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Abstract

Can neuronal networks produce patterns of activity with millisecond accuracy? It may seem unlikely, considering the
probabilistic nature of synaptic transmission. However, some theories of brain function predict that such precision is feasible
and can emerge from the non-linearity of the action potential generation in circuits of connected neurons. Several studies
have presented evidence for and against this hypothesis. Our earlier work supported the precision hypothesis, based on
results demonstrating that precise patterns of synaptic inputs could be found in intracellular recordings from neurons in
brain slices and in vivo. To test this hypothesis, we devised a method for finding precise repeats of activity and compared
repeats found in the data to those found in surrogate datasets made by shuffling the original data. Because more repeats
were found in the original data than in the surrogate data sets, we argued that repeats were not due to chance occurrence.
Mokeichev et al. (2007) challenged these conclusions, arguing that the generation of surrogate data was insufficiently
rigorous. We have now reanalyzed our previous data with the methods introduced from Mokeichev et al. (2007). Our
reanalysis reveals that repeats are statistically significant, thus supporting our earlier conclusions, while also supporting
many conclusions that Mokeichev et al. (2007) drew from their recent in vivo recordings. Moreover, we also show that the
conditions under which the membrane potential is recorded contributes significantly to the ability to detect repeats and
may explain conflicting results. In conclusion, our reevaluation resolves the methodological contradictions between Ikegaya
et al. (2004) and Mokeichev et al. (2007), but demonstrates the validity of our previous conclusion that spontaneous
network activity is non-randomly organized.
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Introduction

In mammals, the sensory neocortex is often considered as the

highest level of sensory processing, both in an anatomical and

functional hierarchical sense. Many studies have examined the

neocortical response to sensory input in individual neocortical

neurons, and how that response is transformed in different cortical

layers. In contrast, the present study examines spontaneous activity

in single neurons in primary sensory neocortex, that is, the activity

of a single neuron when no extrinsic stimulation is given. Perhaps

surprisingly, many neurons in primary sensory cortex fire action

potentials even during the absence of any sensory stimulation [1].

This phenomenon may be less surprising in light of the fact that

most synaptic connections in neocortex originate from other

neocortical neurons, and most neocortical neurons receive no

direct synaptic input from the thalamus [2]. In this sense,

neocortical activity is largely generated intrinsically, albeit with

an important modulation from thalamus [3,4]. Indeed, studies

have demonstrated that patterns of neocortical activity during

sensory stimulation are very similar to patterns seen without

sensory stimulation [5]. Interestingly, the similar result can also be

seen in a slice preparation that preserves thalamocortical

connections between ventrobasal thalamus and somatosensory

cortex; in this study, patterns of spontaneous cortical activity can

be found that are significantly similar to patterns generated by

thalamic stimulation [6].

Such studies suggest that the neocortex is a pattern generator,

producing patterns of activity regardless of whether patterned

stimulation is presented. One way to investigate this hypothesis is

to examine relatively long stretches of neocortical spontaneous

activity, looking for repeating motifs of activity, in either spike

trains or intracellular recordings. With the help of computation-

ally-intensive searches, there have been several studies that have

claimed to demonstrate the existence of surprisingly precise and

intricate patterns of repeating activity in neuronal circuits from in

vivo preparations [7–13], intact slices [1,7,14,15], dissociated

neuronal cultures [16–18], and sophisticated neuronal models

[19–21]. In addition, these results have been supported by

persuasive studies that argue for the existence of such repeating

patterns [22].
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However, the interpretation of these findings has been

contentious, as there is no universally accepted method for

demonstrating whether a precisely repeating pattern is randomly

generated versus deterministically produced. In addition, there

have been persuasive studies arguing that such patterns could be

randomly generated [23–25].

One obstacle to the study of these network patterns is the

limited ability to record the participating neurons. That is, many

neurons should be simultaneously recorded with a high temporal

precision in order to increase the probability of detecting a

network phenomenon. To overcome this problem Ikegaya et al.

