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Abstract

Although the human genome project has been completed for some time, the issue of the number of transcribed genes with
identifiable biological functions remains unresolved. We used zebrafish as a model organism to study the functions of Ka/
Ks-predicted novel human exons, which were identified from a comparative evolutionary genomics analysis. In this study,
a novel gene, designated as puf-A, was cloned and functionally characterized, and its homologs in zebrafish, mouse, and
human were identified as one of the three homolog clusters which were consisted of 14 related proteins with Puf repeats.
Computer modeling of human Puf-A structure and a pull-down assay for interactions with RNA targets predicted that it was
a RNA-binding protein. Specifically, Puf-A contained a special six Puf-repeat domain, which constituted a unique superhelix
half doughnut-shaped Puf domain with a topology similar to, but different from the conventional eight-repeat Pumilio
domain. Puf-A transcripts were uniformly distributed in early embryos, but became restricted primarily to eyes and ovaries at
a later stage of development. In mice, puf-A expression was detected primarily in retinal ganglion and pigmented cells.
Knockdown of puf-A in zebrafish embryos resulted in microphthalmia, a small head, and abnormal primordial germ-cell
(PGC) migration. The latter was confirmed by microinjecting into embryos puf-A siRNA containing nanos 39 UTR that
expressed in PGC only. The importance of Puf-A in the maturation of germline stem cells was also implicated by its unique
expression in the most primitive follicles (stage I) in adult ovaries, followed by a sharp decline of expression in later stages of
folliculogenesis. Taken together, our study shows that puf-A plays an important role not only in eye development, but also
in PGC migration and the specification of germ cell lineage. These studies represent an exemplary implementation of a
unique platform to uncover unknown function(s) of human genes and their roles in development regulation.
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Introduction

Comparing human and mouse/rat genomic sequences, Nekru-

tenko et al. predicted new human protein-coding exons [1]. This

approach takes advantage of the fact that in coding regions,

synonymous substitutions occur much more frequently than non-

synonymous ones. They predicted 13,711 novel exons that were

present in both the rodent and human genomes, but the predicted

transcripts remained to be validated and their biological functions

remained to be demonstrated [2,3]. When we started this study,

4,768 of the originally predicted new exons were already

recognized as genes or pseudogenes, so we used the remaining

8,943 potential novel human exons to search for zebrafish

orthologs in a zebrafish database (http://www.sanger.ac.uk/

Projects/D_rerio/). From this in silico analysis, we found 308

potential genes that had yet no defined biological function

(unpublished data). In this study, we chose a novel puf-A gene

from the 308 potential genes to characterize its function in

zebrafish, mouse, and human.

Zebrafish (Danio rerio) has become a favorite vertebrate model

for genetic and developmental studies due to its attributes such as a

small body size, rapid development, frequent reproductive cycles

(1,2 weeks), short maturation period (3 months), large-scale

genetic screening, and easy maintenance [4]. In addition, zebrafish

mutations are usually faithful phenocopies of many human

disorders [5].

The Puf family is an evolutionarily conserved protein family

named after Pumilio (Drosophila) and FBF (Fem-3 mRNA-binding

Factor, Caenorhabditis elegans). Puf proteins have been found in

various organisms, including yeast, C. elegans, Drosophila, zebrafish,

Xenopus, mouse, and human, but their function is largely unclear.

The first Puf protein, Pumilio, identified from Drosophila, was

known to repress translation of hunchback mRNA in the posterior

half of the Drosophila embryo, thereby permitting abdominal

development [6]. In addition to its role in posterior patterning of

embryos, Drosophila Pumilio functions in the development of

germline stem cells [7]. Puf family members are usually identified

by the presence of eight tandem Puf repeats of ,35–39 amino
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acids [8] and the repeat binds to specific sequences in the 39

untranslated region (UTR) of a target mRNA.

In this study, we conducted various experiments to show that a

novel puf-A gene is involved in eye and primordial germ-cell (PGC)

development. Using the SMART server, we identified 14 puf-A-

related proteins in human, mouse and zebrafish. We studied their

phylogenetic relationships of these 14 proteins. Moreover, a

computer modeling of human Puf-A predicted that it is a unique

RNA-binding protein composed of six Puf repeats.

Results

Expression and cDNA cloning of the novel puf-A gene in
zebrafish

In zebrafish, the puf-A gene was found to express at a high level

by RT-PCR in the eyes and ovaries, and to a lesser degree in the

brain, head kidney (pronephros), and testes (Fig. 1A). Moreover,

this gene was found to express at all stages of zebrafish embryo

development (Fig. 1B). In situ hybridization confirmed that puf-A

was ubiquitously expressed in zebrafish embryos from fertilization

to early somitogenesis, but at a later stage of embryo development,

its expression was restricted primarily to the eyes and optic tectum

(Fig. 1C).

In addition, in adult zebrafish ovaries, puf-A was found to be

prominently expressed in early immature follicles that were small

in size and nested with other developing oocytes (Fig. 1D). In

general, the process of folliculogenesis could be divided into five

stages, beginning with the early germline stage I (primary growth)

cells that appeared in clusters, through the pre-vitellogenic stage II

and the vitellogenic stage III, and ending with the mature or

ovulated stages IV and V [9,10]. As shown in Fig. 1D, strong puf-A

mRNA expression was noted in primitive stage I ovarian follicles

that appeared spherical in shape with diameter less than 100 mm,

nesting with other developing . But this expression declined

sharply and became negligible in subsequent stages of oocyte

development (e.g. stages II and III). The results of in situ

hybridization of ovary cross-sections confirmed that puf-A mRNA

expressed prominently in the cytoplasm of stage I follicles which

appeared in clusters. In contrast, stage II and III ovarian follicles

showed no discernible expression of the puf-A transcript (Fig. 1D).

It seems that the expression of puf-A occurs when the first wave of

follicles begin their process of folliculogenesis.

