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Abstract

Retinal networks must adapt constantly to best present the ever changing visual world to the brain. Here we test the
hypothesis that adaptation is a result of different mechanisms at several synaptic connections within the network. In a
companion paper (Part I), we showed that adaptation in the photoreceptors (R1–R6) and large monopolar cells (LMC) of the
Drosophila eye improves sensitivity to under-represented signals in seconds by enhancing both the amplitude and
frequency distribution of LMCs’ voltage responses to repeated naturalistic contrast series. In this paper, we show that such
adaptation needs both the light-mediated conductance and feedback-mediated synaptic conductance. A faulty
feedforward pathway in histamine receptor mutant flies speeds up the LMC output, mimicking extreme light adaptation.
A faulty feedback pathway from L2 LMCs to photoreceptors slows down the LMC output, mimicking dark adaptation. These
results underline the importance of network adaptation for efficient coding, and as a mechanism for selectively regulating
the size and speed of signals in neurons. We suggest that concert action of many different mechanisms and neural
connections are responsible for adaptation to visual stimuli. Further, our results demonstrate the need for detailed circuit
reconstructions like that of the Drosophila lamina, to understand how networks process information.
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Introduction

Drosophila, with its well-defined genetics, modular eye structure,

fully characterized synaptic layout of the first visual neuropil [1],

and accessibility for intracellular electrophysiology of single neurons

[2–4], is a powerful model for studying neural adaptation in vivo.

The first visual neuropile, the lamina (Fig. 1A), contains a system of

neurons consisting of photoreceptors (R1–R6) and interneurons,

these being large monopolar cells (LMCs: L1–L3) [5,6] and an

amacrine cell (AC) that co-process visual information [7]. While

photoreceptors depolarize and LMCs hyperpolarize to light

(Fig. 1B), their graded voltage responses are shaped together [3].

Photoreceptors project histaminergic synaptic terminals [8,9]

onto LMCs and an AC, whilst L2 and the AC in turn feed back

onto photoreceptor terminals via ligand-gated synapses (Fig. 1C).

The inhibitory feedforward pathway (R1–R6RLMCs/AC, hence-

forth simplified as R-LMC) [3,8–10] uses the same hclA

histamine-receptor, sometimes named ort [10], whereas the

feedback pathway (L2/ACRR1–R6, henceforth simplified as

LMC-R) is excitatory [3,11,12]. This circuitry results in negative

feedback via the reduction of excitation, which is a different

mechanism from direct feedback inhibition [3,13]. This simplified

view of processing, designated as R-LMC-R system, leaves out

cells and synapses in the laminal circuit that receive indirect R1–

R6 input (Fig. 1A), these being C2–C3 fibers, L4–L5, T1 and Tan

cells. The simplified R-LMC-R model also ignores glia, which

receives R1–R6 input through a different histamine-receptor, hclB

[1,10]. The roles of these 2nd- or 3rd-order connections and glia in

visual processing are still largely unknown.

In the steady state, because of the tonic release of neurotrans-

mitter [3,14], the membrane potential of photoreceptors is a

function of (i) light-mediated conductance and (ii) synaptic

conductance, mediated by L2 and AC negative feedback. One

outcome of this negative feedback can be to keep the photore-

ceptor membrane potential largely independent of the light

intensity, thus avoiding saturation [3]. When light intensity is

varied over time, the photoreceptor membrane potential is the

result of the dynamic interaction of the changes in the light-

mediated and the feedback-mediated synaptic conductances [3].

Because of the different time course of these conductance changes,

complex responses occur, including boosting of the photoreceptor

response to the onset of a light pulse [3].

In a companion paper [4], we have shown the relevance of

adaptation for efficient coding through in the R-LMC-R system.

Here we use these results to find the neural mechanisms for

enhancing the LMC output (Fig. 1C) to repeated naturalistic light
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Figure 1. Feedforward and feedback connections in the lamina are complex. A. Color-coded electron-micrograph shows a cross-section of
the neurons and synapses in a single lamina cartridge of the Drosophila optic lobe. R1–R6 are terminals of photoreceptors. Monopolar cells, L1 and L2,
are situated in the centre of the cartridge together with a terminal of a C3-cell from the 2nd visual neuropile, the medulla. Other monopolar cells, L3–
L5 lie more peripherally. C2 is a second medulla cell, whereas a indicates an amacrine cell (AC) and b indicate a T1 cell. Only L1–3 and AC receive
direct inputs from R1–R6 (green arrows). L4 receive inputs from AC and L4, L5 from AC and Tan (not shown), and T1 from AC [1]. L2 (blue arrows) and
AC (brown arrows) are the only direct feedbacks to R1–R6 terminals [1]. Higher-order feedback to the lamina from C2 and C3 fibers is indicated by
gray arrows. The figure is based on a modified EM image from Ian Meinertzhagen (http://flybrain.neurobio.arizona.edu/). The arrowheads highlight
only some of the complex interactions between the neurons in this network. B. In vivo intracellular recordings from intact Oregon-R Drosophila at
25uC. A R1–R6 photoreceptor depolarizes (due to opening of light-gated cation-channels, trp(l)) [36] and a LMC hyperpolarizes (due to opening of
histamine-gated Cl-channels hclA) [9] to light pulses, generating complex response waveforms. Here the saturating bright pulse is 1,000 times more
intense than the dim pulse, yet these cells can reliably respond to both of them. The LMC’s voltage response to the dim pulse is larger than its
response to the bright pulse, in contrast to the photoreceptor output. Note that the responses of LMCs reach their peak well before those of
photoreceptors. C. A block-diagram representing the feedforward (R-LMC) and direct feedback (L2/AC-R) pathways in which visual information flows
in the R-LMC-R system. In this paper, we perturbate these connections to work out whether they play a role in improving the neural representation in
the LMC output to repeated naturalistic contrast patterns [4].
doi:10.1371/journal.pone.0004306.g001
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stimuli. We again use the same naturalistic stimulation protocol to

study adaptation on behaviorally relevant time scales [4]. By

comparing the outputs of wild-type photoreceptors and LMCs to

those in which either the feedforward (R-LMC) or feedback (L2-R)

pathways are severely compromised, we show that the enhance-

ment of the LMC output via network adaptation in the Drosophila

eye needs both of these pathways. These findings suggest that

neural information processing is very distributed even at the very

first stage, the layer of first visual synapses.

