
results were visually compared to the distribution of land
masses.

3) Dataset 3
The third dataset is a track obtained from one of the three
female elephant seals from Dataset I, but in this case her track
was estimated using the geolocation method. Diurnal patterns
of light levels measured via a time series are used to estimate
one position per day [19]. This method is less accurate than
either the ARGOS or the GPS technique (estimated error
, 50–700 km) and can be improved in marine environments
by assimilating remotely-sensed sea-surface temperature grids
[3,13,20]. A Time-Depth Recorder carried by the animal
(TDR, MK9 Wildlife Computers, Redmond, USA) recorded
hydrostatic pressure, water temperature and ambient light
levels. The geolocation algorithm from Wildlife Computers
(Software WC_GPE version 1.02.0005) was used to calculate
geographic positions from the light level time series. The
IKNOS-DIVE program (Tremblay, unpublished) was used to
analyze diving behavior as well as to extract oceanographic
parameters such as sea-surface temperature (SST) for each
recorded dive. Only SST values were considered in this work.
We assimilated the time series of known SST from the animal
with matching daily remote-sensing SST 11 km-grids con-
sisting of a blended product of merged SST information in
order to reduce cloud cover error [21]. This remote-sensing
dataset was produced by the NOAA CoastWatch Program,
the NOAA NESDIS Office of Satellite Data Processing and
Distribution, the NASA’s Goddard Space Flight Center, and
OceanColor Web (details: http://coastwatch.pfel.noaa.gov/
infog/BA_ssta_las.html). The 11 km grain of these data is
fine with respect to the geolocation accuracy (at least by a
factor 10), and therefore they are appropriate for this analysis.
This track was validated using the same GPS track described
in Dataset 1. For this dataset, the model was run using
geolocation data and assimilated sea-surface temperatures,
and the resulting locations were compared to the GPS
positions.

Field methodologies followed standard and approved proce-
dures by the Institutional Animal Care and Use Committee at the
University of California (Santa Cruz) and were described
elsewhere (see [22]). All available ARGOS locations were used
including class Z and secondary locations.

Basic principles of the model
Animal movement is best described as a time series of

movement steps [23]. Each stepis characterized by an azimuth
(or bearing) and a distance between two distinct points in time,
which in turn determines a speed value. The distributions of the
azimuth and speed values in a series of steps will determine the
type of movement of the animal, from a straight line to a
Brownian (random) motion. This principle can be used to
generate artificial tracks of known characteristics, by randomly
selecting consecutive azimuth and speed values from distribu-
tions of controlled characteristics [17,24,25]. Similarly, our
model recreates many possible tracks using distributions of speed
and azimuth controlled by the raw data and their associated error
distributions.

The model is illustrated in figures 1 and 2. Each recorded
location (Fig. 1a, 2b) can be considered the geographic average of
many possible positions spread around it, depending on spatial
error characteristics (Fig. 1b, 2c). Each of these possible locations
(or ‘‘particles’’) can then be weighted based on proper character-
istics (i.e. matching recorded SST value or being on land) and/or

external characteristics (i.e. feasibility of speed required to reach a
particle from a given location) (Fig. 1c). We used these particles to
generate the weighted distributions of azimuth and speed from
which random steps were selected (Fig 1d). At each step, a new
distribution of azimuth and speed is computed using the nextx
particles in the record, and one value of azimuth and speed is
randomly selected and used to create the next position. If the
spatial error is large, the azimuth and speed distributions widen
and vice-versa(Fig. 1e, 2d). The output of our method isn time
series (i.e. complete tracks), each corresponding to one boot-
strapped track iteration. The ‘‘best track’’ can then be computed
as the geographic average of the bootstrapped tracks. This leads to
the possibility of estimating an error (or confidence) for each step
of the average track using the dispersal of time-matching
alternative positions (Fig. 1f, 2e).

Model implementation, performance and effect of data
quality (ARGOS, dataset 1)

To create the particles, we used estimated errors from our
own static tests of ARGOS data [25] rather than errors given by
the ARGOS system. Although theerrors derived from static
tests might not be the same as what would be obtained from
deployed tags, we believed that they were the best estimate
available. Each recorded location was resampled into 50
particles randomly selected using abivariate normal distribution
of distance (withm = 0 and SD = error). The number of particles
(here 50) was empirically fixed so that they produce a near-
uniform circular distribution of azimuths around each recorded
location.

With this dataset, particles were weighted according to a
probability distribution of the local speeds estimated from the four
prior and four following recorded points. From these locations, all
combinations of speed were calculated, and only the likely ones
(below a maximum speed threshold set by the user are kept, here
12.6 km/h in accordance with previous study [22]. A normal
distribution with mean and standard deviation corresponding to
these speeds was then used for weighting. Therefore, particles
involving speeds often used by the animal (locally to each point)
will have a relatively higher chance of being selected.