Figure 1. Expression of puf-A in zebrafish using RT-PCR and in situ hybridization. (A) Gene expression in adult tissues of zebrafish was
analyzed by RT-PCR and electrophoresis with puf-A primers (upper panel) or actin primers (lower panel, as the internal control). Notation: B, brain; E,
eye; G, gill; H, heart; I, intestine; K, head kidney; L, liver; O, ovary; T, testis; N, negative control. (B) The puf-A gene was expressed in various stages of
zebrafish embryo. C, cleavage; B, blastula; 1, 1 day post-fertilization (dpf); 2, 2 dpf; 5, 5 dpf; N, negative control. (C) Whole-mount in situ hybridization
with puf-A antisense riboprobe on zebrafish embryo. The puf-A expression at 10 h post-fertilization (hpf) (tailbud stage) and 24 hpf (25-somite stage)
with lateral overview. The black arrow points to the eye and the red arrow to the optic tectum. (D) Whole-mount and cryo-section in situ hybridization
with a puf-A antisense riboprobe in adult ovaries. In adult ovaries, a staging series of oocyte development was characterized by the diameter of
various oocytes [9,10]. Stage I, primary growth follicles (,0.1 mm); stage II, previtellogenic (0.1–0.30 mm); and stage III, vitellogenic (.0.30 mm).
doi:10.1371/journal.pone.0004980.g001
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A full-length puf-A cDNA was cloned from RNA of zebrafish

ovaries (Fig. S1). It is 2,053 bp in length and contains an open

reading frame of 629 amino acids (Fig. S1). Further blasting in the

NCBI and Ensembl websites demonstrated that the BAC clone

#CH211-241o7 contained the full-length puf-A gene [EN-

SDARG00000063356 (Ensembl 44)] with 18 exons on a region

of ,18.8 kb in chromosome 10: 5,373, 938 to 5,391,448 (Fig. 2A).

The cDNA/protein sequence of zebrafish Puf-A corresponds to

protein LOC394185 (zgc: 66377) in the NCBI with gene ID of

394185 (accession # of protein sequences, XP_695580.2, Table 1)

with an exception of five amino acid residues. At residues

558,562, the sequence is ‘‘Glu-Arg-Phe-Ser-Arg’’ in Puf-A from

our study (Fig. S1), but ‘‘Gly-Lys-Tyr-Lys-Met’’ in LOC394185

(Table 1); and this discrepancy arises from a difference in lengths

of exons 16 and 17.

Phylogenetic relationships of Puf-A-related proteins
A search for Puf-A-related sequence fragments in the databases

suggested that the Puf-A in zebrafish is a member of the Puf

family. Each Puf protein contains a Puf domain that consists of

several tandem Puf repeats of 36 amino acids [11,12]; the Puf

domain has also been known as the pumilio homolog domain [12].

In total, we identified 14 Puf-related proteins of zebrafish, mouse,

and human using the SMART server (Table 1 and Fig. 2B). A

phylogenetic tree constructed using the PHYLIP package suggests

that these 14 Puf proteins can be grouped into three clusters: (1)

the Puf-A homolog cluster, (2) the C14orf21 homolog cluster, and

(3) the PUM1/PUM2 homolog cluster (Fig. 2B).

Sequence similarities among these Puf proteins in each cluster

were analyzed and categorized (Fig. 2B). In this study, the human

and mouse Puf-A homologs, i.e., KIAA0020 and D19Bwg1357e in

Table 1, are designated, respectively, as the human and murine

Puf-A, respectively. BLASTP analysis revealed that human Puf-A

shared 89% identity in the aligned 647 amino acid residues with

murine Puf-A and 66% identity with zebrafish Puf-A in the aligned

621 residues. However, compared with human related proteins in

the other two categories, human Puf-A and human C14orf21

showed no significant similarity and human Puf-A and Pumilio

(PUM1) shared only 21% identity in the aligned 241 amino acid

residues (Fig. 2B and Table 1). Similarly, human Puf-A and

human PUM2 shared only 20% identity in the aligned 240

residues. Thus, members of the Puf-A cluster are similar to each

other, but distinct from the members of the other two clusters.

Based on the results of the phylogenetic and sequence similarity

analyses, Puf-A homologs could be grouped into a single cluster

(Fig. 2B).

On the other hand, within the cluster of C14orf21 homologs

(Fig. 2B), human C14orf21 showed 84% identity with murine

2610027L16Rik in the aligned 581 residues and 34% identity with

zebrafish LOC564287 in the aligned 619 residues. However,

human C14orf21 showed no significant similarity with human

Pumilio (PUM1), and human C14orf21 and human PUM2 shared

only 23% identity in the aligned 140 amino acid residues. Thus,

C14orf21 homologs could be grouped into a single cluster (Fig. 2B).

As to the cluster of PUM1/PUM2 homologs (Fig. 2B), human

Pumilio (PUM1) and PUM2 shared 75% identity in the aligned

1,076 residues and human and mouse Pumilio (PUM1) shared

98% identity in the aligned 1,189 residues. In zebrafish, there were

four Puf proteins in this cluster (Fig. 2B and Table 1) and their

similarity analyses were described in Data S1. The results

described above support the clustering of the homologs of

PUM1 and PUM2 into one group in our phylogenetic tree

analysis (Fig. 2B). The multiple sequence alignments of these 14

Puf proteins were shown in Fig. S2.

Computer modeling of human Puf-A
Based on the crystal 3D structure of the human Pumilio domain

with 1.9 A resolution [13], we conducted a computer modeling of

the Puf-domain for human Puf-A (KIAA0020) using its 336 amino

acid residues from Asp-151 to Ile-486 (Fig. 2C). The quality of this

modeling evaluated by the VADAR server showed that 100% of

the residues were in the allowed regions of the Ramachandran

diagram [14].

The computer model of human Puf-A predicted its structure to

be composed of six Puf repeats, each of which constitutes a unique

superhelix, half doughnut-shaped Puf domain (Fig. 2C). The six

Puf repeats are distributed in two separate regions from Leu-165

to Glu-273, and from Ala-350 to Glu-460 (R1 to 3 and R4 to 6,

respectively; shown in blue in Fig. 2C). These six repeats are

structurally aligned with corresponding repeats of the template

used in this computer modeling. Moreover, each repeat has three

helices and the second helix, which is located at the inner, concave

face of the model, and interacts with RNA (yellow in Fig. 2C),

exhibiting characteristic features of a conventional Puf repeat [13].