(2004) [7] introduced a template-matching search program for

single intracellular recordings. The rationale of the technique was

that since a single neuron receives 100 s to 1000 s of synaptic

inputs from different neurons, then it is conceivable that a single

neuron could serve as a ‘‘microphone’’ of the neuronal network

(Fig. 1). In this study, we found remarkable examples where the

intracellular currents recorded in a single neuron were seen to

repeat with millisecond precision. Such examples do not mean

that these phenomena could not emerge by chance alone. To

examine the null hypothesis of stochastic generation of precise

repeats, surrogate data were generated and compared to the

original data. More putative repeats were found in the original

data than in the surrogate data, and so the null hypothesis of

stochastic generation was rejected for these recordings.

Mokeichev et al. (2007) [21] proposed three new methods for

creating surrogate data of intracellular traces, and their results did

not reject the null hypothesis that repeats of cortical activity are

stochastically generated. This conclusion was supported by the

finding that surrogate data sets, based on the original data but

randomly shuffled, contained as many repeats of activity as the

original data. Their detector program for finding repeats was the

same as that created in Ikegaya et al. (2004) (although translated to

a different language, Matlab to C++). The notable contribution of

the paper was the introduction of three additional surrogate data

generation techniques, each designed to test the null hypothesis for

stochastic generation of repeats. Most of their analyses were

conducted on five intracellular traces obtained from rat cortex, in

vivo. We also conducted in vivo mouse cortex recordings, similarly

to Mokeichev et al. (2007), and reproduced their results: in these

recordings we could not reject the null hypothesis of stochastic

generation for repeats (data not shown).

However, the original data analyzed in Ikegaya et al. (2004)

yielded contrary results when analyzed with the newer Mokeichev

et al. (2007) algorithms. The data examined in Ikegaya et al. (2004)

and Mokeichev et al. (2007) overlap only with regards to cat in vivo

recordings, originally recorded in Lampl et al. (1999) [26]. There

are noticeable qualitative differences between the cat in vivo data,

mouse in vitro data, and the rat in vivo data, and we believe these

differences can account, perhaps partly, for the different results.

Here we show that two of the shuffle tests (phase randomization

and Poisson firing model) produce surrogates that contain many

fewer repeats than the original traces in the mouse in vitro and cat

in vivo data. In addition, we show that the results from the third

shuffle test (interval shuffling) require closer consideration of the

detector program itself in order for correct conclusions to be

drawn. We also demonstrate that the detector program used in

both Ikegaya et al. (2004) and Mokeichev et al. (2007) is

insufficiently sensitive to determine that an artificial data set, with

many precise repeats implanted by the investigator, can be

distinguished from surrogate data. We explain the defects in the

original detector program, and then address those defects with the

creation of an improved repeat detector program that can

distinguish the implanted data from its surrogates. We use the

improved detector program to demonstrate that the original data

from cat in vivo recordings contain more repeats than those from

the surrogate shuffle data. Finally, we demonstrate that recording

conditions have a significant effect on repeat detection, and this

effect may explain the set of contrary results obtained in this study.

After these careful re-analyses, we conclude that the temporal

profile of a series of synaptic inputs into a neuron from the

surrounding network is organized to a degree that cannot be

explained by chance.

Results

Searching for repeated patterns of synaptic inputs
Before revealing our results, we remind the reader of the goal of

these experiments: we are exploring whether patterns of post synaptic

potentials/currents (PSP/Cs) recorded in a single neuron recur with a

frequency and precision beyond that would be expected by chance

occurrences. This exploration occurs through a series of tests where

we take our original data and shuffle it in various ways, producing

surrogate data that is identical to the original except for a

rearrangement in the order of events or frequencies. These surrogates

are then compared against the original. We argue that the interval

shuffling technique from Mokeichev et al. (2007) is a significant

advance and produces surrogate data that are much more closely

preserved versions of the original data—so much so that our original

detector would not be equipped to detect the difference, even if the

difference was significantly real. We demonstrate this lack of

sensitivity with artificially implanted repeats, and then produce a

new detector that is better equipped for the task of detecting these

repeats. This new detector can then satisfy all the surrogate tests

produced thus far, and supports the rejection of the null hypothesis of

stochastic generation of repeats.