Results

Results of our companion paper [4] suggested that the dynamic

improvement in the LMC output to repeated naturalistic stimulus

probably reflected a gradual increase in histamine-gated chloride

conductance [9]. There are two mechanisms that could modify

this ‘‘input conductance’’ in LMCs: (i) an increase in the open-

probability of postsynaptic histamine receptors, or (ii) an increase

in presynaptic histamine release probability, i.e. ligand concentra-

tion. It is likely that these mechanisms are continuously reset by

dynamic equilibrium between light- and feedback-mediated

conductances. We test these hypotheses by separately manipulat-

ing the strength of the synaptic feedforward (R-LMC) or feedback

(L2-R) pathways.

Testing the feedforward pathway: ort6 mutant lacks
adaptation

The feedforward pathway can be perturbed by faulty

transmitter receptors on the LMC membrane. Hence, to test the

contribution of the histamine receptors to the observed adaptation

dynamics in the R-LMC-R system, we recorded from photore-

ceptors and LMCs in ort6 mutants (Fig. 2). These flies have

desensitized histamine receptors in LMCs and AC [3,8,10].

Figure 2A shows the first, second and twentieth second in the

photoreceptor and LMC output of ort6 flies in response to dim,

middle-intensity and bright stimulation. The voltage responses of

ort6 photoreceptors were larger and faster than those of wild type

(WT) photoreceptors, whereas the responses of ort6 LMCs were

always smaller than in WT flies receiving similar stimulation.

These comparisons are not shown here, but see [3,4]. We have

recently shown evidence that reduced sensitivity of ort6 receptors

depolarizes LMCs and possibly ACs, and that this artificially high

membrane potential enhances their excitatory synaptic feedbacks

to the photoreceptor terminals [3]. Accordingly, the voltage

responses of ort6 photoreceptors are boosted [3]. The larger voltage

responses of ort6 photoreceptors could then enhance voltage-

sensitive histamine release [3,14] from photoreceptor terminals. In

agreement with this scheme, the amplitude range of ort6 LMCs

increased as a function of light intensity, reaching at bright

stimulation a similar range to that of WT LMCs at dim

stimulation. See also Fig. 2A in [4].

Ort6 receptors cannot boost LMC output to repeated
naturalistic stimulation

Ort6 synapses showed very limited gain adjustments with light

intensity, as judged by the slopes in the joint probabilities of

photoreceptor and LMC outputs at dim, middle and bright

stimulation (Fig. 2B, white lines). There were also no obvious

changes in gain over time (Fig. 2C). Consequently, there were no

clear differences in adaptation with light intensity, as depicted in

Figure 2D that shows the normalized changes for WT and ort6

LMCs. While WT LMCs had different adaptational properties

under dim and bright light, ort6 LMCs showed no difference. This

inability to change the dynamics over a time scale of seconds was

apparent in the absence of broadening of the probability

distributions of LMCs, as seen in Figure 2E, which showed only

a small shift but no change of distribution width. Thus, it seems

that unlike WT receptors, ort6 receptors lack a mechanism for the

time- or dose-dependent increase of LMC output during

stimulation, as indicated by their flat or decreasing sensitivity

over time (Fig. 2F).

What mechanism could cause such differences in the dynamics

of WT and ort6 receptors? The simplest explanation is that with

their reduced histamine sensitivity, ort6 receptors also have a

reduced ability to remove desensitization (deactivation). As the

time course of this process is slower than the activation of

histamine-gated channels [8], it should primarily affect the

transmission of low frequency signals. For corroboration, we

analyzed the frequency spectra of ort6 photoreceptors and LMCs.

These showed the expected light- (Fig. 3A) and time-dependencies

(Fig. 3C). The enhanced feedback of ort6 mutants [3] caused the

photoreceptor output to follow higher stimulus frequencies than in

WT flies [4], even up to 60–70 Hz, but otherwise they adapted in

a similar manner. On the other hand, ort6 LMC output had a

limited increase in frequency with stimulus repetition compared to

WT [4]. As suggested, ort6 LMC output showed a particularly

weak representation of low frequencies, failing to follow slow

changes in histamine concentration. The synaptic gain (Figs. 3B)

was low compared to WT (dotted lines). Concerning the dynamics

of frequency representation, there was a slight increase in the low

and middle frequencies (Figs. 3D), but this was small compared to

WT flies (dotted lines).

Testing the L2-R feedback pathway: L2-shiTS1 lacks
adaptation at 30uC

The L2-R feedback should exert network adaptation to R1–R6

photoreceptors by modulating their output [3]. Hence, to test

whether L2-R feedback affects the dynamics of histamine release

from photoreceptors and the observed adaptation dynamics of

photoreceptor and LMC output, we recorded from photoreceptors

and LMCs in temperature-sensitive L2-shiTS1 flies. In these flies

[15], shibireTS1 reversibly reduces signaling in L2-R connections at

28–30uC, cf. [3,15,16]. We can, thus, effectively switched off and

on synaptic feedback from L2-monopolar cells to R1–R6

photoreceptor terminals by warming and cooling the flies to

restrictive (30uC) or permissive (19uC) temperatures, respectively.

Because the rate of transmitter release depends on presynaptic

voltage, removing the excitatory L2 feed to photoreceptors should

lower their voltage level [3], and therefore reduce histamine

release. This, we hypothesize, should then reduce adaptability in

the synaptic signal transfer from R1–R6 to LMCs.

We first confirmed that synaptic throughput, and thus

adaptation to repeated stimulation, was normal in the L2-shiTS1

R-LMC-R system at permissive temperature. Figure 4A shows the

first, second and twentieth voltage responses of their photorecep-

tors and LMCs to the middle-intensity stimulus. Adaptation was

the same as for WT flies; the spread of responses narrowed in

photoreceptors (Fig. 4B; x-axis) and widened in LMCs (y-axis) with

the most probable synaptic gain (white lines) increasing with time.