On the other hand, the sequence from Glu-274 to Glu-349,

which represents the middle region of this model (RL1 and RL2;

shown in magenta in Fig. 2C), contains no typical Puf repeats

identifiable by the SMART server. Detailed analysis of this model

showed that this middle region possesses a length of segment close

to two tandem Puf repeats (76 residues) and each of these ‘‘repeat-

like’’ structures exhibits features of three-helix similar to a typical

Puf repeat. It is concluded that this middle region mimics two Puf

repeats structurally. Thus, the overall structure of Puf-A features a

six-Puf-repeat domain with an intermediate region of two repeat-

like segments so that it displays a topology similar to the

conventional eight-repeat Pumilio homolog domain [13]. Further-

more, this computer model of human Puf-A predicts that it is a

new RNA-binding protein, distinctly different from the Pumilio

domain.

In addition, the values of electrostatic potentials on the

molecular surface of this model of human Puf-A were calculated.

As shown in Fig. 2D, an asymmetric distribution of electrostatic

potentials was noted for the Puf domain of Puf-A: its concave

surface has predominately positive basic electrostatic potentials

(shown in blue; left panel of Fig. 2D), presumably for RNA

binding, while the convex surface in this model is acidic (red) with

partly hydrophobic (white) areas (right panel). Similar properties of

the electrostatic surface of this model were also observed in the

crystal structure of Pumilio [13].

Eye defects in the MO knockdown of the puf-A gene
To examine the biological function of the puf-A gene, zebrafish

embryos at the 1,4 cell stage were injected with one of the two

puf-A-MO antisense oligonucleotides, MO1 and MO2 (see

‘‘Materials and Methods’’ and Fig. S1 for locations of target). As

illustrated in Fig 3A, MO1 morphants clearly showed small eyes, a

small head, and brain edema at 1 and 2 dpf. Relative to the eye

size of WT fish, there were significant reductions in eye size among

the morphants in a dose-responsive manner (,40% reduction with

5 ng puf-A-MO1; Fig. 3B). The puf-A-MO2 gave results similar to

those of the puf-A-MO1.

In order to further demonstrate the efficiency of MO1 and

MO2, in vitro transcription/translation of puf-A was performed in

the presence or absence of 0,200 nM MOs. It was shown that

these MOs blocked puf-A translation in vitro, especially at high

concentration (Fig. 3C). The specificity was further confirmed by

the experiment in which the addition of capped puf-A RNA

partially but significantly rescued the phenotype of eye size in MO-

induced morphants in vivo (p value,0.00007; Fig. 3D).

Puf-A:Development of Eyes/PGCs
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Figure 2. Genetic map of the puf-A locus of zebrafish, the unrooted phylogenetic tree, computer modeling of human Puf-A and its
electrostatic surface representation. (A) Genetic map of the zebrafish puf-A locus and the exon/intron structure of the puf-A transcript were
constructed through blasting the puf-A cDNA sequence to the genome databases of the NCBI and Ensembl websites. The puf-A (zgc: 66377) is
ENSDARG00000063356 in chromosome 10: 5,373,938 to 5,391,448 (Ensembl 44). (B) The unrooted phylogenetic tree of human (Hs), mouse (Mm) and
zebrafish (Dr) Puf proteins. Phylogenetic analysis was performed using the PHYLIP 3.67 package as described in Method. These Puf proteins could be
grouped into three clusters: (1) the Puf-A cluster, (2) the C14orf21 cluster, and (3) the PUM1/PUM2 homolog cluster. (C) Modeling the Puf domain of
human Puf-A. This model, built by MODELLER 9v3 as described in Methods, represents the corresponding Puf domain for binding with RNA (yellow).
This Puf domain of Puf-A contains six Puf repeats distributed in two regions (R1 to 3 and R4 to 6; blue), and each region contains three repeats. The
magenta color refers to the middle region of the Puf domain. The N and C terminal ends of this Puf domain are indicated. (D) Electrostatic surface
representation of the Puf domain. The electrostatic potentials were calculated by DELPHI as described. The left panel shows the areas on the concave
surface with positive potentials (blue) which interacts with RNA (yellow). The right panel represents the convex surface, where the negative potentials
are shown mainly as the acidic (red) and a few hydrophobic (white) areas.
doi:10.1371/journal.pone.0004980.g002

Puf-A:Development of Eyes/PGCs

PLoS ONE | www.plosone.org 4 March 2009 | Volume 4 | Issue 3 | e4980



Furthermore, in order to circumvent the potential issue of ‘‘off-

target effects’’of MOs, not only a wide range of MOs (1 to 10 ng/

embryos) was used for gene knockdown experiments, but also a 5 bp

mismatch puf-A (5mmMO1) was employed as a negative control for

MO1. Both in vitro and in vivo analyses were performed in Fig. S3 to

examine the specificity for MOs. First, the addition of various

amounts (0, 2, and 200 nM) of the puf-A-5mmMO1 did not affect

the transcription/translation reactions for puf-A in vitro. Secondly, for

in vivo experiment, the puf-A 59-UTR and its partial coding region

were added onto pEYFP-N1 plasmid which contained CMV

promoter and YFP gene to generate the ppuf-A-YFP plasmid. In vivo,

approximately 31.2% of embryos injected with this ppuf-A-YFP

exhibited fluorescence at 100 pg/embryo dosage (Fig. S3B).

However, co-injection with MO1 totally suppressed the YFP

expression; in contrast, the mismatch control, 5mmMO1, did not

affect the YFP expression (Fig. S3B). It is further noted that the

phenotypes of morphants injected with 5mmMO1 were also normal

at 3dpf, similar to WT zebrafish (Fig. S3C).

Furthermore, an independent approach using various siRNAs

was performed in order to validate the MO data. The puf-A siRNA

(i.e. without nanos 39-UTR) was shown to suppress the zebrafish

puf-A expression (Fig. S4) and generate a reduction in the eye size

of zebrafish embryos after microinjection (i.e. compared with eye

size when injected with control siRNA 2 dpf in Fig. 4B).

Therefore, both MOs and siRNA knockdown analyses suggested

that these genetic tools specifically knocked down the expression of

puf-A leading to eye defects in zebrafish.