Mokeichev et al. (2007) and Ikegaya et al. (2004) used essentially

the same detector program, called here the LRI-HRI program, to

Figure 1. A cartoon illustrating how repeats of action potential
sequences in a cortical network can be recorded in a single
neuron. The picture depicts a pyramidal neuron being recorded with
an intracellular electrode that measures postsynaptic currents (PSCs)
during voltage clamp recordings. A series of action potentials in three
neurons forming synapses with the neuron can be recorded. The blue
trace represents such a sequence that was recorded, and the red trace
shows the same sequence repeating at some later time in the
recording.
doi:10.1371/journal.pone.0003983.g001
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find repeating patterns of membrane potential fluctuations in

cortical intracellular recordings (Fig. 2). The same program is used

here in the 1st half of the manuscript. The key feature of the

program is the two stage construction: the first stage, Low

Resolution Index (LRI), compares all 1 second intervals against all

other 1 second intervals using a nested loop, template matching

algorithm with cross-covariance as the basis for comparisons

(Fig. 2). This is a rough way of finding segments of the recording

that may be similar to each other, and the location of these

segments are saved for the subsequent High Resolution Index

(HRI). HRI examines the 1 second intervals indicated by LRI

using 100 msec comparison windows. The 100 msec is roughly

matched to the length of the average PSP in the recording. In

contrast, the 1 second window used in the LRI was chosen

arbitrarily and isn’t necessarily matched well for putative motif-

repeats, a problem discussed later in the manuscript. Despite such

problems, the LRI-HRI program can find many convincing motif-

repeat pairs (Fig. 2B, see also Ikegaya et al. (2004) and Mokeichev

et al. (2007) for many examples).

Similarly to Mokeichev et al. (2007), we conducted in vivo patch-

clamp recordings from layer 2/3 pyramidal cells in somatosensory

or motor cortex of anesthetized mice. The cells were intracellularly

labeled with biocytin and morphologically identified post hoc. We

produced three different types of surrogate traces in the same

manner as in Mokeichev et al. (2007): (1) phase randomization

surrogates, created by shifting oscillatory phases in the Fourier

transform; (2) Poisson implanted PSCs, created by implanting

artificial postsynaptic currents (PSCs) in ‘‘plain’’ mother traces; (3)

400 msec shuffled surrogates, created by cutting the original

waveform into 400 msec intervals, and then randomizing the

order of those intervals. Using the LRI-HRI program, no

significant motif-repeats were found in these recordings; that is,

we failed to find a significant difference in the number of motif-

repeats between original and randomized traces (data not shown),

replicating the results of Mokeichev et al., (2007).

We then analyzed the traces used in Ikegaya et al. (2004), using

the same methods, and report nearly opposite results with regards

to phase randomization surrogate trace generation and Poisson

PSC surrogates. These recordings consisted mainly of intracellular

voltage-clamp recordings from layer 5 pyramidal cells of mouse

primary visual cortex slices, in vitro. The repeats found in the

original recording showed higher HRI values than any of the 50

surrogates created via phase randomization (Fig. 3A). We next re-

tested the same in vivo current-clamp recording from a neuron in

primary visual cortex of anesthetized cats, the same data used in

Ikegaya et al. (2004). Using phase randomization surrogates, there

were clearly more motifs found in the original trace, rejecting the

null hypothesis for stochasticity (Fig. 3B). This does not conflict

with findings from Mokeichev et al. (2007) as this test on cat in vivo

data was not reported in that study.

