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Abstract

Identifying the tissues in which a microRNA is expressed could enhance the understanding of the functions, the biological
processes, and the diseases associated with that microRNA. However, the mechanisms of microRNA biogenesis and
expression remain largely unclear and the identification of the tissues in which a microRNA is expressed is limited. Here, we
present a machine learning based approach to predict whether an intronic microRNA show high co-expression with its host
gene, by doing so, we could infer the tissues in which a microRNA is high expressed through the expression profile of its
host gene. Our approach is able to achieve an accuracy of 79% in the leave-one-out cross validation and 95% on an
independent testing dataset. We further estimated our method through comparing the predicted tissue specific microRNAs
and the tissue specific microRNAs identified by biological experiments. This study presented a valuable tool to predict the
co-expression patterns between human intronic microRNAs and their host genes, which would also help to understand the
microRNA expression and regulation mechanisms. Finally, this framework can be easily extended to other species.
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Introduction

MicroRNA (miRNA) is a class of small non-coding RNAs

(,22 nt) identified in recent years. They usually function as the

negative regulators for certain genes at the post-transcriptional level

by binding to the 39UTRs of the target mRNAs through base

pairing, resulting in the target mRNAs cleavage or translation

inhibition [1,2,3]. It has been newly shown that miRNAs may also

function as positive regulators [4,5]. It is estimated that 1–4% of the

genes in human genome are miRNAs, a single miRNA can regulate

more than 200 targets [6], and the miRNAs preferentially regulate

duplicated genes in mammals [7]. Increasing evidences suggest that

the miRNAs play crucial roles in nearly all the important biological

processes, such as cell growth, proliferation, differentiation,

development, and apoptosis [6]. It has been reported that miRNAs

also participate in the cellular signaling networks[8] and the gene

regulatory networks [9], as well as the cross-species gene expression

variation[10] and pathways [11]. Hereby, the miRNAs might be

associated with various diseases [12].

To get a more comprehensive understanding of the miRNAs, it

becomes important to identify the tissues in which a miRNA is

expressed, which would promote not only the understanding of the

miRNA biogenesis and expression mechanisms but also the

prediction of their functions. However, it is difficult to identify the

tissues in which a miRNA is expressed because great limitations

exist in the current large-scale expression profile detecting

techniques, such as the microarray [13]. For example, it is difficult

to detect the expression levels of those miRNAs in rare cells or

expressed at low levels [13]; the amount of miRNAs contained in a

microarray chip is relatively limited comparing to the total amount

of miRNAs in the human genome. Moreover, microarray

experiments are both time and cost consuming. Most importantly,

detecting the miRNA expressions of human directly is more

difficult than other species since the lack of tissues. Therefore, it

becomes critical to develop new approaches to decipher the

expression of miRNAs.

miRNAs show a very biased distribution in genomes. More than

36% (196/533) of the human miRNAs are within the introns

(referred as the intronic miRNA here) of protein-coding genes (the

host genes, miRBase Version 10, October 2007). The enrichment

of the intronic miRNAs in human genome triggered researchers to

wonder whether the intronic miRNAs and their host genes have

special connections in terms of expression and regulation. Indeed,

several groups have reported that many intronic miRNAs show

significantly correlated expression profiles with their host genes

[14,15,16,17]. One possible explanation for this phenomenon is

that (1) the intronic miRNAs may be co-transcribed with their host

genes by inclusion introns of their pre-mRNAs [17]; (2) the

intronic miRNAs and their host genes may share common

regulatory elements, such as common promoters [18]. By

performing a comparison between the known miRNA expression

profiles [19] and the RT-PCR expression profiles of the host

genes, Rodriguez et al. found perfect correlations between the

expression profiles of the investigated intronic miRNAs and their

host genes [17]. These findings seemed to provide us a chance to

uncover the tissues in which an intronic miRNA is expressed by

associating with the expression profiles of its host gene. However,

there are some intronic miRNAs which are low co-expressed with
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their host genes [14], which makes the problem much more

complicated. Therefore, the first step to infer the expression tissues

of the intronic miRNAs in this way is to identify which intronic

miRNAs show high co-expression with the host genes and which

do not.

In this study, we established a machine learning based approach

to predict whether an intronic miRNA is high co-expressed with its

host gene. We tested our method by the leave-one-out cross

validation scheme, a novel independent dataset, and tissue specific

miRNAs. Finally, we applied our approach to all the human

intronic miRNAs.

