is known to participate in

process t1, then the probability of predicting G1 as annotated to t1

increases. Furthermore, such algorithms utilize the relations

between the terms derived from the Gene Ontology: if process

t1 is a descendant of process t2 in the ontology, then following the

‘‘true path rule’’ G2 is also annotated with t2. Consequently, the

probability of predicting G1 as annotated to t2 is also increased. In

view of the fact that process-links constitute additional relations

between processes, we integrated them into functional prediction

algorithms. We show here that this integration improves the

prediction abilities of the algorithms.

PPI-based application
In order to evaluate the improvement in the prediction abilities

of the standard guilt-by-association method, as described for

protein-protein interaction networks [18,22–23], we compared the

precision and recall obtained by applying this prediction algorithm

to the PfPI network constructed for the D. melanogaster, with and

without the integration of the PPI-linked processes (IMV and MV,

respectively). Both algorithms predict the function of a protein

using the known functions of the proteins that are connected to it

in the input graph. In the original MV algorithm (simple guilt-by-

association), only neighbors that participate in the process under

consideration serve as positive witnesses: for a particular GO term

t, the algorithm sets the state of a protein to +1 if the protein is

annotated with t and to 21 if the protein is annotated with a

different function (in the same GO hierarchy). Our IMV

Table 1. Fifteen examples of PPI-linked processes.

Term a Term b Semantic similarity Linkage types

GO:0006313 DNA transposition GO:0006974 response to DNA damage stimulus 0.00 PPI, GI, Exp

GO:0006270 DNA replication initiation GO:0045814 negative regulation of gene
expression, epigenetic

0.00 PPI, GI

GO:0051318 G1 phase GO:0042255 ribosome assembly 0.07 PPI, Exp

GO:0006374 nuclear mRNA splicing via U2-type spliceosome GO:0007046 ribosome biogenesis 0.07 PPI, Exp

GO:0048311 mitochondrion distribution GO:0007114 cell budding 0.07 PPI, GI

GO:0006944 membrane fusion GO:0006887 exocytosis 0.07 PPI, GI

GO:0006360 transcription from RNA polymerase I promoter GO:0007046 ribosome biogenesis 0.08 PPI, Exp

GO:0006333 chromatin assembly or disassembly GO:0000087 M phase of mitotic cell cycle 0.09 PPI, GI

GO:0006445 regulation of translation GO:0006402 mRNA catabolism 0.20 PPI, GI

GO:0042257 ribosomal subunit assembly GO:0016072 rRNA metabolism 0.24 PPI, GI, Exp

GO:0000282 bud site selection GO:0042273 ribosomal large subunit biogenesis 0.27 PPI, Exp

GO:0030010 establishment of cell polarity GO:0007028 cytoplasm organization and
biogenesis

0.38 PPI, Exp

GO:0000122 negative regulation of transcription from RNA
polymerase II promoter

GO:0000288 mRNA catabolism, deadenylylation-
dependent decay

0.54 PPI, GI

GO:0031497 chromatin assembly GO:0006260 DNA replication 0.62 PPI, GI, Exp

GO:0006269 DNA replication, synthesis of RNA primer GO:0006272 leading strand elongation 0.83 PPI, GI, Exp

doi:10.1371/journal.pone.0005313.t001

PLNs
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algorithm integrates PPI-linked processes into the prediction by

adjoining as positive witnesses also those neighbors that participate

in processes that are PPI-linked to the predicted process: for a

particular GO term t, the state of a protein is set to +1, if the

protein is annotated with t or if the protein is annotated with t’ and

t’ is linked to t. Otherwise the state of the annotated protein is set

to 21. Both algorithms are fully described in the Methods section.

Figure 3 summarizes the cross-validation performances of the

two prediction procedures (see Methods). The activation threshold

was set individually for each term as the value between 0 and 15

that yielded the highest F-measurement (harmonic mean of the

precision and the recall) for that term. The average is taken over

those GO-terms for which at least one True Positive was found in

the cross-validation procedure.