Consequently, the distinctive adaptive trends, i.e. the standard

deviation (SD) in the photoreceptor or LMC outputs over time

(Fig. 4C), were similar in both flies. With L2-R feedback operating,

the LMC output was boosted over stimulus repetitions, cf. [4].

Adaptation in the other control flies was also similar (Fig. 5A–F).

In contrast, at restrictive temperatures, LMC output decreased in

L2-shiTS1 flies but not in control flies (Figs. 6 and 5A–F). Recordings

were performed after warming the flies for over five minutes, as this

was likely to deplete the synaptic vesicles in shiTS1 mutants [3]. In

Adaptation Mechanisms
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this situation, LMCs continued to receive histaminergic input from

photoreceptors (Fig. 6A). However, responses of both photorecep-

tors and LMCs appeared smaller than at 19uC, and their adaptation

dynamics were clearly reduced (Figs. 6B and 5D). With continuing

stimulation, the spread of both the photoreceptor (x-axis) and LMC

(y-axis) outputs stayed the same or narrowed slightly, while the most

probable synaptic gain (white lines) remained practically un-

changed, similar to ort6 flies (cf. Fig. 2C).

These findings imply that when L2-R feedback is reduced, both

histamine release from photoreceptors and the amplification of post-

synaptic signaling suffer. Hence, the adaptive trends in LMC output

should now track the photoreceptor input. With the mean voltage in

photoreceptor terminals falling, histamine release should slow

down, reducing the high-frequency content of the LMC output,

i.e. resembling dark adaptation [17]. These predictions were tested

by comparing the mean membrane potentials of photoreceptors

and LMCs and their adaptive trends in L2-shiTS1 flies to those of

controls at 19 and 30uC (Figs. 6C–D; Figs. 4C and S1).

Adaptation dynamics changed when L2-R feedback was

reduced at 30uC. First, the voltage range of L2-shiTS1 photore-

Figure 2. The ort6 R-LMC-R system show limited adaptation to naturalistic stimuli (NS). Throughput of the feedforward pathway from R1–
R6 photoreceptors to LMCs is compromised by ort6 receptors, which reduce histamine sensitivity by .10-fold [8]. A. Voltage responses of ort6

photoreceptors (mean6SD, gray, n = 7) and a representative LMC to a second long naturalistic stimulus (NS), during the first stimulus repetitions at
different luminance levels at 25uC. B. The corresponding probability density functions (PDFs) for R1–R6s (top) and LMCs (left) and the joint probability
density functions of the first 20 responses. In contour plots of jPDFs, hot colors denote high probability. The jPDFs quantify the input-output
transformations, characterizing the synaptic gain for the given luminance of stimulation. The most probable synaptic gain, i.e. the slopes of the white
lines, is quite invariable. C. The photoreceptor and LMC PDFs and jPDFs shown at the 1st, 2nd and 20th s of bright stimulation. Note that the synaptic
gain (white lines) varies little over time unlike in the WT system [4]. D. The normalized responses of ort6 (blue) and WT Oregon-R LMCs (black) to dim
(thin traces) and bright stimuli (thick traces). Ort6 receptors mimic extreme ‘‘light adaptation’’, making the speed (time course) of the LMC output
invariable at different intensities. E. High resolution PDFs of photoreceptor (left) and LMC (right) outputs shown at different times during bright
stimulation. The PDFs of ort6 photoreceptors show a gradual compression in voltage range, whilst the PDFs of ort6 LMCs remain unchanged after the
first second of stimulation. F. The SDs of voltage responses indicate that the adaptive trends in the photoreceptor or LMC outputs are quite similar for
each luminance level. Thus, sensitivity of these cells either remains the same or reduces gradually during repetitive stimulation, unlike in WT LMCs, in
which the sensitivity increases over stimulation [4]. WT LMC output has an increasing trend, similar to Fig. 1C. SDs are from the boxed data (201–
1000 ms) in A.
doi:10.1371/journal.pone.0004306.g002
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ceptors and LMCs shifted (data not shown). As expected, the mean

potential of L2-shiTS1 photoreceptors hyperpolarized in compar-

ison to the WT photoreceptors by 23.060.8 mV (mean6SD,

n = 6 cells; over 1–20 s, data measured in the somata), further

supporting the previous findings of L2-R feedback being excitatory

[3]. Likewise, L2-shiTS1 LMCs were more depolarized than WT

LMCs (up by 11.060.5 mV; mean6SD, n = 5 cells; over 1–20 s),

indicating that they received less histamine (histamine hyperpo-

larizes LMCs). Second, the utilization of the voltage range (SD) of

L2-shiTS1cells diminished over time (Fig. 6C). Here, 23 out of 29

LMC recordings (dim, middle and bright stimuli) were adaptation-

deficient (right), having approximately constant or decaying trends

similar to those of R1–R6 (left). The remaining six showed only a

small increase (Fig. 5D). Because L1 and L2 are the largest cells in

the lamina, and thus the most likely recording sites, these data

must include both L1 and L2 cells. Therefore, reducing the L2-R

feedback must affect the outputs of both the L1- and L2-pathways.

Notice that warming naturally accelerated response dynamics (cf.

Fig. 5A–B) presumably by speeding up biological processes [18],

thus making the adapting trends in the LMC output also faster.

Because the genetic controls (Figs. 4–5) performed as WT flies,

and adaptation in the WT and L2-shiTS1 R-LMC-R systems

occurred similarly at 19uC (Fig. 6D, blue), the differences in the

responses of L2-shiTS1 flies at 30uC (red) had to result from

reducing L2-R feedback. Hence, we could approximate its effect

on adaptation by subtracting the outputs of L2-shiTS1 cells from

those of the corresponding WT cells. It emerges that L2-R

feedback over the first 20 s of naturalistic stimulation was

necessary for sensitivity control of synaptic signal transfer, boosting

the R1–R6 and LMC outputs by ,15% and ,40%, respectively.