Results

The co-expression dataset of Baskerville et al. [14] was

employed as the training dataset. We first calculated the feature

vectors for each sample in the training dataset, which was used to

train a classifier. The performance of the classifier was then

evaluated. Finally, we applied the classifier to all the human

intronic miRNAs. As a result, all human intronic miRNAs

showing high co-expression with host genes are identified and then

the expression profiles of these miRNAs are inferred by identifying

the expression profiles of the host genes. The complete flowchart

of our framework is shown in Figure 1.

Genomic features of the human intronic miRNAs
In this study, the different co-expression patterns of the intronic

miRNAs with their host genes triggered us to explore what the

reasons are. Zhou et al. reported that the miRNA hosting introns

have a 59-biased relative position distribution compared to all the

other introns in human and mouse genomes, suggesting that the

cis-signals within the 59UTRs of the host genes may interfere the

transcription and regulation of the intronic miRNAs to certain

extent [20]. Moreover, this finding suggests that the relative

positions of the intronic miRNAs in their host genes is not

completely random and may have functional significance.

Therefore, here we present four feature vectors, which reflect

the positional characteristics of the intronic miRNAs in their host

genes to train the classifier (Table 1). These four features describe

the position of miRNA hosting intron, the position of miRNA, the

length of the miRNA hosting intron, and the ratio of the length of

miRNA to that of the host gene.

Support vector machine training and predicting
A support vector machine (SVM) based classifier was imple-

mented to predict the co-expression levels between the intronic

miRNAs and their corresponding host genes. The dataset from

Baskerville et . [14] was adopted as the training set. The feature

vectors (Table 1) for each sample were computed and are listed in

Table 2. As shown in Table 2, columns ‘‘1’’, ‘‘2’’, ‘‘3’’, and ‘‘4’’ list

the values of these four features for each miRNA; column ‘‘co-

expressions’’ lists the correlation coefficients of the miRNA and

host gene expression profiles; column ‘‘ER’’ lists the co-expression

patterns of miRNA and host gene identified by biological

experiments, in which ‘‘+’’ represents high co-expression and

‘‘2’’ represents low co-expression. A leave-one-out cross valida-

tion scheme was employed to evaluate the performance of this

SVM classifier. For each round of the leave-one-out experiments,

one sample was eliminated from the training set and the remaining

samples were used to train the SVM classifier. The prediction was

made on the uncovered sample with the well-trained model. Each

sample was left out for one time and the prediction results for all

the samples are listed in the column ‘‘PR’’ of Table 2. The results

of this experiment revealed that our approach achieves an

accuracy of 79% and shows good sensitivity and specificity

(Table 3), which indicates that the co-expression patterns are

predictable using SVM and these four features. The accuracy is

calculated as the ratio of the number of the samples that are

predicted correctly to the number of the whole samples. The

sensitivity of high/low co-expression class is calculated as the ratio

of the number of the samples that are predicted as high/low co-

expression correctly to the total number of true high/low co-

expression samples, respectively. The specificity of high/low co-

expression class is calculated as the ratio of the number of the

samples that are true high/low co-expression to the number of the

samples that are predicted as high/low co-expression, respectively.

In order to confirm the results, we further test our method on an

independent dataset. This testing dataset is combined from one set

of mRNA microarray data and two sets of miRNA microarray

data from three separated labs (see Materials and Methods). There

are 5 and 16 intronic miRNAs which showed high or low co-

expression patterns with their host genes, respectively (Table 4), in

which we evaluated the co-expression patterns of miRNA and host

Figure 1. The framework works as follows: A support vector
machine (SVM) classifier is trained based on the feature vector
extracted from the training samples. And then the performance of
this classifier is evaluated by the testing samples. The classifier is further
used to identify the human intronic miRNAs that are high co-expressed
with their host genes. Finally, the expression profiles of the identified
human intronic miRNAs are predicted by inferring that of their host
genes.
doi:10.1371/journal.pone.0004421.g001

Table 1. The feature vector of samples used in training the SVM.