The MV algorithm was able to make predictions for 551

processes. The IMV algorithm made those same predications, of

course, but the integration of process linkage into the prediction

algorithm, generated predictions for 121 additional GO-processes.

When the average precision and average recall of the IMV

method were computed for all 672 predictable terms, they were

higher by 12% and 51% respectively. By taking the average only

over 551 GO-terms, the average precision and average recall

increased by 33% and 69% respectively.

As an example of the heightened predictive power of the IMV

algorithm observed in the cross-validation experiment consider the

gene CG10701 which is known to have the annotation ‘‘larval

development’’ (figure 4). The gene has 63 direct neighbors in the

PPI network, of which 25 currently lack functional annotation, one

is annotated with ‘‘larval development’’ (GO:0002164) and 25 are

annotated with the processes ‘‘cell organization and biogenesis’’

(GO:0016043), ‘‘cell communication’’ (GO:0007154), ‘‘locomoto-

ry behavior’’ (GO:0007626), and ‘‘morphogenesis of an epitheli-

um’’ (GO:0002009). The latter processes are all PPI-linked to the

process ‘‘larval development’’. The remaining 12 neighbor

Figure 1. Proteins that participate in ‘‘main pathways of carbohydrate metabolism’’ (rectangular nodes) and interact with proteins
that participate in ‘‘response to stress’’ (elliptic nodes). The colors of the nodes represent the sub-term annotation: rectangular nodes
correspond to: ‘‘tricarboxylic acid cycle intermediate metabolism’’ (yellow), ‘‘gluconeogenesis’’ (orange) and ‘‘glycolysis’’ (dark brown). Elliptic nodes
correspond to ‘‘response to-’’: ‘‘DNA damage stimulus’’ (bright blue), ‘‘osmotic stress’’ (dark purple), ‘‘heat’’ (dark green), ‘‘starvation’’ (bright green),
‘‘oxidative stress’’ (dark blue). 3 genes are not annotated to any process more specific than ‘‘response to stress’ (pink). A total of 62 proteins are
annotated with ‘‘main pathways of carbohydrate metabolism’’, and interact with 190 proteins that are not annotated with ‘‘main pathways of
carbohydrate metabolism’’. Of the latter, 38 are annotated with ‘‘response to stress’’. The total number of proteins annotated with ‘‘response to
stress’’ is 337. Consequently, the PPI-link between the two processes is predicted (p-value: 1.47e25).
doi:10.1371/journal.pone.0005313.g001

PLNs
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proteins are annotated to different processes. Therefore the MV

algorithm does not predict that gene CG10701 is annotated with

GO:0002164, whereas the IMV algorithm correctly does.

Expression-linked processes can be similarly integrated into

expression-based prediction procedures. The resulting functional

prediction method for S. cerevisiae genes, using cell-cycle expression

data [12], made positive predictions for 75 additional GO-terms,

increasing the number of predictable GO-terms from 242 to 347.

When measuring the average precision, average recall and average

F-measurement over 242 GO-terms, we observed an increase in

the F-measurement (of 7%, from 0.3 to 0.32), a decrease in the

precision (of 10%, from 0.42 to 0.38) and an increase in the recall

(of 47%, from 0.25 to 0.37).

This integration also considerably increases the number of new

predictions. The MV predicts 5,182 functional annotations for

proteins that currently have no annotation, and 5,305 additional

functional annotations for annotated proteins. The IMV predicts

9,246 functional annotations for proteins that currently lack one,

and 18,437 additional functional annotations for proteins that are

currently annotated (see Methods section).

Improving genetic-interaction predictions using linked
processes

PPI-linked processes and expression-linked processes may also

useful for the prediction of genetic-interactions. Wong et al. used

various characteristics of pairs of genes in order to predict genetic

interactions [24]. We have established that the probability of two

S. cerevisiae genes to genetically interact is significantly increased

once it is known that the two genes participate in PPI-linked

processes or expression-linked processes, by 2.4 and 1.9 times,

respectively The probability increases three-fold if it is known that

the processes are both PPI-linked and expression-linked (figure 5).