Several in situ markers, such as emx3 (telencephalon marker),

krcx20 (rhombomere 3/5 marker), pax6a (forebrain, retina,

hindbrain, spinal cord marker), mab21l1 (retina, optic tectum

and hindbrain marker), mab21l2 (retina, optic tectum and

hindbrain marker), rx3 (retina marker), six3b (retina/diencepha-

lon/midbrain marker) etc were used to characterize the eye defects

during embryo development. As shown in Fig. S5A, in situ

hybridization showed that most brain regions were normal at 1dpf,

but some regions (like optic tectum and eyes) developed abnormal

defects that occurred at 2dpf. For example, six3b expressed only in

ganglion cell layer of eye tissues in wild type 2dpf; but this gene

expressed all over in eye tissue in morphants (Fig. S5A).

Furthermore, expression of another marker, mab21l1, was found

in retina, optic tectum and hindbrain. In contrast, in morphants,

no mab21ll expression was found in the entire eye tissue or optic

tectum (Fig. S5A). Furthermore, as shown in Fig. S5B, puf-A

knockdown promoted apoptosis in eye tissues at 1dpf as compared

to control. It seemed that cell death occurred prior to retinal

differentiation which occurred approximately 28–30 hpf [15].

Moreover, the other retinal differentiation markers (ath5/atoh7)

were not expressed in morphants as late as 36 hpf in in situ

experiments (pictures not shown), suggesting that the puf-A

knockdown led to specific differentiation defects in eyes, not

simply delayed development.

Subsequently, at the development stages of 3 and 5 dpf, eye

sections of WT fish and morphants were further examined

(Fig. 3E). In WT zebrafish, the retina comprises several layers of

differentiated cells including retinal ganglion cells, the inner

plexiform layer, amacrine cells, bipolars, outer plexiform layer,

rods and cones, and pigmented cells. In contrast, morphants with

puf-A gene knockdown exhibited features of an undifferentiated

retina with loss of detailed architecture and a significant reduction

in eye size. Structures such as the rod and cone layers were not

concentrically organized and retinal ganglion cells and plexiform

layers were not readily discernible (Fig. 3E).

Defects of primordial germ-cell development in the MO
and siRNA knockdown

During embryo development, primordial germ cells (PGC) follow a

unique developmental path that is characterized by specification and

migration of these cells to colonize the gonads where they differentiate

into gametes. To investigate whether puf-A is involved in PGC

development, the puf-A MO was used to knockdown its expression in

Table 1. Information on the putative Puf proteins in humans, mice, and zebrafish.

Species Puf proteins Gene ID a
Gene
location a

Accession #s of protein
sequences

Length (amino
acids)

Number of Puf
repeats d

Human Puf-A (KIAA0020) 9933 9p24.2 Q15397 b 648 6

C14orf21 161424 14q12 Q86U38 b 636 7

Pumilio (PUM1) 9698 1p35.2 Q14671 b 1,186 8

PUM2 23369 2p22-p21 Q8TB72 b 1,066 8

Mouse Puf-A (D19Bwg1357e) 52874 19 Q8BKS9 b 647 6

2610027L16Rik 67842 14 Q8BMC4 b 636 5

Pumilio (PUM1) 80912 4 Q80U78 b 1,189 8

PUM2 80913 12 Q80U58 b 1,066 8

Zebrafish Puf-A e 394185 10 XP_695580.2 c 629 6

LOC564287 564287 3 XP_692728.2 c 604 5

LOC568777 568777 16 XP_697221.2 c 457 4

LOC567494 567494 13 NP_001096040.1 c 1,106 6

LOC569578 569578 20 XP_698067.2 c 164 3

LOC798171 798171 18 XP_001338629.1 c 182 3

aAnnotations described in the Entrez Gene database at NCBI.
bAccession number used in Swiss-Prot.
cAccession number used in the RefSeq database.
dThe Puf repeats were identified by the SMART server.
eAccording to the annotations in Entrez Gene database, the old gene symbol for puf-A is ‘‘zgc:66377’’ and the name for protein is ‘‘hypothetical protein LOC394185’’.
doi:10.1371/journal.pone.0004980.t001
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Figure 3. The phenotypes of puf-A morphants in the zebrafish. (A) Zebrafish embryos at the 1,4-cell stage were treated with 5 ng puf-A
morpholino (MO1) by microinjection. The phenotypes of the wild-type and morphants are shown in lateral view at 1, 2, 3, and 5 days post-fertilization
(dpf) after treatment. Black arrows point to the eyes. (B) Various amounts of MO1 were microinjected into zebrafish embryos, and the eye size was
measured at 1 or 2 dpf and compared to the eye size of control fish. The ‘‘relative eye size’’ was defined by the value of eye size in MOs relative to the
average size of eyes in normal embryos of WT fish. The average value of eye size in normal embryos at 1dpf was considered as 1. Error bars represent
the standard error of the mean. ** refer to p,0.01 Student’s t-test). (C) 0, 2, 200 nM puf-A-MO1 or puf-A-MO2 were added to the puf-A generated
through in vitro transcription/translation reactions. One microliter of the reaction mixture was separated on 10% SDS/PAGE, blotted, incubated with
streptavidin-AP, and developed with NBT-BCIP reagents. (D) The 5 ng control- or puf-A-MO1 was used for microinjection. In addition, 200 pg of
capped puf-A RNA was co-injected with puf-A-MO1 to check the specificity of MO knockdown. The ‘‘relative eye size’’ was defined as above. The eye
size was measured at 2 dpf. Control-MO, n = 20 embryos; puf-A-MO1, n = 59; puf-A-MO1+ capped RNA, n = 65. The p value in Student’s t-test for the
difference between puf-A-MO and puf-A-MO+mRNA was ,0.00007. (E) Transverse histological sections of zebrafish wild-type and morphant (puf-A-
MO1) eyes stained with hematoxylin and eosin at 3 and 5 dpf.
doi:10.1371/journal.pone.0004980.g003
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the early stage of zebrafish embryos. In situ hybridization with

zebrafish PGC-specific vasa RNA was employed as a marker [7,16] to

monitor PGCs migration (Fig. 4A). It has been reported that zebrafish

PGC movement began with four random clusters before 6 hpf to

form two clusters that would move to either side of embryo midline by

the end of the first day of development [17]. As shown in Fig. 4 A,

PGCs appeared in gonad regions as two clusters in WT embryos at

the 16,20 hpf stage. But the morphants exhibited prominent

abnormalities at the same stage of development (Fig. 4 A) with either

a reduction in PGC numbers (50.4%) or abnormal patterns of

migration (34.4%) indicating the failure of PGC navigation towards

their destined sites.