One characteristic of tracking data (including ARGOS) is that
the error of recorded location is probabilistic. That is any location
has a low probability of being very wrong, independently of its
given error (i.e. errors are strongly non-gaussian [5]). This is why
some presumably good ARGOS locations (with quality class of 1
for example) are sometimes found kilometers away from any
reasonable position [1]. This implies that the model cannot blindly
trust the accuracy of each point. In order to account for this, the
azimuth and speed distributions used at each step were derived
from the next 506 3 particles instead of being derived from the
next 50 particles (arbitrarily). This process has a slight smoothing
effect and helps the model overcome the problem of individual
mistrust of recorded locations.

In our simulations, we generated random walks with steps every
30 minutes, which is close to the average duration of a dive in
elephant seals [22].

Track quality is not easily defined because it is a combination of
location quality and frequency in relation to the animal’s speed,
and it can be variable within a track record. In our case, reported
location qualities were roughly similar in the three tracks (Table 1).
Location frequency in recently obtained data in elephant seals are
around three post-filtered locations per day on average [2,26].
Therefore, the track qualities of track 1, 2 and 3 were above, equal
and below average respectively (Table 1). This gives us the
possibility of testing the effect of track quality on the accuracy of
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the model. In order to do so, we extracted all model locations that
were within 2 minutes of a recorded GPS location. This yielded
41, 24 and 31 pairs of locations for the 3 tracks respectively. Fifty
percent of the errors (i.e. distances between GPS locations and
corresponding model-estimated locations) were below 4.0, 5.5 and
12.0 km and ninety percent of errors were less than 9.0, 10.5 and
20.0 km in track number 1, 2 and 3 respectively. Logically, errors
increased with decreasing track quality (Fig. 3a).

In order to evaluate the difference between our model and
classical methods, we applied a speed filter at 12.6 km/h on the
raw data [22]. Filtered tracks were then interpolated every
30 minutes using a Be´zier curve with mu = 0.1 [2]. A Be´zier curve
interpolant does not introduce additional error compared to linear
interpolation, and it was shown to be a more realistic
representation of movement in a fluid environment [2]. This
interpolated track was compared to the GPS locations in the same

Figure 1. Description of the steps for the forward particle filtering model. Based on the raw data (A) and knowledge about their inaccuracy,
the first step consists of generating a number of possible locations for each recorded point (B). The distribution of these particles follows a known or
estimated error distribution for each point. Based on the likelihood of the speed required to get from a point to a given particle or any other known
information if relevant, a weight is assigned to each particle (C). From a starting position, some forward particles will serve as attractors for
constructing random walks. These forward particles define a distribution of speed and azimuth from which one random step is selected (D). The
repetition of this process generates one random walk. This process is bootstrapped in order to generate many possible random walks (E). From this
set of random walks, an average track is calculated. For each position of the average track, an error can be estimated from all of the corresponding
locations of the set of random walks (F).
doi:10.1371/journal.pone.0004711.g001
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way. Fifty percent of the errors were below 5.0, 13.0 and 19.5 km,
and ninety percent of errors were less than 20.0, 20.5 and 41.0 km
in track numbers 1, 2 and 3 respectively. Results confirm that the
speed filter+interpolation method is also sensitive to the track
quality [2] and show that our model reduced the positional errors
by about 39% for the 50 percentile and about 52% for the 90
percentile.

Consistent with relatively low error locations, instantaneous
speeds calculated from our model were positively related to the
speed recorded with GPS for all locations that were less than
2 minutes apart (R = 0.638, P,0.001, N = 97). Such correlation at
a small time scale is remarkable given the relative scarcity of
ARGOS data. Smoothing the pattern of speed by taking into
account the previous and subsequent 3 points in the record (using
a moving average) permits to look at speed at a slightly coarser
scale and shows further improvement of the fit, yielding a quasi
one to one relationship (Fig. 4).

For each average location estimated with the model (i.e. each
averaged step) we calculated the 99% confidence radius using the
30 location alternatives. This radius defines a circle that can be
used as a standard measure of spatial dispersion. We showed that
75.6, 66.7, and 39.7% of the GPS positions fell within the circle in
the 3 tracks respectively. By doubling the radius size, we found that
92.7, 91.7 and 87.1% of the GPS locations fell in the circle
footprint. We therefore suggest that twice the 99% confidence
radius calculated on the model output can be used as a valid
estimate for the ‘‘real’’ 90% confidence error for each step.
However, we found that the footprint made by the successive 99%
confidence radii was usually larger than the footprint made by the
random walks (Fig. 2e). This apparent contradiction was due to the
fact that errors were larger along the animal path and smaller
laterally (data not shown) suggesting that fitting an ellipse to the
points could be a better (but more complicated) way to describe
errors.