For this calculation only the known specific process annotations

were considered, in the sense that at most 200 genes are known to

participate in such a process.

Similar results were obtained when predicting genetic interac-

tions in D. melanogaster, based on PPI-linked processes. We

therefore suggest combining this criterion in GI-prediction

algorithms.

Figure 2. A histogram describing the percentage of process
links associated with different semantic similarities. All three
networks, show similar distribution, although the number of links is
different in the three networks (21,097 links in the PPI-PLN, 48,844 links
in the GI-PLN and 4,521 links in the expression-PLN).
doi:10.1371/journal.pone.0005313.g002

Figure 3. A comparison between the average precision,
average recall and average F-measurement obtained by the
MV and the IMV methods (for D. melanogaster). For each term
the activation threshold was chosen to yield the best F-measurement.
The average was taken over those GO-terms for which at least one True
Positive was found. There are 551 such GO-terms when using the MV
method, and 672 such GO-terms using the IMV method.
doi:10.1371/journal.pone.0005313.g003

Figure 4. Prediction of ‘‘larval development’’ annotation for
the gene CG10701. The sub-network of the D. melanogaster PPI-
network containing the genes CG10701, in the middle, and its direct
neighbors. Neighbors that currently lack process annotations are black.
Neighbors that are annotated with the GO-process ‘‘larval develop-
ment’’ are blue. Neighbors that are annotated only with processes
which were not found to have a PPI-link to ‘‘larval development’’ are
red. The other neighbors are annotated with at least one process that
was found to have a PPI-link to the predicted process. Purple: cell
organization and biogenesis; Green: cell communication; Brown:
locomotory behavior; Orange: morphogenesis of an epithelium.
doi:10.1371/journal.pone.0005313.g004

PLNs
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Discussion

Proteins in living cells are hypothesized to function as parts of a

hierarchy of organized modules controlled by biological processes

or pathways. There are significant and important relations

between these modules at different levels of biological organiza-

tion.

At the lowest level biological processes are defined by their parts

that include the proteins and their interacting partners. At a

slightly higher level processes are defined by regulatory modules

that control the condition specific activation of the basic modules.

There are also many examples of crosstalk, the sharing of signal

components between different signaling pathways, and recently an

edge Ontology has been put forth as a platform to examine

crosstalk [25]. This work suggests a broader, multi-scale

perspective for studying biological processes, which considers

relationships between processes in the form of a significantly

enriched web of cross-process physical interactions, co-expression

and genetic interactions generating PPI-linked, expression-linked

and GI-linked process networks respectively. It is natural for these

links to be asymmetric, since processes in the living cell influence

each other in an asymmetric fashion, occurring sequentially, one

regulating another etc. We elaborate on the a-symmetry of the

links in the Supplement (Text S1 and Figure S1). We emphasize

that our method predicts the existence of links, but it does not aim

to explain the underlying causal reason for these links or for their

directionality.

The validity of the predicted interactions between processes is

supported by our finding that the likelihood of a genetic

interaction between proteins is significantly increased if the

proteins belong to two different ‘‘linked processes’’. The fact that

some processes tend to genetically-interact with each other, may

shed light on the evolving field of genetic interactions. Our

findings are complementary to the hypothesis put forth by Kelley

and Ideker [26] that genetic interactions are more likely to bridge

redundant or complementary processes than to combine additively

within the same process. We discuss the difference between the

two approaches, both leading to this conclusion, in the

Supplement (Text S4). Segre et al. looked at genetic interactions

between functional units and found that these interactions tend to

be either exclusively buffering or exclusively aggravating [27].

Linked processes were shown to improve both the coverage and

the accuracy of functional prediction methodologies. Some of the

edges between processes were detected in multiple type networks.

We also found many of the process links to be evolutionarily

conserved across species.