Index Description

1 Distance from the transcription start position of the host gene to the start point of the host intron

2 Distance from the transcription start position of the host gene to the start point of the microRNA

3 Length of the host intron

4 Length of the microRNA/length of the host gene

doi:10.1371/journal.pone.0004421.t001

Intronic microRNA Expresion
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gene by calculating the Pearson’s correlation coefficient of miRNA

and host gene expression profiles. In this case, we trained the SVM

classifier with all samples in Baskerville et al.’ data and then

applied it on this independent testing dataset. As a result, 20 out of

the 21 predicted results turned out to be accordance with the

experimental results. More specifically, all the 5 experimental high

co-expressed intronic miRNAs, as well as 15 out of the 16 low co-

expressed intronic miRNAs were correctly predicted. The missing

one was hsa-mir-149, which showed low co-expression in the

experimental results but was predicted as high co-expressed by our

classifier. Finally, we got a total accuracy of 95% in this validation,

which indicates that our approach is robust (Table 3).

Identifying the tissues in which the human intronic
miRNAs are expressed

Using the 29 miRNA-host gene pairs of Baskerville et al., we

have constructed a SVM based classifier to predict whether an

intronic miRNA is high co-expressed with its host gene. Here we

applied this classifier on the rest 178 human intronic miRNAs

reported in miRBase database[21] to predict whether they are

high co-expressed with their host genes. Finally, 64 and 112 of

them were predicted to be high or low co-expressed with their host

genes, respectively (Supplementary Text S1). Together with the 12

high co-expressed intronic miRNA-host gene pairs in the training

dataset, we obtained 76 high co-expressed intronic miRNA-host

gene pairs. The expression profiles of these intronic miRNAs could

be estimated by associating with the expression profiles of their

host genes. By examining the expression profiles of the host genes

across 79 human tissues [22], we obtained the expression profiles

of 71 miRNAs in these 79 human tissues (Supplementary Text S2).

Validation through tissue-specific miRNAs
Among the high tissue-specific miRNAs identified by Landgraf

et al. based on small RNA library sequencing [23], 12 of them are

Table 2. The training dataset and the leave-one-out validation results on Baskerville et al.’ data [14].