L2-R feedback participates in adaptive ‘‘whitening’’ of
LMC output

How does the L2-R feedback affect the frequency spectra of

photoreceptor and LMC outputs? Figures 7A and B show these

frequency spectra for the 1st, 2nd and 20th voltage responses to the

stimulus in L2-shiTS1 and WT flies (gray) at 30uC. The stronger

WT frequency spectra indicated that L2-R feedback boosted both

photoreceptor and LMC output. More specifically, the relative

differences between the WT and L2-shiTS1 spectra (Fig. 7C;

controls in Fig. S1) showed that amplification by L2-R feedback

increased with time, occurring mostly at the middle- and high-

frequencies of the LMC output (gray areas).

We then compared these relative differences for the corre-

sponding photoreceptor and LMC outputs (Figs. 7D and E,

respectively) over the signaling range (2 to 100 Hz) at permissive

and restrictive temperatures. We were not interested in the

response frequencies higher than 100 Hz, because these mostly

contain noise. At permissive temperature, the enhancement of

photoreceptor and LMC outputs in the L2-shiTS1 R-LMC-R

system was marginally stronger than in WT (cf. Fig. 5C), leading to

slight but insignificant decays in their output ratios over time. In

contrast, at restrictive temperature, these output ratios grew

significantly and progressively during stimulus repetitions with L2-

Figure 3. The ort6 R-LMC-R system lacks adaptational enhancement of low frequency signals. A. Mean frequency spectra of seven ort6

photoreceptors (left) and a representative LMC (right) to dim, middle and bright naturalistic stimuli (NS). Inset shows the normalized LMC frequency
spectra. B. Synaptic gain is the highest with bright stimulation. Corresponding WT synaptic gain (dotted lines) is given for comparison, from [4]. C.
Changes in ort6 photoreceptor (left) and LMC (right) frequency spectra for 20 seconds of repeated bright stimulation. The 1st (black), 2nd (red) and
20th (green) frequency spectra, respectively. D. The frequency range of ort6 synaptic gain, dominated by high frequencies, spreads only marginally
over time in comparison to the average WT Oregon-R synaptic gain (dotted lines) for the same experiment [4]. Error bars are SDs.
doi:10.1371/journal.pone.0004306.g003
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R feedback boosting the WT photoreceptor and LMC outputs by

,15% and 40%, respectively. The matching time-domain values

(cf. Fig. 6D) confirm the frequency analysis.

L2-R feedback improves signal-to-noise ratio of LMC
output

Without L2-R feedback the L2-shiTS1 R-LMC-R system failed

to adapt appropriately and the size and speed of both

photoreceptor and LMC outputs diminished over stimulus

repetition. To measure how this deficient adaptation changes

their signaling performance, we calculated their signal-to-noise

ratios for the L2-shiTS1 and control systems at permissive and

restrictive temperatures (Fig. 8). Signal-to-noise ratio estimation

assumes that the system operates stationarily, and that signal and

noise add linearly the response. These assumptions are not fully

true for neural responses; see [19]. Signal-to-noise ratio of

photoreceptors and LMCs are underestimates. The noise, i.e. the

difference between the signal (mean response) and individual

responses, includes both adaptation and stochastic variability.

However, since here each signal-to-noise ratio was calculated using

data sections in which the major adapting trends had already

subsided (10–20th s) and using the same amount of data

(1161,000-points), their means could be compared. Thus, we

used signal-to-noise ratio only as an approximate measure of the

impact of L2-R feedback on neural coding by comparing these

estimates in the test and control R-LMC-R systems.

At permissive temperatures, the average signal-to-noise ratio of

L2-shiTS1 photoreceptors and LMCs matched those of controls

(Fig. 8A and B, respectively). Pooling the inputs from six

photoreceptors for each sampling point in a visual scene [20]

boosted the signal-to-noise ratio in LMCs, broadening its

frequency range over that of photoreceptors [3,17,21]. However,

when L2-R feedback was reduced at 30uC, photoreceptor and

LMC signal-to-noise ratios changed (Figs. 8C and D, respectively).

There was a slight improvement in the signal-to-noise ratio of L2-

shiTS1 photoreceptors compared to WT, suggesting that possibly

other neural feedbacks to photoreceptors (such as amacrine cells)

were acting to improve the faulty synaptic signal transfer by

increasing the network regulation on photoreceptor output; see

[3]. Alternatively, L2-R feedback could be detrimental to the

photoreceptor signal-to-noise ratio as defined in this instance. It is

also possible that the role of L2-R feedback is not to maximize

signal-to-noise ratio at the level of the photoreceptor. However,

resolving this issue requires more focused studies in the future.

In agreement with the decline in LMC output above (cf.

Fig. 7D), the signal-to-noise ratio of L2-shiTS1 LMCs dropped to

,1/3 of the signal-to-noise ratio of WT LMCs and other genetic

controls. This drop was particularly evident in middle and high

frequencies, where the responses of L2-shiTS1 LMCs are propor-

tionally diminished most (cf. Fig. 7C and Fig. S1D). Noticeably, the

signal-to-noise ratio of L2-shiTS1 LMCs was also less than that of

the photoreceptors. Thus, normally functioning L2-R feedback in

WT flies helps to make the voltage responses of LMCs not only

larger and faster but also less noisy.

Discussion

In the preceding companion study [4], we showed that network

adaptation in the R-LMC-R system boosts under-represented signals

in the LMC output to repeated stimulation, which increases the flow

of visual information toward the Drosophila brain. The present study

was therefore aimed at understanding how network adaptation makes

it possible to efficiently encode information. Through using

synaptically altered flies (Fig. 9), we showed that feedforward and

feedback pathways are necessary components for network adapta-

tion, contributing to both ‘‘flattening’’ and ‘‘whitening’’ of LMC

output. Most of this function can be removed by tampering with the

feedforward, e.g. by ort6 mutation, or the feedback pathways, e.g. by

reducing synaptic transmission from L2 cells back to R1–R6 cells.

The defective R-LMC pathway sped up the LMC and probably AC

output, mimicking extreme light adaptation, while the defective L2-R

pathway slowed down the LMC output, mimicking dark adaptation.

This study, thus, further suggests that network adaptation plays an

important role in matching the neural encoding strategies efficiently

to environmental stimulus conditions.

Network adaptation involves both feedforward and
feedback pathways

Voltage responses in LMCs with genetically altered synapses

lack adaptation and low frequency (ort6; Fig. 2D) or high-frequency

information (L2-shiTS1 at 30uC; Figs. 7C and 8D). What do these

differences tell about the mechanisms of network adaptation in

WT flies?