Needless to say, the specific methodology described in this paper

deserves a more thorough investigation and is likely to evolve in

the future. For instance, a natural alternative for our ‘‘enriched

interactions’’ between processes would be a method that measures

which additional processes will increase the accuracy of predicting

some behavioral aspect of a given process. Information theoretical

analysis in ontologies, based on measures such as ‘‘semantic

similarity’’ [9,28–31], is commonly used to establish relationships

between processes. However such an approach documents known

connections between proteins that are involved in two or more

processes. We deliberately excluded these from our analysis since

our study is complementary to ‘‘semantic similarity’’. The edges in

the GO-hierarchy represent ‘‘is a’’ and ‘‘part of’’ relations. They

do not represent other relations, such as complementariness. In

contrast, we link processes based on ‘‘connectivity’’ established

outside the ontology itself. This approach uncovers links that are

not explicit in the hierarchy, and hence are undetectable using

semantic similarity measures. Moreover, the definition of semantic

similarity presupposes a hierarchy structure, whereas linked

processes can be defined for any set of annotation terms (e.g.

KEGG).

The most provocative conclusion one can derive from the

analysis provided in this paper is the need to re-examine our

current approaches for organizing biological knowledge. Ontolo-

gies have been the most prominent principled methodologies to

catalogue biological knowledge. However, drawing upon one of

the lessons learned during the evolution of the WWW, in which a

self-evolving network organization largely replaced the initial

attempts to organize the web as an ontology (e.g. the early days of

Yahoo), we hypothesize that biological ontologies will benefit from

a complementary multi-scale network supported data structures

that provide additional useful connections to organize complex

multi-dimensional data.

For now, the framework of linked processes described in this

paper constitutes a promising new direction towards understand-

ing the higher levels of organization of the cell as a system as well

as improving our ability to predict which proteins are involved in

specific biological processes at the lower levels.

Materials and Methods

Definition of linked processes
The definition of linked biological processes is based on an input

(undirected) graph whose nodes correspond to proteins and whose

edges correspond to some form of functional connection between

the proteins, such as protein-protein interaction, co-expression or

genetic interaction. Such an annotated input graph is often

referred to as a functional linkage graph [18–19]. We consider

only those proteins that are annotated to at least one term. It is the

purpose of a link from process term i to process term j to indicate

that proteins annotated with term i tend to interact with proteins

annotated with j to a greater extent than expected by chance. The

statistical enrichment of j is computed with respect to the set of

proteins that are connected to the proteins annotated with i in the

Figure 5. The probability for two genes with known specific
biological process (S. cerevisiae) to genetically interact. (i)
without prior knowledge; given that the genes participate in (ii) PPI-
linked processes, (iii) expression-linked processes and (iv) processes that
are both PPI-linked and expression-linked. The total number of genetic
interaction that was considered here is 15,228.
doi:10.1371/journal.pone.0005313.g005

PLNs
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input graph, excluding proteins that participate in both i and j.

This exclusion prevents the creation of an abundance of

hypothesized links that could result from proteins that have

multiple annotations and interact with each other, or from

proteins that are connected in the GO-hierarchy in a ‘‘is a’’

relation. However, a process i that is linked to a process j, where i

‘‘is a’’ j, remains of interest since it arises when proteins that are

annotated with process i interact with many proteins that are

annotated with process j but not with process i.

Here is the formal definition:

Let Ni be the set of nodes that are annotated with

process i (and possibly with other processes as well).

Let NBi be the set of nodes that are connected to at least

one node that is annotated with process i but that are not

annotated with process i themselves:

NBi~ v : Su,vT[E, v6 [Ni, u[Nif g

With these definitions, the probability of finding at random,

among the set of proteins that are connected to at least one node

that is annotated with process i but that are not annotated with i

themselves, a number of proteins equal to or bigger than the

number of proteins that were found actually to be annotated with

process j, |NBi>Nj| is

P i,jð Þ~
Xmin Njj j, NBij jf g

x~ NBi\Njj j

Njj j
x

� �
N{ Njj j
NBij j{x

� �
N

NBij j

� �

We will say that process i is linked to process j, if process j is

statistically enriched in NBi, in the sense that P(i,j),threshold. The

threshold was set at 0.001, in order to filter out false positives at a

level that is satisfactory according to a straightforward FDR

calculation and statistically significant according to two random-

ization procedures (see next section).