microRNAs Host gene Training dataset*

1 2 3 4 co-expressions ER PR

hsa-mir-9-1 C1orf61 9933 0.0035 182.716 143.205 0.999 + +

hsa-mir-139 PDE2A 33502 0.00068 580.925 486.716 0.99 + +

hsa-mir-1-1 C20orf166 11323 0.00345 55.0571 45.9 0.968 + +

hsa-mir-95 ABLIM2 24504 0.00041 499.888 228.05 0.96 + +

hsa-mir-338 AATK 1412 0.00398 138.167 125 0.921 + +

hsa-mir-126 EGFL7 619 0.00862 91.3452 88.1071 0.888 + +

hsa-mir-25 MCM7 771 0.0092 9.39759 7.48193 0.838 + +

hsa-mir-204 TRPM3 43567 0.00128 239.523 3.77982 0.796 + +

hsa-mir-190 TLN2 12893 0.00043 2100.1 2060.25 0.663 + +

hsa-mir-153-1 PTPRN 3451 0.0045 50.4157 21.3371 0.626 + +

hsa-mir-98 HUWE1 2461 0.00097 198.585 187.542 0.503 2 2

hsa-mir-153-2 PTPRN2 5119 0.00008 410.163 377.105 0.499 2 2

hsa-mir-26b CTDSP1 629 0.01229 38.0526 34.8816 0.453 2 2

hsa-mir-30c-1 NFYC 4874 0.0011 746.761 700.875 0.406 2 2

hsa-let-7f-2 HUWE1 2461 0.00068 297.585 269.878 0.379 2 2

hsa-mir-99a C21orf34 69554 0.00019 4308.89 4288.26 0.335 2 2

hsa-mir-125b-2 C21orf34 69554 0.00021 4498.4 3898.42 0.297 2 2

hsa-mir-103-2 PANK2 1620 0.00226 359.468 353.701 0.27 2 2

hsa-mir-101-2 RCL1 10574 0.00114 736.718 727.141 0.226 2 2

hsa-let-7c C21orf34 69554 0.0002 4162.05 4133.27 0.067 2 2

hsa-mir-199a-1 DNM2 7602 0.00061 1419.26 1347.13 0.02 2 2

hsa-mir-32 C9orf5 12165 0.00066 450.652 333.087 20.22 2 2

hsa-mir-26a-1 CTDSPL 3524 0.00062 1410.88 1390.86 20.285 2 2

hsa-mir-128a R3HDM1 13938 0.00042 1652.9 1603.47 0.856 + 2

hsa-mir-103-1 PANK3 2235 0.00321 68.4675 45.8831 0.638 + 2

hsa-mir-15b SMC4 7415 0.00282 41.5464 40.6804 0.509 2 +

hsa-mir-16-2 SMC4 7415 0.00233 52.3375 49.325 0.504 2 +

hsa-mir-128b ARPP-21 48416 0.00055 1230.36 1224.2 0.444 2 +

hsa-mir-335 MEST 1633 0.00655 43.172 36.8387 0.442 2 +

*Once again, kicking one sample out as the testing sample, the rest 28 samples are the training dataset.
The four features (columns ‘‘1’’, ‘‘2’’, ‘‘3’’, and ‘‘4’’) of each miRNA are calculated based on the genomic coordinates of the miRNA, the miRNA hosting intron, and the host
gene.
ER represents the experimental results and PR represents the prediction results. The symbol ‘‘+’’ means high co-expression and the symbol ‘‘2’’ means low co-
expression.
doi:10.1371/journal.pone.0004421.t002
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intronic miRNAs and show high co-expression with host genes in

our prediction. Table 5 lists the specific tissues identified by

prediction and biological experiments for these 12 miRNAs,

respectively. As a result, 11 of the 12 overlaps were successfully

predicted (Table 5), in which mir-302 cluster contains mir-302a,

mir-302b, mir-302c, mir-302d, and mir-367. For example, we

predicted that hsa-mir-488 is high expressed in the amygdala,

temporal lobe, globu spallidus, cerebellum peduncles, cerebellum,

caudate nucleus, whole brain, parietal lobe, medulla oblongata,

prefrontal cortex, occipital lobe, hypothalamus, thalamus, subtha-

lamic nucleus, cingulated cortex, pons, spinal cord, fetal brain,

adrenal gland, adrenal cortex and pituitary, which mainly belong

to nervous systems except the adrenal gland and adrenal cortex

(Figure 2). As shown in the Figure 2, each bar represents one

tissue; the height of the bar represents the expression level of has-

mir-488 in that tissue. The tissues with high expression level are

highlighted in red and blue color, in which red bars represent

tissues of nervous systems.

The exception is mir-1-1, which was reported to be heart

specific by Landgraf et al. and was predicted to show high

specificity in skeletal muscle in our study. However, mir-1 was also

reported to show high specificity in both heart and skeletal in

several other studies, which indicates that all the above 12

predictions in our study are right [24,25].

Furthermore, we also predicted that hsa-mir-208b shows high

specificity in heart, skeletal muscle and tongue (Figure 3). As

shown in the Figure 3, each bar represents one tissue; the height of

the bar represents the expression level of has-mir-208b in that

tissue. The tissues with high expression level are highlighted in red.

However, hsa-mir-208b was not identified as tissue specific

miRNA by Landgraf et al. [23]. It was reported that hsa-mir-

208b show high heart-specificity by Liang et al. [24] and is

associated with various cardiovascular diseases [12]. These results

indicate that our prediction can provide us valuable assistance in

identifying the tissue specific miRNAs.

Discussion

In summary, we presented a machine learning based approach

to predict the co-expression patterns of the human intronic

miRNAs and their host genes, which show a high accuracy and

Table 3. Classification performance of the SVM classifier on two testing datasets.

Testing datasets Type Size Accuracy (%) Sensitivity (%) Specificity (%)

Baskerville et al.’ co-expression data + 12 79 83 71

2 17 76 87

The combined data* + 5 95 100 83

2 16 94 100

*the combined data is the consistent part of Baskerville et al’s miRNA profile data/Su et al.’ mRNA profile data and Barad et al.’ miRNA profile data/Su et al.’ mRNA profile
data.

The symbol ‘‘+’’ means high co-expression and the symbol ‘‘2’’ means low co-expression.
doi:10.1371/journal.pone.0004421.t003

Table 4. The prediction results on the combined testing data.