Since MO knockdown could affect various tissues in embryos, it

remained unclear whether the abnormal patterns of PGC

migrations were caused directly by specific knockdown of puf-A

expression in PGCs. It was reported that the 39 UTR of nanos plays

critical roles in RNA stabilization and could assure specific

expression of reporter gene in PGC regions [18,19]. Herein, a puf-

A siRNA prepared with nanos 39 UTR was microinjected into

embryos. These embryos showed normal size head and eyes up to

2 dpf but they already displayed a marked reduction in PGC

numbers (80.9%) and abnormal patterns of migration (11.3%) at

16 hpf of development; (Fig. 4B). In contrast, the puf-A siRNA

(without nanos 39 UTR) had the similar phenotypes as MO

morphants with small eyes, small head, and brain edema in

addition to abnormal PGC migration and reduction in PGC

number (Fig. 4B). Furthermore, the control siRNA with nanos 39-

UTR exhibited normal PGC migration and normal eye size

development (Fig. 4B). Thus, specific knockdown of puf-A in PGCs

led to abnormal PGC development in zebrafish embryo.

Figure 4. The puf-A gene plays a role in the PGC development in zebrafish embryonic development. (A) The vasa antisense riboprobe
was used in whole-mount in situ hybridization as a marker to monitor primordial germ-cell (PGC) development in zebrafish. The vasa expression in
wild-type (WT) and morphants (MO1 at 5 ng/embryo) at 16 and 20 hpf embryos in dorsal view. Anterior is to the left for 16 hpf and left bottom for 20
hpf. The morphants exhibited prominent abnormalities with either a reduction in PGC numbers (50.4%, n = 125 embryos) or abnormal patterns of
migration (34.4%, n = 125) indicating the failure of PGC navigation towards their destined sites. (B) Upper: the construction of puf-A siRNA with nanos
39 UTR, vasa expression and normal eye size in embryos 2 dpf after injection. The embryos displayed a marked reduction in PGC numbers (80.9%,
n = 115 embryos) and abnormal patterns of migration (11.3%, n = 115 embryos). Middle: construction of puf-A siRNA without nanos 39 UTR, vasa
expression and small eye size in 2dpf embryos. Bottom: construction of control siRNA with nanos 39 UTR, vasa expression and normal eye size in
embryos after injection.
doi:10.1371/journal.pone.0004980.g004
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Expression of the puf-A gene in eye tissues of adult mice
The puf-A gene was identified in the mouse genome as the

mouse D19Bwg1357e (Table 1). As puf-A MO knockdown led to

abnormal differentiation in zebrafish eye, puf-A expression in

mouse eyes was investigated. The in situ hybridization analysis

showed that puf-A was expressed in retina ganglion cells of mice,

and to a lesser degree, in the pigmented cells of mice as well (see

arrows in Fig. 5), suggesting that the Puf-A protein may play an

important role in the function of vertebrate eyes.

Identification of the mRNA targets for puf-A in zebrafish
The biotinylated puf-A was prepared from in vitro transcription/

translation) and then purified through immobilization on strepta-

vidin magnetic beads. Afterwards, the purified biotinylated puf-A

were mixed with 10 ug mRNA mixtures from embryos and

ovaries. After fix and PBS wash, the residual RNA pulled down by

biotinylated Puf-A was amplified, subcloned and sequenced. Using

this pull-down assay, many potential RNA targets for puf-A

bindings were found and listed in Table 2 with their gene IDs and

symbols. We further showed that there was a reciprocal

relationship for the expression of puf-A and one of its potential

RNA targets, prdm1a. (Jui-Chin Chang and John Yu, unpublished

observations). Therefore, these results and computer modeling

predicted that puf-A is a RNA binding protein.

Discussion

The zebrafish has become one of the top vertebrate models for

genetic and developmental studies because it is highly prolific and

amenable to micromanipulation and gene knockdown. In this

study, the zebrafish was used as a model for analyzing the structure

and functions of a novel gene, puf-A. This has proved to be an

efficient strategy for a detailed analysis of the function of a gene.

This approach provides an outstanding platform for understand-

ing the functions of novel genes and their roles in controlling

development of an organ or organism.

It was found that the puf-A gene was primarily expressed in the eyes

and ovaries and to a lesser degree in the brain and kidneys of adult

zebrafish. In the eyes of adult zebrafish and mice, the Puf-A protein

was mainly expressed in retina ganglion cells. During embryogenesis,

the formation of retinal neurons follows a phylogenetically conserved

order, and all six retinal neuron types are generated from common

multipotent progenitors, with retinal ganglion cells being the first

neurons to occur [20,21]. In this study, zebrafish morphants of 3- and

5-dpf embryos showed incomplete differentiation patterns in the

retina, suggesting that the Puf-A protein may have important roles in

the development of retinal progenitors.

Additionally, during embryonic development, knockdown of the

puf-A gene led to a reduction in the number of PGCs and their

abnormal migration, suggesting that Puf-A is involved in the

maintenance and migration of these primitive germ cells. The

adult zebrafish ovary is a useful vertebrate model to study oocyte

development and its regulation [22]. In this study, the expression

of puf-A was predominantly in stage I follicles in adult ovaries and

became undetectable in stage II and III follicles during subsequent

oocyte development. It was noted that the most primitive germline

stem cells, oogonia, were not readily distinguishable from stage I

follicles. Thus, the transition of oogonia into stage I follicles was

Figure 5. The puf-A gene was expressed in adult murine eyes. Panels show in situ hybridization of an adult mouse eye with NBT-BCIP color
reaction after hybridization with puf-A antisense and sense probes, separately. The black arrows point to puf-A expression which was probed with
antisense, while mouse sense probe served as the negative control. HE staining inside the mouse sense panel shows the different retinal layers of the
mouse eye. PE, pigmented epithelium; NCL, nuclear cell layer.
doi:10.1371/journal.pone.0004980.g005

Table 2. The potential target RNAs identified from pull down assay with biotinylated puf-A*.