An illustration of the determination of a link and a discussion of

some of its properties are given in the Supplement (Text S1 and

Figure S1).

PPI-linked processes
We call PPI-linked processes those linked processes obtained when

the input graph is a PPI-network.

We computed 3 sets of PPI-linked terms. Since the linkage of

processes is defined using a network in which all nodes are

annotated, we excluded the unannotated nodes and the induced

edges, to create a fully annotated subnetwork.

The first set resulted from the PPI data for S. cerevisiae, obtained

from the Database of Interacting Proteins (DIP) [32] (version 04

Sep 2005), available online at http://dip.doe-mbi.ucla.edu. This

network currently contains 4,765 nodes (proteins) connected by

15,518 edges (interactions). The proteins in this network were

annotated by mapping biological process annotations for S.

cerevisiae (Revision: 1.1190, 30 Sep 2005) from the GO consortium

[33].

The second set was determined from the PPI data for D.

melanogaster [34–35]. The combined network contains 7,336 nodes

connected by 21,708 edges. The proteins in this network were

annotated by mapping biological process annotations for D.

melanogaster (Revision: 1.60, 23 Jul 2005) from the GO consortium.

The third was based on the PPI data for H. sapiens, obtained

from OPHID [36], available online at http://ophid.utoronto.ca/

ophid/. This network currently contains 9,098 nodes connected by

41,376 edges. The proteins in this network were annotated by

mapping biological process annotations for H. sapiens (Revision:

1.18, 8 Oct 2005) from the GO consortium.

Since the GO annotations form a directed acyclic graph (DAG),

many of the annotations of the gene products are implicit.

Therefore in our analysis every protein annotated with process t,

was annotated also with all processes more general than t (all

ancestors of t in the DAG).

After the exclusion of the unannotated proteins, the S. cerevisiae

network contains 3,429 nodes connected by 12,406 edges (0.1% of

the possible edges), the D. melanogaster network contains 4,187

nodes connected by 7,754 edges (0.044% of the possible edges)

and the H. sapiens network contains 5,601 nodes connected by

21,702 edges (0.07% of the possible edges).

To assess statistical significance we compiled a histogram of

pairs of linked processes, corresponding to two types of random

annotations for the proteins derived from the S. cerevisiae network

scaffold. In the first type of random annotation, named random1,

the original sets of protein annotations were randomly redistributed

among the proteins. This can be viewed equivalently as the

procedure of assigning proteins randomly to the vertices of the

given PPI-network. For the second type of random annotation,

named random2, a new PPI-network was constructed by placing an

edge between two proteins with probability equal to the fraction of

edges in the original graph. The results of the comparisons

between the obtained numbers of edges are summarized in

figure 6. The number of pairs of terms that are associated with p-

value of 0.01–0.1 (above our threshold) is very similar to the

number of pairs that are associated with this p-value in each of the

two random annotation procedures. However, the number of pairs

of linked processes that are associated with very low p-value is

negligible in each of the random annotation procedures, while the

number of pairs of linked processes decreases slowly in the real S.

Figure 6. Log-log plot of the number of pairs of linked
processes, as a function of the p-value of the link (PPI-Links,
S. cerevisiae). Both types of random annotations yield far fewer pairs
with very low p-values than the actual network.
doi:10.1371/journal.pone.0005313.g006
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cerevisiae PPI-linked network. Note that the two random annotation

procedures yield very similar distributions of p-values.

Expression-linked processes
We call a pair of processes expression-linked processes if they are

linked when the input graph is based on expression data. This

graph, often referred to as a relevance network [37], has nodes

representing genes and edges representing co-expression between

genes, in the sense that according to some metric the similarity of

the expression patterns is above some threshold.

To construct the relevance network for S. cerevisiae, we used a

data-set comprising the expression levels of 5595 of the predicted

S. cerevisiae genes, in 42 different stages of the cell-cycle [12],

available online at: http://genome-www.stanford.edu/cellcycle/

data/rawdata. The relevance network contained an edge between

two genes if the absolute Pearson correlation between their

expression profiles is at least 0.85; all singleton nodes were deleted.