Results from ort6 flies (Fig. 2) strongly suggest that their mutated

receptors are largely desensitized during naturalistic stimulation

and their low affinity for histamine [8] makes removal of

Figure 4. Adaptation happens normally in the L2-shiTS1 R-LMC-R
system at 19uC. At this permissive temperature, photoreceptor and
LMC outputs to a repeated naturalistic stimulation (NS) in L2-shiTS1 cells
are similar to the corresponding outputs of WT Canton-S cells. A. The
1st, 2nd and 20th voltage responses of R1–R6 photoreceptors
(mean6SD, gray, n = 6, above) and LMCs (mean6SD, gray, n = 6, below)
to middle intensity stimulation. B. The corresponding photoreceptor
and LMC PDFs and jPDFs during bright stimulation. The most probable
synaptic gain (the slope of white lines) increases over time, similar to
WT [4]. C. The adaptive trends of photoreceptor (left) and LMC (right)
output, measured as SD the boxed data in A (201–1000 ms) to
repeated stimulation. Adaptation dynamics are similar in the L2-shiTS1

(black) and WT (gray) R-LMC-R systems.
doi:10.1371/journal.pone.0004306.g004
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Figure 5. Genetic controls shows that adaptation in LMC output is dampened by reducing L2-R feedback. Statistical characterization of
adaptive trends is for 4-days-old L2-shiTS1, WT and control flies (UAS-shiTS1; L2-Gal4), all having Canton-S (CS) red genetic association. The recordings
are at 19uC (blue) and 30uC (orange). A. Typical high-quality voltage response of a LMC to a bright repetitive naturalistic stimulation (NS) at 19uC. This
data is from a UAS-shiTS1 fly. Sensitivity, i.e. change in LMC output (gray circles) is defined as the mean of the standard deviations of consecutive
response segments to a second long naturalistic stimulus (NS) pattern, from the 2nd to 20th s (dotted box, each data point is calculated from 800-ms
data sections as in Fig. 2). This change is then plotted as a percentage, in respect to the 1st response, showing 75% increase in the LMC output in
20 seconds. B. Voltage response of the same LMC, but at 30uC. Notice the faster adapting trend. LMC output increases 30% in 3 seconds before
settling to 10%, due to faster bioreactions at the higher temperature [18]. Accordingly, the voltage responses at 30uC are often smaller than at 19uC.
C–F. Changes in the mean LMC output of all recordings (with adequate stability) plotted against their maximum responses at 19uC (left) and at 30uC
(right) for different flies as probability distributions. The left hemi-field indicates decaying and the right increasing LMC output. The fits show the
mean correspondence between the adapting trends and maximum responses. At 19uC, the fits lie to the right, i.e. the larger the response the larger is
its adaptational boosting over the duration of the recording. C. WT Canton-S LMC output is boosted in 33/36 recordings (92%) at 19uC and 27/34
recordings (79%) at 30uC. D. L2-shiTS1 LMC output is boosted in 21/27 recordings (78%) at 19uC, but only 6/29 recordings (21%) show a small increase
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desensitization, i.e. return of sensitivity, difficult. When only

vigorous changes in histamine input remove desensitization and

briefly reopen the channels, ort6 LMCs integrate naturalistic

stimuli inefficiently, generating fast responses at all luminance

levels (Fig. 2D). Here, the reduced histamine-sensitivity of ort6

receptors [8,10] further depolarizes LMCs [3] and likely ACs,

increasing their excitatory feedback to R1–R6. Thus, even dark-

adapted photoreceptor terminals can be driven toward light-

adapted potentials [3]. Such paradoxical extreme ‘‘light adapta-

tion’’ reduces valuable redundancies in naturalistic stimuli,

preventing ort6 synapses from improving their transmission by

previous experience. Such ‘‘light adaptation’’ is particularly

detrimental at dim stimulation (low signal-to-noise ratio) where

the best coding strategy is to amplify slow visual events [3,21].

Failure to adapt therefore compromises the quality of neural

images for all but extremely bright stimulation (Fig. 2A) [3].

WT LMCs and LMCs from genetic controls for L2-shiTS1, in

contrast, adapt appropriately at different luminance levels [4]. The

first response is always desensitized (cf. Fig. 5A), but with repetitive

stimulation the sensitivity gradually returns, improving the

amplitude and frequency spectra (Fig. 3D; dotted lines) of the

responses [4]. As this happens at different rates at different

luminance levels, the findings imply that adaptation is also coupled

to the rate of histamine release [4].

Recordings from L2-shiTS1 flies at 19 and 30uC (Figs. 4 and 6)

verify the role of L2-R feedback in network adaptation. Reducing

this feedback removes an important sensitivity control mechanism

[3], reducing and slowing down the synaptic signal transfer from

R1–R6 photoreceptors to LMCs. Therefore, unlike with mutated

histamine receptors, responses of LMCs with impaired L2-R

feedback fail to gather relevant high-frequency information in

naturalistic stimuli (Figs. 7C–D and 8D), but again we see little

adaptive trends in the LMC output (Figs. 6C–D).

Taken together (Fig. 9), these findings suggest that the

dynamically adjusted equilibrium between the light-mediated

conductance, i.e. histamine-gated Cl2conductance, and feed-

back-mediated synaptic conductances [11,12] in WT flies could

facilitate matching the coding strategy of the retinal network to the

ambient illumination. The findings further suggest that the

probability of histamine release from photoreceptors could be

dynamically matched to the opening probability of histamine-

channels in LMCs so that the transmitter can deliver the message

as best intended [21,22] at different luminance levels.

We have considered the mechanisms of network adaptation in

our experimental paradigms independent of high-order processing

in the fly brain. However, it is probable that the tendency of flies to

view ‘‘interesting’’ objects [23,24], i.e. top-down regulation, also

affects the throughput of the first visual synapses. Every synaptic

layer from the eyes to the brain contains extensive feedback

connections. For example, the next processing layer, the medulla,

is linked retinotopically to the lamina by C2–C3 fibers [1,11,12],

and we expect that these and other circuits in the medulla [25,26]

are also participating in the early processing of visual information.