Gene IDs Gene symbols Names or descriptions Locations (chromosome)

792333 zgc:193933 ovary-expressed homeobox protein 24

323473 prdm1a PR domain containing 1, with ZNF domain 16

568830 spata2 spermatogenesis associated 2 23

327196 tex10 testis expressed 10 16

321726 rbb4 retinoblastoma binding protein 4 19

566947 ddx3 DEAD (Asp-Glu-Ala-Asp) box polypeptide 3 9

114438 zp2.2 zona pellucida glycoprotein 2.2 20

*detailed description of this pull-down assay was described in Text and Methods and Materials.
doi:10.1371/journal.pone.0004980.t002
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not investigated in this study. Taken together, these findings

indicated that in zebrafish Puf-A not only regulates PGC

development but may also play a role in germline stem cells up

to stage I follicles.

In total, 14 puf-related proteins of zebrafish, mice, and humans

were identified by the SMART server. The Puf-A in this study

with its newly identified roles in eyes and PGCs corresponds to the

zebrafish LOC394185, mouse D19Bwg1357e, and human

KIAA0020. There are three groups of Puf-related proteins: the

Puf-A homolog cluster, the C14orf21 homolog cluster, and the

PUM1/PUM2 homolog cluster. The Puf-A and C14orf21

homologs could be separated into two homolog clusters and the

proteins of their members were similar to each other within the

same cluster, but easily distinguishable from members of the other

clusters. For example, the Puf-As in humans, mice, or zebrafish

were similar to each other, but showed only ,21% identity with

the human Pumilio (PUM1) protein. In the PUM1/PUM2

homolog cluster, there are more than one member proteins in

each animal species, especially in zebrafish (six homologous genes

in the PUM1/PUM2 cluster have been annotated, but await

further characterizations of their proteins).

The Puf family proteins are characterized by their tandem Puf

repeats with ,35–39 amino acids in each repeat. Each repeat consists

of three a-helixes, which bind to its RNA recognition residues [8]. A

typical RNA recognition motif such as the Pumilio homolog domain

usually contains eight tandem Puf repeats. Our computer modeling

indicated that the Puf domain of the Puf-A homologs in humans,

mice, zebrafish and yeast (data not shown) consists of six Puf repeats

and the topographic characteristics predicted it to be a new RNA

binding protein. Furthermore, using a pull-down assay, we had found

potential RNA targets for puf-A bindings, conceivably leading to the

suppression of target gene expression. In fact, Puf6p, the homolog

protein of puf-A in yeast, was shown to be involved in the repression

of ASH1 mRNA [23]. This model of human Puf-A also suggested

that its Puf domain exhibited a structural feature with six Puf-repeats

and a middle region of the Puf domain that mimics exactly two

additional Puf repeats. In addition, the asymmetric distribution of the

electrostatic potentials of the amino acid side chains on the surfaces of

the Puf domain of Puf-A suggests that the concave surface of the

domain binds RNA, while the convex face may react with not yet

identified interacting proteins such as nanos.

RNA-binding proteins play important roles in RNA-related

cellular processes, including RNA splicing, export, translation,

stabilization, and degradation [24,25,26]. The specific RNAs

bound to Puf-A are being delineated. On the other hand, the

homologs of puf-A in Drosophila and C. elegans have been reported to

be penguin and puf-12, respectively. The function of the penguin

protein in Drosophila is still unknown, while knockdown of puf-12

via RNAi in the C. elegans caused early larval arrest and egg laying

abnormalities (Egl) (http://www.wormbase.org/).

Materials and Methods

Animals
Breeding and maintenance of AB strain zebrafish, as well as

collecting and staging of embryos, were done according to

standard procedures [27]. Some embryos were reared in egg

water treated with 0.003% 1-phenyl-2-thiourea (PTU) to inhibit

pigmentation [27]. Developmental times refer to hours (hpf) or

days (dpf) post-fertilization.

RT-PCR and cDNA cloning of puf-A from zebrafish
Total RNA was extracted from zebrafish embryos and adult

tissues using Tri-reagent (Sigma, St. Louis, MO, USA). Reverse

transcription was performed using the Superscript pre-amplifica-

tion system (Gibco BRL, Grand Island, NY, USA) as described in

the manufacturer’s instructions. The cDNA product was amplified

by PCR with specific primer sets for puf-A or b-actin. The puf-A

forward primer was 59-GTTCAACAGAAAGCCGACAG-39 and

the reversed primer, 59-CCAACATCACTTCACCTACC-39.

The b-actin forward primer was 59- TCACACCTTCTACAAC-

GAGCTGCG-39 and the reversed primer, 59- GAAGCTG-

TAGCCTCTCTCGGTCAG-39. To obtain the puf-A complete

cDNA, rapid amplification of 59- and 39-cDNA ends (59-RACE

and 39-RACE) was performed with total RNA of the ovaries using

the SMART cDNA amplification kit (Clontech Laboratories, Palo

Alto, CA, USA). The RACE products were subcloned into

pGEM-T easy vectors (Promega, Madison, WI, USA) and

sequenced. The cDNAs of puf-A full-length and puf-A without 59-

UTR region were reconstructed into pBluescript SK minus vector

using the 59- and 39-RACE products.

Retrieval of putative Puf-protein sequences
Zebrafish, murine and human Puf protein sequences were

retrieved from the SMART server (http://smart.embl-heidelberg.

de) by the analysis of Pumilio-conserved domains in both the

normal and genomic modes. Four individual sequences were

found to contain the Puf domain in humans and mice.

Additionally, there were six putative Puf-related proteins identified

in zebrafish using the SMART server. More detailed information

about these Puf proteins and their accession numbers is given in

Data S1 and Table 1.

Phylogenetic analysis
A multiple-sequence alignment for these Puf-related protein

sequences was generated by CLUSTAL X2.0, using the

BLOSUM series matrix [28]. The option for a negative matrix

was turned on, while the other parameters remained at the default

setting. The BLASTP algorithm with the BLOSUM62 matrix,

which was implemented in BLAST at NCBI, was used for the

sequence similarity analysis. A phylogenetic tree of putative Puf

proteins was constructed using algorithms with PHYLIP vers. 3.67

[29] (see Data S1). The final unrooted tree diagram was prepared

using DENDROSCOPE vers. 1.2.4 [30].