Next, the genes in this network were annotated by mapping

biological process annotations for S. cerevisiae (Revision: 1.1190, 30

Sep 2005) from the GO consortium [33]. As before, each gene

product annotated with term t, was also annotated with all terms

that are more general than t, and all unannotated nodes were

deleted, to create a fully annotated sub-network. The resulting

network consists of 997 nodes connected by 4,168 edges (0.42% of

the possible edges).

Genetic interaction data
We call GI-linked processes those linked processes obtained

when the input graph is constructed on the basis of genetic

interactions. A GI-network was constructed for S. cerevisiae. In this

network nodes represent genes and edges represent genetic

interactions.

The list of genetic interactions for S. cerevisiae (dosage growth

defect, dosage lethality, dosage rescue, phenotypic enhancement,

phenotypic suppression, synthetic growth defect, synthetic lethality

and synthetic rescue)., was obtained from BioGRID [38], the

general repository for interaction datasets, (version 2.0.20),

available online at http://www.thebiogrid.org. The biological

process annotations for S. cerevisiae (Revision: 1.1190, 30 Sep 2005)

from the GO consortium were used to annotate the genes.

The resulting network contained 2,904 nodes and 21,942 edges

(0.52% of the possible edges).

Calculating FDR
In some instances of the present analyses, we generate a

multiplicity of hypotheses. We compute the FDR (q-value) as

follows:

Let R denote the number of hypotheses rejected by a

procedure.

Let V denote the number of true null hypotheses

erroneously rejected (type I error).

q denotes V/R when R . 0 and 0 otherwise.

In our context, V is the number of expected false-positive

predicted links between GO-terms (at a given p-value threshold p,

V = p6number of hypotheses) and R is the number of predicted

links at the current p-value threshold.

Of the 21,097 directed edges of the Process Interaction Network

constructed for the S. cerevisiae, 1,347 are expected to be false

discoveries (0.001 p-value61,161 nodes61,160 nodes = 1,347).

Therefore, calculation of the FDR q-value for a p-value of 0.001

yields a q-value of 0.06, or 6% (q-value = 1,347/21,097 = 0.06).

Semantic similarity measurements
We use the measurement suggested by Lin [9].

similaity ti,tj

� �
~

2 � log P tancestorð Þ
log P tið Þzlog P tj

� �

Where P(ti) is the probability of a gene to be annotated with

term ti (namely: the number of genes annotated with ti divided by

the total number of genes). tancestor is the most specific common

ancestor-term of ti and tj (the one with the least number of genes

annotated to it).

This similarity measure has the following desirable properties:

0ƒsimilarity ti,tj

� �
v1 for each ti=tj , and similarity ti,tið Þ~1:

Statistical significance of the intersection between
different sets of linked processes

To determine the statistical significance of the size of the

intersection between three sets of linked process, we computed the

p-value of obtaining an intersection of this size or larger when

three sets of the given sizes are drawn at random.

Functional prediction – simple guilt-by-association
The specific implementation we use relies on the procedure

described in Karaoz et al. where a separate network is constructed

for each GO term19. For a particular GO term t, the algorithm sets

the state of a protein to +1 if the protein is annotated with t and to

21 if the protein is annotated with a different function (in the

same GO hierarchy). Next, the algorithm repeatedly selects an

unannotated protein i, representing a hypothetical protein, and

sets its state si to 21 or +1 using the following activation rule

Si~sgn
X

1ƒjƒni

sj{h

 !
,

where ni is the number of neighbors of protein i, sj is the state of

neighbor j, and h is an ‘‘activation threshold’’. The right hand side

of this equation computes the sum of the states of the neighbors of

node i and sets the state of node i to +1 if the sum is wh, and to

21 otherwise. For that reason, this algorithm is referred to as a

‘‘Majority-Vote algorithm’’. In our implementation the activation

threshold was chosen for each GO-term independently and set at

that value, between 0 and 15, that yielded the best F-measurement

score in cross-validation tests.