Role of other synaptic connections in early visual
processing

Although L2-R feedback is not the only local feedback

connection to R1–R6 photoreceptors, disrupting it greatly lowers

at 30uC (when L2-R-feedback is reduced). These population means differ significantly (p = 0.00004, ANOVA, one-way Bonferoni test). Thus, LMC
output of L2-shiTS1 decreases at 30uC (gray highlight), in contrast to all other genotypes that show an increase over time. E. UAS-shiTS1 LMC output is
boosted 11/14 recordings (78%) at 19uC and 20/27 recording (74%). F. GAL4-L2 LMC output is boosted in 25/33 recordings (76%) at 19uC and 25/27
recordings (93%) at 30uC.
doi:10.1371/journal.pone.0004306.g005

Figure 6. Adaptation in the L2-shiTS1 R-LMC-R system is reduced
at 30uC. At this restrictive temperature, ShibireTS1-proteins should block
endocytosis [16] in L2s, reducing their feedback to R1–R6 photorecep-
tors in L2-shiTS1 flies. A. The 1st, 2nd and 20th voltage responses of R1–R6
photoreceptors (mean6SD, gray, n = 6, above) and LMCs (mean6SD,
gray, n = 4, below) to middle intensity naturalistic stimulation (NS) at
30uC (light yellow panels). The responses are somewhat smaller than at
19uC, cf. Fig. 4A. B. The corresponding probability density functions,
PDFs, and joint probability density functions, jPDFs, during bright
stimulation at 30uC. The most probable synaptic gain (white lines)
remains invariable over time. C. SD of photoreceptor (left) and LMC
(right) output at different times to repeated stimulation at 30uC. The L2-
shiTS1 photoreceptor and LMC outputs lack the adaptational boosting of
WT controls (gray). D. The difference: 100*[WT(output)-L2-shiTS1(out-
put)]/ L2-shiTS1(output) in restrictive temperature (30uC, red) is
calculated for 19uC and 30uC data separately. At 30uC, L2-R feedback
in L2-shiTS1 flies is reduced, but WT flies have functional L2-R feedback.
The difference in the corresponding LMC outputs shows that L2-
feedback boosts WT LMC output to repeated stimulation by ,40%. L2-
feedback seems also to boost WT R1–R6 output by ,15%. The control
experiments at 19uC show that L2-feedback functions normally in both
L2-shiTS1 and WT cells, with only little differences in their relative
strengths (cf., Fig. 4).
doi:10.1371/journal.pone.0004306.g006
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Figure 7. Adaptation acting through L2-R feedback helps to ‘‘whiten’’ LMC output. A. R1–R6 photoreceptor and B LMC mean frequency
spectra for the 1st (left), 2nd (middle) and 20th (right) voltage response of L2-shiTS1 (blue, orange, green) and WT Canton-S (gray) flies at 30uC. The
recordings show mean6SEM (photoreceptors: n = 7–9, LMCs: n = 5–12). C. The relative difference in the frequency spectra between WT and L2-shiTS1

LMC (gray areas) and photoreceptors (transparent areas under dotted lines). L2-R feedback ‘‘whitens’’ and extends the frequency range of LMCs over
time by boosting mostly high-frequency signals (50–100 Hz). D–E. The panels show the mean6SEM of the relative differences in C for R1–R6 and
LMCs, respectively, at 19uC (white) and 30uC (gray). Gray bars differ significantly from white bars in all comparisons. L2-R feedback increases
photoreceptor and LMC output by ,15% and ,40%, respectively, over time.
doi:10.1371/journal.pone.0004306.g007

Figure 8. L2-R feedback improves the signal-to-noise ratio (SNR) of LMC output. A–B. The panels show the signal-to-noise ratio in L2-shiTS1

(blue) and WT (black) photoreceptors and LMCs, respectively, to the same middle intensity naturalistic stimulation (NS) at 19uC (permissive
temperature). C–D. The panels show the signal-to-noise ratio in L2-shiTS1 (red) and WT (black) photoreceptors and LMC, respectively, to the same
stimulus at 30uC (restrictive temperature). Notice that the signal-to-noise ratio of L2-shiTS1 LMCs collapses at the restrictive temperature. Notice also
that L2-Gal4 and UAS-shiTS1 LMCs have similar signal-to-noise ratios to WT LMCs, indicating that Gal4 and the UAS lines themselves did not influence
signaling performance of the R-LMC-R system. Mean6SEM are shown, n is the number of cells in each group.
doi:10.1371/journal.pone.0004306.g008
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network adaptation. What roles does this leave for amacrine and

L4 cells [1] in local information processing?

Amacrine cells, which share the histamine receptors of LMCs,

should hyperpolarize to light increments and contribute in the

sensitivity control of R-LMC synapses [3,27]. In addition, lateral

branches of amacrine cells and L4 cells connect neighboring

processing units [28]. Thus, they should mediate interactions

between ommatidia that represent different points of the visual

field. Unfortunately, we still lack direct evidence for these ideas.

Nevertheless, all laminal cells participate in routing and

processing information in a dynamic and homeostatic manner;

individual sub-networks can extend their roles if their neighbors

are damaged or silenced [3,29]. For instance, signals cross the

faulty ort6 receptors, but only because the histamine release from

photoreceptors is boosted by synaptic feedback. For similarities to

the Drosophila neuromuscular junction, see [30]. Thus, when a cell

is embedded in the many parallel processing tasks of a network, its

coding may vary from one stimulus situation to another, or it may

perform several coding functions in conjunction.

Relating physiology to anatomy and visual behavior
This work has highlighted the benefits of in vivo physiology, i.e.

live-monitoring of neural activity, for understanding the role of

neural circuits in local information processing. If we cannot assess

the natural flow of information within the circuits, it is difficult to

understand their processing properties.

Recently, it was shown that the visual behavior of Drosophila with

genetically-inactivated L1 or L2 monopolar cell pathways differed

significantly, suggesting that these pathways have specific roles in

motion detection [15]. However, the lack of physiological evidence

leaves many questions open. For example, why is the L2 pathway

more sensitive to pattern contrast and low light intensity than the

L1 pathway?