Figure 2. Illustration of the various steps of the forward particle sampling random walk model on one ARGOS track of a northen
elephant seal from Año Nuevo, California, USA. Panel A shows the whole track as obtained using a classical speed filter and the location of the
inset panels (black rectangle). From the recorded raw data (B) a set of particles is generated (gray dots in C). Using these particles a number of
random walks is computed (D), which allow the calculation of an average track (green line in E) and associated error footprint (gray area in E: the
accumulation of all error circles for every steps in the model). Red circles in panel E are the location of highly accurate GPS location obtained on a
duty cycle fashion for this track.
doi:10.1371/journal.pone.0004711.g002
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between the error distribution and the raw track quality suggests
that our model may provide even better accuracy with tracks of
higher quality. This relationship is logical and proves that the
amount of data available directly affects the accuracy of the model.
This is because if more locations are available the model has more
occasions to adjust speed along the track and therefore to use a
more accurate speed distribution for generating the random walk.
Although we could not quantify precisely the improvement that we
obtained by assimilating coastline data, visual inspection clearly
showed significant improvement as well (Fig. 6).

Our approach is based on calculating a location from a cloud of
weighted particles which can be manipulated as needed. This
yields great flexibility, allowing us to apply corrections based on
known constraints or data available. For example, if gaps in the
data exist, some particles may be added in a wide footprint within
the gap, thus allowing the random walks to disperse and increasing
uncertainty (i.e. decreasing confidence) where data are absent.

Spatial accuracy with geolocation data
We showed that Sea Surface Temperature (SST) data can be

assimilated into our model. To our knowledge, this is the first study
reporting sub-degree average accuracy with SST-corrected
geolocation data. The few studies that had assessed the accuracy
of the SST-corrected geolocation method reported accuracies of
1.82u61.54u (mean6SD) in albatrosses [3], and 1.28u60.38u
(mean6SD of means) in 4 species of fish [20]. It is important to
note that these accuracies were calculated for recorded locations

(i.e. in theory the best estimates) whereas our estimation of
accuracy was made for latent locations. However, variance in
errors is typically high because of the high variability in the quality
of the light measurement and therefore comparison between
studies is only vaguely informative. The take home message
however is that using our model, sub-degree accuracy is achievable
with latent locations if some SST gradient exists.

Interestingly, one study assimilated both SST and bathymetry in
order to correct geolocation tracks of gray seals (Halichoerus grypus),
and produced average errors of 0.85u60.07u [28] which is slightly
better than our estimates. The elephant seal that we use as an
example ventured in very deep and unreachable ocean waters, and
therefore, bathymetry could not possibly have improved our track.
However, our method permits easy assimilation of bathymetry, by
simply altering the weights attributed to each particle based on the
comparison between known depth reached by the animal and the
ocean bathymetry. This process is also not exclusive to SST or to
any other parameter. Finally, a recently published algorithm [34]
aimed at estimated positions based on light levels alone suggests
that the raw data to input to our model could be substantially
improved in the future, which in turn suggests that output from
our model could be even further improved.

Confidence estimates of locations
Analyzing animals’ behavior in relation to environmental

characteristics may enable estimation of a confidence metric for
each position, which is rarely available with recorded ARGOS data

Figure 6. Result of the forward particle filter model applied in one northern elephant seal ARGOS track with implementation of a
coast avoidance algorithm (yellow line). Black line represents the track from the raw ARGOS data. Darker polygons represent land masses and
light grey background represents water. Note that only the part of the track that was within the islands (British Colombia, North East Pacific, Canada)
is shown.
doi:10.1371/journal.pone.0004711.g006
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(ARGOS location of class A,B and Z for example) and not obtainable
with the speed filter+interpolation methods. This confidence metric
is essential for interpreting the behavior of the animal at an
appropriate scale. For example, if the confidence radius is 10 km, it is
probably inappropriate to interpret movements shorter than this
distance. Similarly, the environment characteristics at a given
location may be gathered within the location error footprint rather
than under each average location, potentially reducing noise in the
data and improving habitat model confidence and determination.

In this paper we used a circle to estimate confidence, but this
could be done differently. For example, if the errors are
systematically biased towards one direction (for example latitudi-
nally as in the case of geolocation data), it would be straightforward
to determine another metric based on the output from the random
walks. For example, the standard deviation in latitude and
longitude, or the maximum distance between the various positions
and their average could be used as well. More complex methods
such as the determination of an ellipse (as mentioned earlier) could
be used to account for particular spatial structure that might occur
in the error footprint. For example, this could allow us to
discriminate between the error vectors occurring along the animal
path to the error vectors occurring laterally to the animal path.
Overall, this shows that our approach is not sealed to one scheme,
but instead, it is very open to user input and experimentation.