miRNAs
Host
gene

Pearson’s
correlation
coefficients

Calculated
results

Predicted
results

hsa-mir-28 LPP 0.2403 2 2

hsa-mir-140 WWP2 20.279 2 2

hsa-mir-149 GPC1 0.0334 2 +

hsa-mir-23b C9orf3 0.2401 2 2

Has-mir-194-1 IARS2 20.4155 2 2

hsa-let-7g TMEM113 0.6539 + +

hsa-mir-152 COPZ2 20.1915 2 2

hsa-mir-93 MCM7 0.7318 + +

hsa-mir-107 PANK1 20.254 2 2

hsa-mir-30e NFYC 0.1416 2 2

hsa-mir-208 MYH7 0.0741 2 2

Has-mir-218-1 SLIT2 0.8282 + +

Has-mir-106b MCM7 0.7093 + +

Has-mir-105-1 GABRA3 0.1756 2 2

hsa-mir-24-1 C9orf3 0.0961 2 2

hsa-mir-215 IARS2 20.6153 2 2

hsa-mir-214 DNM3 20.3261 2 2

hsa-mir-186 ZRANB2 0.8033 + +

hsa-mir-211 TRPM1 0.0692 2 2

Has-mir-199b DNM1 20.3855 2 2

hsa-mir-191 C3orf60 0.1413 2 2

The combined data is described as Table 3.
The symbol ‘‘+’’ means high co-expression and the symbol ‘‘2’’ means low co-
expression.
doi:10.1371/journal.pone.0004421.t004

Table 5. Tissue-specific miRNAs that are also found in our
predictions.

miRNAs *Tissues [23] miRNAs
Predicted
tissues

mir-1 Heart mir-1-1 Skeletal Muscle

mir-488 Nervous system mir-488 Nervous system

mir-218 Nervous system mir-218-2 Nervous system

mir-449a Reproductive System mir-449a Ovary

mir-9 Nervous system mir-9-1 Nervous system

mir-128a Nervous system mir-128a Nervous system

mir-153 Nervous system mir-153-1 Nervous system

mir-302 cluster Embryonic tissue
and cell lines

mir-302
cluster

lymphoblasts

*The specific tissues listed in this column are identified by biological
experiments [23].

doi:10.1371/journal.pone.0004421.t005
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validation and could be further extended to other species. We

further applied this approach to all the human intronic miRNAs

and predicted the tissues in which the miRNAs are expressed for

the miRNAs showing high co-expression pattern with their host

genes. We also tested the validation of our method by predicting

tissue specific miRNAs and performed a comparison with tissue

specific miRNAs identified by biological experiments. As a result,

our predictions are confirmed to be right. However, limitations

exist in our current approach, which could be improved in the

future study. We know that the process of miRNA and gene

transcription is very complex and could be affected by lots of

factors. Therefore, in order to improve the accuracy of the

classifier, it will be very important to find better features that are

associated with the expression of the intronic miRNAs and their

host genes, for example the trans-action elements. For the machine

learning methodology, currently we assigned the intronic miRNA-

host gene pairs into high co-expression ones and low co-expression

ones based on the correlation coefficients between the profiles of

the intronic miRNAs and their host genes. This treatment could

miss some detailed information, which may be useful in accurately

predicting the correlations of the expression profiles between novel

intronic miRNAs and their host genes. A regression model may

provide more details in this situation. For the sample dataset, the

current training dataset is small, which may affect the reliability of

the classifier. Therefore, the prediction accuracy could be

improved when more training samples become available.

Furthermore, the current approach can only deal with the

miRNAs that are within the introns of protein-coding genes.

Developing computational approaches that can be used to predict

the co-expression patterns for other kinds of miRNAs is also

important. In a conclusion, our method can provide help in not

only the understanding of miRNA expression and regulation but

also the function of miRNAs, which can be further used to infer

the miRNA-associated diseases.

Materials and Methods

The genome coordinate data of human miRNAs
We downloaded the genome coordinate data of the human

miRNAs from the miRBase [21] on August 2007 (gff-version 2).

This database records 528 items of genome coordinates of human

miRNAs. The genome coordinates were used to discriminate

Figure 2. The predicted expression profile of mir-488, which indicates that mir-488 mainly show high expression values in central
nervous system. Red and Blue bars represents high expression tissues, in which the red bar represents central nervous system tissues and the blue
bar represents adrenal gland and adrenal cortex, respectively.
doi:10.1371/journal.pone.0004421.g002

Figure 3. The predicted expression profile of mir-208b, which indicates that mir-208b mainly show high expression values in heart,
skeletal muscle, and tongue. Red bars represent high expression tissues. From the left to the right, the three red bars represent heart, skeletal
muscle, and tongue, respectively.
doi:10.1371/journal.pone.0004421.g003

Intronic microRNA Expresion
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whether one miRNA locates within the intron of a protein-coding

gene or not.

The genome coordinates of human protein-coding
genes

We obtained the genome coordinates data of known human

RefSeq genes through the UCSC (University of California Santa

Cruz) Table Browser (http://genome.ucsc.edu/, assembly: Mar.