Here, recordings from L2-shiTS1 flies provide a possible answer.

By compromising the L2 pathway, we also affect the L2-R feedback

that directly modulates the neural function of the L1 pathway.

Thus, when information flow is reduced in the L2-pathway, the

speed of signaling in the L1 pathway should slow down

dramatically. The L1 output would deteriorate simply because

L2-R feedbacks can no longer rescale the frequency spectrum of

R1–R6 output synapses, including the input to L1 (Fig. 7C). In

contrast, we predict that when the L1 pathway is inactivated alone,

the fly brain still receives high-precision frequency-modulated

information via the L2 pathway. At dim or at low contrast

conditions of low signal-to-noise ratio, these effects naturally impact

the behavior of warm L2-shiTS1 flies the most (cf. Fig. 8D).

Therefore, with the behavioral data alone, conclusions about

network function are only suggestive; we also would interpret the

data reported by Rister et al. [15] as showing that the L2 pathway

is more sensitive for certain stimuli than the L1 pathway. Instead,

physiological evidence at 30uC from L2-shiTS1 flies clarify that L1s

are likely to be underperforming, as their out-of-tune photorecep-

tor input (owing to altered/silenced L2-R feedback) lacks the

relevant stimulus frequencies. Hence, at least in their input level,

L1s and L2s are equally sensitive in healthy WT flies as they share

the same number of synapses [6,7].

Materials and Methods

Flies
Wild type (WT) Oregon-R and Canton-S strains, ort6 flies

(sometimes named ortP306) [8], and L2-shiTS1 flies, in which

expression of a shibireTS1 transgene [16] was driven using L2-Gal4

(previously named 21D-Gal4, targets L2 monopolar cells with

relative selectivity) [15,31] were used for recordings.

The ort6 flies have Oregon-R background [32] and wild type eye

pigmentation. The L2-shiTS1 flies with insertions of P{w+, UAS-

shibireTS1} and P{w+, L2-Gal4} on chromosomes two and three,

respectively (w+; UAS-shibireTS1/+; L2-Gal4/+), were generated (with

their 1st chromosome homozygous, and the 2nd and 3rd chromo-

somes heterozygous for our original Canton-S stock). To make this

stock, we first crossed each insertion line to an ‘‘X-chromosome

Canton-S double balancer stock’’ (w+; If/CyO; MKRS/TM6b) over

two generations to produce w+; UAS-shibireTS1/CyO; MKRS/TM6b

and w+; If/CyO; L2-Gal4/TM6b stocks. These stocks were then

crossed to each other to produce a balanced stock carrying both

insertions (w+; UAS-shibireTS1/CyO; L2-Gal4/TM6b), which was

further crossed to our wild type Canton-S strain to produce w+;

UAS-shibireTS1/+; L2-Gal4/+ progeny. UAS-shibireTS1 and L2-Gal4

control flies were made in a similar manner, first balancing with

‘‘Canton-S single balancer stocks’’, which contain non-balancer

chromosomes of Canton-S origin (w+; Gla/CyO; + and w+; +;

MKRS/TM6b, respectively), and then crossing back to our Canton-

S line to produce w+; UAS-shibireTS1/+; + and w+; +; L2-Gal4/+.

All flies were reared on standard medium at 18uC in 12:12

light:dark cycle [32,33] and females were selected for electrophys-

iological experiments 4 days after eclosion. These flies have fully

Figure 9. Feedforward and feedback pathways are necessary
components for network adaptation. In the WT R-LMC-R system
(top), LMC output increases with naturalistic stimulus (NS) repetitions
by network adaptation (increasing sensitivity) set by a dynamic
equilibrium between light-mediated conductance and feedback-medi-
ated synaptic conductances. In the ort6 R-LMC-R system (middle),
mutated ort6 histamine receptors act as a strict high-pass filter [8],
reducing throughput of the feedforward pathway and depolarizing
LMCs and AC. This amplifies the feedback connections to photorecep-
tors, pushing the dynamic equilibrium toward extreme ‘‘light adapta-
tion’’ in all luminance levels. Thus, LMC output contains predominantly
high-frequency signals and cannot be improved over time (decreasing
sensitivity). In the L2-shiTS1 R-LMC-R system at 30uC (bottom), L2-R
feedback is reduced and the dynamic equilibrium shifts toward dark
adaptation. As less information is returning to photoreceptors, their
output is modified less efficiently and the LMC output desensitizes,
tracking mostly the photoreceptor adaptation (decreasing sensitivity).
doi:10.1371/journal.pone.0004306.g009
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matured visual systems; their photoreceptors and LMCs respond

adequately to naturalistic stimulation (NS), for all the genetic

backgrounds used. Control experiments for ort6 and WT Oregon-

R using younger and older flies (2–12 days old) [3] indicated that

after 4 days recordings from mutant LMCs become more difficult.

In vivo electrophysiology
Flies were prepared for in vivo experiments as in [2]. During the

experiments, the flies were immobilized within a brass fly-holder,

placed on a Peltier-device [18]. The ambient air temperature was

maintained by air conditioning at 19.060.5uC, while the head-

temperature of the flies was set to 19, 25 or 3060.5uC through a

feedback-controlled Peltier-device [18]. Because of the low success

rate of stable recordings in small LMCs (.10 min) while warming or

cooling the flies, L2-shiTS1 experiments and their genetic controls were

performed separately at 19uC and 30uC mostly using different flies.

Acclimatization of over 5 min before the experiments ensured that

the temperature-sensitive endocytotic shibireTS1-function should either

block (30uC, restrictive temperature) or allow (19uC, permissive

temperature) signaling [3] via L2-R feedback connections.

Intracellular voltage responses and selection criteria
To prevent poor penetrations or electrodes biasing our analysis,

only stable high quality recordings were used. Such photoreceptors

had resting potentials in darkness ,260 mV and maximum

responses to bright naturalistic stimulation .35 mV (WT Oregon-

R, WT Canton-S, ort6, L2-shiTS1, L2-Gal4, UAS-shiTS1). For the

selected LMCs, the resting potentials were ,230 mV and

maximum responses .15 mV at 19–25uC (WT Oregon-R, WT

Canton-S, L2-shiTS1, L2-Gal4, UAS-shiTS1) or .10 mV (ort6). At

.30uC, responses of LMCs are slightly smaller, because of faster

signaling (Fig. 5A–B). Note that some LMCs included here had

smaller amplitudes than in our previous study [3] because their

response dynamics, when normalized, were similar to those of cells

with the largest responses (30–50 mV). See Figures 5C–F,

including signal-to-noise ratio in Figure 8.