Forward particle random walk model versus state-space
model

For most applications a biased random walk approach like ours
seems to be an excellent compromise between complexity,

computation time, ease of implementation and effectiveness,
especially when compared to state-space models (SSM). Some
SSM users and developers have themselves considered the
approach as a technically difficult statistical framework [12,35].
Contrary to state-space models, we did not have to infer animal
state, transition equation, measurement equation and switching
model, nor did we rely upon Bayesian statistics (which is
complicated for most users), and yet, we obtained very satisfactory
results while preserving the possibility to use information from
other sources of data, such as coastlines or SST. Other parameters,
such as ocean depth, could be coupled with the animal diving
depth in the same way. It is important to note that our approach
cannot repeat earlier track patterns in a gap; indeed, SSM may
artificially create patterns where data are sparse [17], which may
be problematic for subsequent analysis.

A recent attempt to assess SSM accuracy was made using
artificial tracks, and reported mean absolute errors to be at best
one to two times larger than what we recorded in this study [17]. It
is however unclear how our approach would compare to a state-
space model approach because, to our knowledge, no state-space
model application on animal movement data has been truly
validated (compared to GPS locations). A direct comparison is
therefore not strictly possible. What is certain is that the
complexity and associated computing time is considerably reduced
using our approach. A switching state-space model [36] would
probably increase the computing time by a factor of 5 (Bailey,pers.
comm.), which would amount for at least 5, 3 and 15 hours of
computing to run our track numbers 1, 2 and 3 from our first
dataset, respectively.

Figure 7. Result of the forward particle filter model applied to geolocation data in one northern elephant seal track (red line). The
black line and dots represent the light-based geolocation data and the blue line and crosses represent the result of the model applied to the ARGOS
data instead of the geolocation data (used here as reference since it is much more accurate – see results for details). The background colors and color
bar code for the sea-surface temperature (uC) grid at the day matching the position of the large red circle. At this time and place, the SST gradient
was weak, so the SST correction had little effect, thus the larger deviation of the modeled track to the reference track. Note that the GPS data were
not represented because of the coarse scale of the plot and the duty cycling of the GPS data.
doi:10.1371/journal.pone.0004711.g007
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State-space models have the ability to produce an estimate of
the animal’s behavioral mode, and this can be seen as a major
advantage over our method. The behavioral mode is usually
characterized by a certain bearing (or turn) variability and a certain
speed [14,36]. It is indeed important to be able to distinguish
between behavioral phases, and we believe that simple time-series
analysis or other first passage time [24] or fractal landscape analysis
[25] may accomplish this equally well.A priorithere is no reason why
track correction and delineation of behavioral mode must occur in
the same step. In fact, it might even be simpler and more useful for
researchers to compare and use several methodologies to identify
behavioral states. However, this is not the topic of this work and this
may require more investigations.

State-space models were presented as a way to use all available
information in the tracking data without the need for filtering
processes to be performed [37]. A recent study using state-space
models suggested that pre-filtering of ARGOS data improves the
model performance [16], and this seems to be confirmed by
another recent study which used a classical speed filter prior to
using the state-space model [38]. None of this is required with our
approach, and at the opposite, we even used ARGOS secondary
locations in addition to recorded primary locations in our model,
in order to truly use the maximum information available.

Finally, it is important to note that the advantages or
inconvenient of using a method or another might also depend
on one’s initial goals. By fitting a mechanistic model to the data,
state-space models are by construction more predictive than our
approach. This possibility might be of interest for comparing
different mechanistic models of individual movement and
therefore to explore the effects of different behavioral processes
on the dispersal of individuals. This cannot be done directly with
our approach, but as a second step, by comparing the output of
our method to the output obtained under a given theoretical
framework.

Our model uses particles, but it differs from particle sampling
filters by the fact that particles are not generated using prior
behavioral information [15], but instead, they are generated based
on the recorded data.

Conclusion
Previous work has shown that simple filtering is wasteful and

inefficient and that additional, valuable behavioral information
can be extracted from tracking data. To date, this has required
methods that are both complicated and time-consuming, resulting
in limited application and the potential for analysis errors due to
poor understanding. The particle filter model outlined here
attempts to improve the quality of tracking data while operating
by a framework that is both accessible and efficient. This method
improves the accuracy of positions and assigns an estimate of
spatial error, facilitating subsequent post-hoc behavioral analyses.
In order to share this method with the research community, we
will establish a dedicated website to provide source codes,
examples, and a manual. The package will be known as the
IKNOS-WALK program.
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