2006, database: hg18, group: Genes and Gene Prediction Tracks,

track: RefSeq Genes, table: refGene) [26]. Each item in this table

lists one reference gene and its supplementary information, such as

name, chromosome number, strand, transcription start position,

transcription end position, coding region start position, coding

region end position, number of exons, exon start positions, exon

end positions etc. The genome coordinate data of protein coding

genes together with that of miRNAs were used to determine

whether a miRNA locates within the intron of a protein-coding

gene.

Calculating the genome features of human miRNAs
The four feature vectors for the SVM classifier were calculated

from the above genome coordinate data. We first mapped the

genome coordinates of human miRNAs and protein-coding genes

using Galaxy tool (http://g2.trac.bx.psu.edu/). We then calculat-

ed the lengths of all intronic miRNAs, the lengths of miRNA-

hosting introns, the lengths of miRNA-hosting genes, the distance

from the transcription start position of one host gene to its intronic

miRNA, and the distance of the transcription start position of one

host gene to the host intron. These parameters will be used as the

features of the samples (the miRNA-host pairs).

The dataset used in training and leave-one-out cross
validation

Baskerville et al. performed a human miRNA microarray

experiment across 30 normal tissues and investigated the co-

expression patterns of 29 pairs of intronic miRNAs and host genes.

Some pairs show high co-expression but some others show low co-

expression. In the dataset, we set a cutoff of correlation coefficient

at 0.6 to discriminate high co-expression and low co-expression.

We also performed a leave-one-out cross validation on this dataset.

The testing dataset
In order to test the generalization power of our approach, we

validated the method on an independent testing dataset containing

miRNA expression profiles as well as mRNA expression profiles. It

has been reported that microarray data from different platforms or

laboratories often show great differences. Therefore, to improve

the reliability and the persuasion of the results, we adopted two

sets of miRNA microarray data. One miRNA microarray dataset

was presented by Baskerville et al. [14], the other was obtained

from Barad et al. [27]. We downloaded the host gene expression

profile from Su’s mRNA microarray data which are across 79

normal human tissues [22]. The intronic miRNAs in Baskerville et

al.’s dataset and Barad et al.’s dataset were mapped to the host

genes in Su’s dataset, respectively. We then calculated the

Pearson’s correlation coefficients between the intronic miRNA

expression profiles and their host gene profiles for both miRNA

microarray datasets. Only those intronic miRNA-host gene pairs

that showed consistent correlation patterns in both two miRNA

microarray datasets was reserved for further analysis. As a result,

we obtained 21 intronic miRNA-host gene pairs, in which there

are 5 high co-expression pairs and 16 low co-expression pairs,

respectively (Table 5).

Support vector machine
Support vector machine (SVM) was introduced by Vapnik [28],

and has a comprehensive applications in many classification and

regression problems. The goal of SVM is to construct a classifier

from well-labeled data (the training data) that can be used to

classify the incoming unlabeled data (the testing data). For a binary

classification problem, for a given dataset, xi represents the feature

vector, while yi represents the class labels (i = 1,2,…N, where N is

the number of samples), where xi[Rd , yi[ z1,{1f g. Here, for the

intronic miRNA and host gene co-expression prediction problem,

the input vector dimension is 5 (d = 5). The class label +1

represents the high co-expression class, while 21 represents the

low co-expression class. Once the SVM was trained, it can be used

to predict the class label (high or low co-expression) for a new

sample (a new intronic miRNA and host gene pair). In this study,

the LibSVM package[29] was used to train the SVM intronic

miRNA and its host gene co-expression classifier and make

predictions in the test dataset. We chose the Radial Basic Function

(RBF) as the kernel function and tuned the parameters using the

grid search strategy in LibSVM.

Software availability
We implemented our approach as a web server which is free for

the scientific and technical community (http://cmbi.bjmu.edu.cn/

cepred/). The ‘‘cepred’’ software in linux and windows are also

available for the scientific and technical community when

requesting.

Supporting Information

Text S1 the predicted co-expression patterns of intronic miRNA

with their host genes

Found at: doi:10.1371/journal.pone.0004421.s001 (0.02 MB

XLS)

Text S2 The predicted expression profiles of 71 miRNAs in 79

human tissues.

Found at: doi:10.1371/journal.pone.0004421.s002 (0.09 MB

XLS)
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