Finally, the algorithm assigns the putative annotation t to all

hypothetical proteins whose state was set to +1.

The algorithm is applied only to those GO-terms for which the

cross validation procedure yielded at least one positive prediction.

Functional prediction – Improving the algorithm by
integrating linked processes

Similarly to the original algorithm, a distinct network is

constructed for each GO term. For a particular GO term t, the

state of a protein is set to +1, if the protein is annotated with t or if

the protein is annotated with t’ and t’ is linked to t. Otherwise the

state of the annotated protein is set to 21. Next, the hypothetical

proteins are assigned a state of +1 or 21 in the same way as

before. Finally, the putative annotation t is assigned to each
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hypothetical protein whose state was set to +1 provided at least one

of the neighbors of the hypothetical protein is annotated with t.

The activation threshold was selected for each GO-term

separately, as described for the simple guilt-by-association

procedure. Again, predictions were made only for those GO-

terms for which at least one positive prediction was generated in

the cross-validation test.

Functional prediction – Assessment
The prediction performances of the different procedures were

measured by cross-validation. Separately for each GO-process

term ti, three measurements, precision pi, recall ri and F-

measurement fi were computed. These measurements are based

on counting true positives (TPi), the number of genes correctly

assigned; false positives (FPi), the number of genes incorrectly

assigned; false negatives (FNi) the number of genes incorrectly not

assigned. The precision and recall for term ti are defined as follows:

ri~TPi= TPizFNið Þ, pi~TPi= TPizFPið Þ

F-measurement, the harmonic mean of the precision and the

recall is defined as follows: fi = 2* ri* pi/(ri+pi).

Let T be a set of GO-processes. The overall precision, recall and

F-measurement are then:

P~
1

Tj j
X
ti[T

pi R~
1

Tj j
X
ti[T

ri F~
1

Tj j
X
fi[T

fi
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Text S1 An illustration of link determination

Found at: doi:10.1371/journal.pone.0005313.s001 (0.03 MB

DOC)

Text S2 Degree distribution in the S. cerevisiae PPI-PLN

Found at: doi:10.1371/journal.pone.0005313.s002 (0.03 MB

DOC)

Text S3 Comparison of PPI-linkage, expression-linkage and GI-

linkage of processes in the yeast Saccharomyces cerevisiae.

Found at: doi:10.1371/journal.pone.0005313.s003 (0.03 MB

DOC)

Text S4 Genetic interactions are more likely to bridge

redundant or complementary processes: The differences between

the approaches.

Found at: doi:10.1371/journal.pone.0005313.s004 (0.02 MB

DOC)

Figure S1 A) The yeast PPI-subnetwork consisting of only those

genes that are annotated with ‘‘regulation of MAPK activity’’

(yellow nodes) or ‘‘hyperosmotic response’’ (black nodes), and their

neighbors. B,C) In order to test whether there is an edge linking

term t1 to term t2, one needs to consider the genes that are

annotated with t1 (green nodes), those of their neighbors that are

not annotated with t1 (blue nodes), the genes that are annotated

with t2 but are not annotated with t1 (red nodes) and the

intersection of the latter two (purple nodes). B) The test for an edge

linking ‘‘hyperosmotic response’’ to ‘‘regulation of MAPK

activity’’ is positive. C) The test for an edge linking ‘‘regulation

of MAPK activity’’ to ‘‘hyperosmotic response’’ is negative.

Found at: doi:10.1371/journal.pone.0005313.s005 (0.43 MB TIF)

Figure S2 Complementary Cumulative Distribution of the in-

and out-degrees in the PLN obtained for yeast. A) In-degree; B)

Out-degree.

Found at: doi:10.1371/journal.pone.0005313.s006 (0.17 MB TIF)

Figure S3 Venn diagram representation of the sizes of the

intersections between the sets of pairs of PPI-linked, expression-

linked and GI-linked processes. Each set contains only linkages

between processes that appear in all three types of linkage

networks.

Found at: doi:10.1371/journal.pone.0005313.s007 (0.14 MB TIF)
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