Modeling the Puf domain of human Puf-A (KIAA0020)
In order to model the three-dimensional (3D) structure of

human Puf-A, the mGenTHREADER method of the PSIPRED

server [31,32] was used for predicting secondary structures and

making sequence alignments. Initially, the structural information

of human Pumilio homolog domain (Protein Date Bank code:

1IB2 and 1M8Y) [8,13] was used as modeling templates. Even

though the sequences of human Pumilio (PUM1) is only 21%

identity with human Puf-A, the crystal structure of Pumilio

homolog domain is similar to Puf-A detected by mGenTHREA-

DER with p value,0.0001.

Then 3D structure of Puf domain in human Puf-A was

constructed by MODELLER 9v3 [33] (see Data S1). A segment

of the RNA ligand from 1M8Y [13] was assembled into the

resulting model to represent the potential RNA binding site.

Furthermore, the electrostatic potentials were calculated using

DELPHI [34] with default parameters setting in CHIMERA [35].

The color spectrum mapped onto the domain surface ranged from

27 kT/e (dark red) to +7 kT/e (dark blue). Finally, 3D structural

diagrams in this study were prepared using CHIMERA [35]. The

convex and concave surfaces represent the presentation of the

model that had been rotated 180u about the vertical axis.
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In situ hybridization of eyes and ovaries
The collection and staging of embryos were performed as

described. Embryos were fixed overnight at 4uC in 4% parafor-

maldehyde buffered with 16phosphate-buffered saline (PFA/PBS).

In addition, the ovaries and eyes were removed from zebrafish or

mouse after anesthetization and decapitation, and placed in 4%

PFA/PBS. After being treated with 30% sucrose, specimens were

embedded in OCT. Frozen sections (7 and 10 mm thick for mouse

and zebrafish, separately) were collected onto coated slides. In situ

hybridization was performed using an InsituPro automated system

(Intavis, Koeln, Germany). Whole-mount and section in situ

hybridization were carried out using a digoxigenin (DIG)-labeled

RNA probe and anti-DIG antibody conjugated with alkaline

phosphatase as described previously [36,37]. After hybridization,

slides were incubated with anti-DIG antibody conjugated with AP,

and developed with NBT-BCIP reagents. The in situ hybridization

analysis of the cryosections of adult zebrafish eyes was carried out

with a zebrafish puf-A riboprobe after fluorescein (Flu) labeling.

After hybridization, slides were incubated with anti-Flu-AP, and

developed with FastRed reagents.

The following DIG-labeled RNA probes were prepared from

linearized plasmids using the DIG RNA labeling kit (Roche, Basel,

Switzerland): (1) an antisense probe of the puf-A gene prepared

from KpnI-digested pBluescript SK2-puf-A (full-lengh, 2,053 bp)

using T3 RNA polymerase, (2) a puf-A sense probe prepared from

BamHI-digested pBluescript SK2-puf-A using T7 RNA polymer-

ase, and (3) a vasa antisense probe prepared from XbaI-digested

pBluescript SK2-vasa (a gift from Dr. Bon-chu Chung, Academia

Sinica) with T7 RNA polymerase. Follicles at different stages of

development were identified according to the different-sized

diameters of the follicles [9,10].

Morpholino (MO) knockdown
Zebrafish embryos were obtained by natural mating and MO

microinjection was performed at the stage of 1,4 cells. The puf-A-

MO1 antisense oligonucleotide 59-AATGGACCATGTGTACA-

GACAAACA-39 was designed to direct against the 59 UTR of the

puf-A gene, and the puf-A-MO2 antisense oligonucleotide was 59-

TTTACCCTCCATAATGGACCATGTG-39 that directed

against the 59 UTR and part of coding region including ATG.

The 5 bp mismatch MO1 as a negative control for MO (i.e. puf-A

5mmMO1) was 59-AATcGACgATGTGTAgAcACAAAgA-39.

Embryos positioned in an agarose injection chamber were injected

with 5,10 ng of MO in 4.6 nl using a Narishige micromanipu-

lator and needle holder (Narishige, Tokyo, Japan). For the

experiment, eye size was determined by photographing lateral

views of anesthetized larvae and was normalized to the average

eye size of age-matched WT fish.

In vitro transcription/translation
An in vitro transcription/translation assay was carried out with

the TNT Quick coupled reticulocyte lysate system together with

the TranscendTM biotinylated lysine-tRNA (Promega), according

to the manufacturer’s protocol. MOs were added to the complete

TNT Quick Master Mix to final concentrations of 0.1 or 10 mM

and incubated at 30uC for 90 min. One microliter of this reaction

mixture was resolved on 10% SDS/PAGE, and biotin-labeled

lysine residues were detected on Western blots via a streptavidin-

alkaline phosphatase and visualized with NBT-BCIP reagents.

Rescue experiment of morphants
Rescue experiments were performed by injecting the synthe-

sized capped puf-A RNA with puf-A-MO1. The capped puf-A RNA

that did not contain a 59 UTR region was prepared from a

pBluescript SK-plasmid after BamHI digestion using the mMes-

sage mMachine kit (Ambion, Austin, TX, USA). For the rescue

experiments, 200 pg of capped puf-A RNA was microinjected with

puf-A-MO1 into zebrafish embryos, and the eye size was measured

at 2 dpf.

Paraffin embedding and sectioning of mouse
Eyes from mouse were collected and placed in 4% paraformal-

dehyde. Tissue sections (3 mm thick) from paraffin-embedded

tissue blocks were placed on charged slides, deparaffinized in

xylene, rehydrated through graded alcohol solutions and stained

with hematoxylin and eosin (H&E).

Puf-A silencing in the zebrafish PGCs
To silence the puf-A expression in zebrafish with small

interfering RNA (siRNA), the pcDNA6.2-GW/EmGFP-miR

(Block-iT Pol II miR RNAi Expression Vector Kits, Invitrogen)

was used to construct the puf-A siRNA plasmid according to the

user manual. The region of nt1078 to 1098 for zebrafish puf-A was

chosen for the engineered puf-A siRNA plasmid. The commercial

pcDNA 6.2-GW/EmGFP-miR-neg control plasmid served as the

‘‘control siRNA’’. In addition, the 39 UTR fragment of nanos

prepared from the PCR product of pGEM-T Easy-nanos plasmid

(a gift from Dr. Bon-chu Chung) was subcloned into XhoI site of

the puf-A siRNA and control siRNA plasmids, separately, to

generate the plasmid with either puf-A siRNA or control siRNA

containing nanos 39 UTR. Therefore, there are four siRNA

plamids: puf-A siRNA with or without nanos 39 UTR and their two

respective control plamids without puf-A.