Light stimulation and data collection
These methods were identical to the ones described in the

companion paper [4]. In brief: naturalistic light intensity time

series from the van Hateren natural-stimulus-collection, http://

hlab.phys.rug.nl/archive.html [34] were use to drive a LED. The

light stimulus was delivered to the fly eye by a randomized fiber

optic bundle, secured on a Cardan arm system. The light stimulus

subtended 5u, as seen by the fly, and its brightness was controlled

in an intensity range that covered 4 log-units [3,19] from ,600 to

,66106 photons/s (I0). Figures show results for dim- (1,850),

medium- (60,000) and bright-light (1.856106 photons/s). Typi-

cally, the cells were first dark-adapted for 30 s and then presented

with dim stimulation before brightening the stimulation. Between

luminance levels the cells were re-dark-adapted for 30 s. The

stimulus and response were sampled at 10 kHz.

Probability density and joint probability functions
The probability density (PDF) and joint probability density

(jPDF) functions of the photoreceptor and LMC outputs to the

repeated stimulation were measured by mapping one-to-one their

corresponding voltage values at 1 ms time-resolution over the

evolution of the experiments as explained in the part I [4].

Adaptive trends in continuous recordings
We quantified adaptive trends in a cell’s responsiveness to the

same repeated stimulus pattern by taking the standard deviation

(SD) of the first 20 voltage responses, using the last 8,000 samples

(time points) of each response as explained in the part I [4]. In

general, SD was used as a simple metric to track adaptive changes

in photoreceptor and LMC outputs, since we have shown that

their wider distributions equal greater sensitivity [4].

In total, ,83% of all the recorded WT LMC outputs (180/218)

to repetitive naturalistic stimulation showed adaptational increase

in sensitivity at the preferred temperatures (19–25uC) [35]. Thus,

only ,17% of the LMCs showed no trends or decreasing

sensitivity; some of which we assessed to be of good quality. This

suggests that either one LMC subgroup (L1–L3) or AC may adapt

differently. Note, if these cells occupied equal volumes (untrue)

they would share the same probability of being penetrated

(P = 0.25). However, it is more likely that ,2/3 of the recordings

were from the largest cells (L1 and L2), both of which therefore

must show adaptational increase in sensitivity to repeated stimuli.

It is also our experience through electrophoretically staining

Calliphora LMCs that most recordings are from L1–L2 cells, but

that L3 response waveform to light is relatively similar to those of

L1–L2s [6]. See also [5].

Frequency Analysis
We quantified changes in photoreceptor and LMC output in

frequency domain by comparing corresponding frequency spectra

(spectra) of the photoreceptor and LMC outputs in WT and

mutant flies at each second of repetitive stimulation. Matlab’s Fast

Fourier Transform (FFT) algorithm was used to calculate the

power spectra S Ri fð Þj j2T for each 1 s long response (after

resampling at 1 kHz) [4]. The square root of the power spectra

then gave the mean frequency spectrum S Ri fð Þj jT for each

response to the repeated stimulus (Fig. 7).

The mean frequency spectra for each luminance level were

averaged (Fig. 3B). The ratio between the corresponding mean

photoreceptor and LMC frequency spectra gave the synaptic gain

(Fig. 3) function for each stimulus presentation or for each light level.

Signal-to-noise ratio (Fig. 8), SNR(f), is the ratio between the

signal S S fð Þj j2T and noise S N fð Þj j2T power spectra. The signal

power spectrum was calculated from the mean voltage response,

using 10–20th s responses to the same stimulus pattern. At this

point most of the adapting trends have already subsided as the

responsiveness approaches relative stationarity (cf. Fig. 6C). The

noise power spectra were calculated from the corresponding noise

traces, i.e. the differences between individual responses and signal.

The data chunks were divided into 50% overlapping stretches and

windowed with a Blackman-Harris 4-term window, each giving

three 500-points long samples. These were then averaged to

improve the estimates. More details are given in [2].

Supporting Information

Figure S1 Reducing L2-R-feedback reduces the high-frequency

content and hence adaptational ‘‘whitening’’ of LMC output. A.

Mean output of WT Canton-S LMCs to middle-intensity

naturalistic stimulus (NS) at 19 oC (left) and 30 oC (right),

n = 13 and 14 cells, respectively. B. The mean normalized spectra

of LMCs (n = 11–14 cells) measured at the 20th s of NS in WT

(black), L2-shiTS1 (red), UAS-shiTS1 (blue) and Gal4-L2 flies (violet) at

19 oC (left) and 30 oC (right). At 19 oC, these frequency

distributions are practically identical. At 30 oC, L2-shiTS1 LMCs

show a reduced high-frequency content. Subfigures C–F compare

the mean spectra of these LMCs to the 1st and 20th s of middle-

intensity NS at 19 oC (left) and 30 oC (right). At 19 oC, the spectra

show the ‘‘whitening’’ effect of synaptic adaptation; the middle-

and high-frequency content of the stimulus being boosted mostly
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over time. At 30 oC, because of the temperature-dependent

quickening of bio-reactions, the frequency distributions of LMCs

have increased high-frequency contents. Here, all but L2-shiTS1

LMCs (gray background) showed similar adaptational ‘‘whiten-

ing’’ as occurred at 19 oC, indicating that shibireTS1 had

selectively reduced communication from L2-cells back to R1–R6

photoreceptors. This data, thus, highlights the role of L2-R-

feedback in the frequency-dependent sensitivity control of LMC

output. With compromised L2-R feedback, LMC output slows

down (reduced high-frequency range) and fails to optimize the

neural representation of the dynamic light contrast changes for the

brain.

Found at: doi:10.1371/journal.pone.0004306.s001 (1.26 MB TIF)
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