Then, the PCR products generated from these four siRNA

plasmids using forward primer (ACAAGTTTGTACAAAAAAG-

CAGGCT) and reverse primer (ACCACTTTGTACAA-

GAAAGCTGGGT), were subcloned into pGEM-T Easy vector

using a TA cloning kit (Promega). Afterwards, using the mMessage

mMachine kit (Ambion), the RNAs with puf-A containing either or

no nanos 39 UTR and their controls without puf-A were prepared

separately. Finally, 100–200 pg of these puf-A siRNAs and control

siRNAs (with or without nanos 39 UTR) was microinjected into

one-cell stage of zebrafish embryos, and the phenotypes and vasa

expression were observed under microscope.

Indentification of the mRNAs that are targets of puf-A in
zebrafish

Briefly, biotinylated puf-A was prepared from in vitro transcrip-

tion/translation kit using the TNT Quick coupled reticulocyte

lysate system together with the TranscendTM biotinylated lysine-

tRNA (Promega, Madison, WI, USA) and then purified through

immobilization on streptavidin magnetic beads (Promega) with 5

times PBS wash. Afterwards, the purified biotinylated puf-A were

mixed with 10ug mRNA mixtures from embryos and ovaries.

After formaldehyde fix (final 1% concentration), glycine treatment

(final 125mM concentration) and 5 times PBS wash, the residual

RNA pulled down by biotinylated puf-A was amplified by using

Full Spectrum Complete Transcriptome RNA Amplification kit

(System Biosciences, Mountain View, CA, USA) as described in

the manufacturer’s instructions. The PCR products were sub-

cloned into pGEM-T easy vectors (Promega) and sequenced.

Supporting Information

Data S1

Found at: doi:10.1371/journal.pone.0004980.s001 (0.05 MB

DOC)
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Figure S1 cDNA nucleotide sequence of the zebrafish puf-A

gene. The full-length sequence of zebrafish puf-A cDNA was

identified using 59- and 39-RACE. The 59-untranslated region

(UTR) and 39-UTR are shown in lowercase letters and the coding

region (nucleotides 45,1924) in uppercase letters. The stop codon

is marked with an *. The deduced amino acid sequence (629

amino acids) is shown below the nucleotide sequence. At residues

558,562, the sequence is ‘‘Glu-Arg-Phe-Ser-Arg’’ in bold letters.

Blue arrow indicates the location of MO1 target site; black arrow

refers to the MO2 target site.

Found at: doi:10.1371/journal.pone.0004980.s002 (8.20 MB TIF)

Figure S2 Multiple sequence alignments of Puf proteins.

Sequences of 14 Puf proteins of human (Hs), mouse (Mm), and

zebrafish (Dr) were aligned by CLUSTAL X as described in

Methods. Protein names are shown at the left of the alignment

data, and the residue numbers are shown at the right side. The

quality scores of alignment are represented as column graph under

the ruler to indicate the level of similarity among these proteins.

The color scheme for the consensus residues was applied the

default settings.

Found at: doi:10.1371/journal.pone.0004980.s003 (9.43 MB TIF)

Figure S3 The in vitro and in vivo analyses for the specificity of

puf-A MO1. (A) Various amounts of puf-A-5mmMO1 (5 bp

mismatch control: 0, 2, and 200 nM) were added to the in vitro

transcription/translation reactions for puf-A. One microliter of the

reaction mixture was separated on 10% SDS/PAGE, blotted and

incubated with streptavidin-AP, followed by development with

NBT-BCIP reagents.(B) For in vivo experiment, the puf-A 59-

UTR and its partial coding region were added onto pEYFP-N1

plasmid which contained CMV promoter and YFP gene to

generate ppuf-A-YFP. Then 4.6 ng of the puf-A-MO1 or puf-A-

5mmMO1 was co-injected to embryo with ppuf-A-YFP plasmid at

100 pg per embryo. The numbers of embryo with YFP expression

were enumerated at 1dpf. As shown, 15/48 embryos injected puf-

A-YFP plasmid exhibited fluorescence at 100 pg/embryo dosage,

while none of the 113 embryos co-injected with the puf-A-MO1

had YFP expression. In contrast, co-injection with the mismatch

control, puf-A-5mmMO1, did not affect the expression of YFP. (C)

The panels showed the phenotypes of WT and morphants at 3dpf

after injection with 9.2 ng of puf-A-5mmMO1 dosage.

Found at: doi:10.1371/journal.pone.0004980.s004 (7.79 MB TIF)

Figure S4 The puf-A siRNA suppressed specifically the zebra-

fish puf-A expression in 3T3 cell line. The 3T3 cell line was co-

transfected with pFlag-puf-A and different siRNAs. In the first line

of Western blot, the siRNA was the control siRNA (pcDNA 6.2-

GW/EmGFP-miR -neg control plasmid) as negative control. In

the middle line, ppuf-A siRNA and in the last line, ppuf-A siRNA

containing nanos 39-UTR were used to suppress the puf-A

expression. Upper panel showed the Western blot after reaction

with anti-Flag antibodies, while lower panel showed Western blot

for b-actin as internal control.

Found at: doi:10.1371/journal.pone.0004980.s005 (7.66 MB TIF)

Figure S5 Expression of in situ marker genes and elevated level

of apoptosis in puf-A morphants (A) The upper four panels showed

normal expression of krox20 and emx3 in WT and morphants,

separately, at 1dpf. The lower four panels showed the abnormal

expression patterns of six3b and mab21l1 in WT and morphants

at 2dpf. (B) Apoptotic cells were detected by terminal deoxynu-

cleotidyl transferase-mediated dUTP nick end labeling (TUNEL)

using an In Situ Cell Death Detection kit (Roche). Embryos were

fixed with 4% PFA and whole eyes at 1dpf were dissected out.

Black arrows refer to the apoptotic cells in eyes of WT embryos.

Acridine orange (AO) was also used to label apoptotic cells in

zebrafish embryos. The average number of AO positive cells per

retina in wild-type (WT, n = 8) and puf-A morphants (MO1, n = 8)

at 1dpf was presented.

Found at: doi:10.1371/journal.pone.0004980.s006 (9.88 MB TIF)
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