Surrogates were also created by implanting artificial postsyn-

aptic currents (PSCs) or postsynaptic potentials (PSPs) in ‘‘plain’’

mother traces, the timing of which was determined by a Poisson

number generator (Fig. 4). As in Mokeichev et al. (2007), the

amplitudes and frequencies of these PSC/Ps were altered

iteratively so that the power spectrum and current/voltage

distribution of the surrogates were matched to the original traces

(Fig. 4B). With regards to both the in vitro and in vivo data from

Ikegaya et al. (2007), we again found that the original traces had

more motif-repeats with higher HRI values (Fig. 4C).

Recording conditions
Inspection of the data themselves may yield some insights into

why phase randomization results from the mouse in vivo recordings

are so different from those of in vitro voltage clamp and cat in vivo

recordings (Fig. 5). In both the cat in vivo recording and voltage

clamp in vitro recording, we see stereotypical waveforms superim-

posed on a baseline, whereas in mouse in vivo recordings we see

something that approximates colored noise. In the in vitro voltage

clamp recordings these waveforms are putative PSCs. As for the

cat in vivo recordings, they might be the result of very large PSPs,

or perhaps the result of nearly synchronous PSPs. In either case,

the single events themselves are stereotypical and repeatable, and

the deterministic structure of these events is lost after phase

randomization (Fig. 3, phase randomization traces). Therefore, it

is not surprising that these surrogates would demonstrate a loss in

repeatability compared to unshuffled traces.

Figure 2. Repeat detection via LRI-HRI search. This briefly
describes the method for repeat detection used in both Ikegaya et al.
(2004) and Mokeichev et al. (2007). (A) LRI search. The entire recording
is searched with a nested loop template matching algorithm where
each one second interval is compared with nearly every other one
second interval using cross-covariance. If the cross-covariance mea-
sured between two 1 second segments is beyond a set threshold, then
the respective intervals are saved for a subsequent analysis. In this
figure, two such segments are highlighted, indicating the motif (blue)
and subsequent putative repeat (red). (B) The captured segments from
the LRI search above are aligned, superimposed and analyzed with an
HRI scan. A 100 msec window, the estimated length of an average PSP,
is used to compare all 100 msec intervals between this motif-repeat
pair, again using cross-covariance (h function), normalized by the
respective amplitudes of the intervals (eq. 2). The final HRI is then
computed (eq. 3).
doi:10.1371/journal.pone.0003983.g002
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Interval shuffling
However, the fact that stereotypical single waveforms can be

observed is not the main issue of contention in these studies—it is

whether or not these waveforms, presumably driven by synaptic

inputs from the neuronal network, can repeat in sequences of greater-

than-chance precision. To address this issue, Ikegaya et al. (2004)

identified the putative PSCs/PSPs using a correlation procedure (see

methods) and pulled them out of the original recording, imposing

them on a zero baseline. This procedure preserves the shape of the

individual PSCs/PSPs as well as the timing of those events, creating

an ‘‘extracted trace’’. Surrogate traces were constructed from the

extracted trace by shuffling the time intervals between the PSCs/

PSPs, while preserving the temporal order of those events.

Mokeichev et al. (2007) argued that such a procedure could not

be accomplished using the rat in vivo recordings because individual

PSPs could not be reliably identified in most cases; we agree, and

also confirm this finding with our mouse in vivo recordings.

Mokeichev et al. (2007) further argued that our shuffling method

may be too lenient in that trivial repeats comprised of just two

PSCs/PSPs, possibly produced by the stereotypical firing pattern

of a single presynaptic neuron, would be destroyed by our shuffling

method; we agree with this argument as well. Their solution was to

devise a shuffling technique that divided the intracellular recording

into segments of approximately 400 msec. Surrogates were

constructed by shuffling these segments. Thus, most of the two-

event sequences are preserved in this manner.

A potential problem is that this shuffling procedure essentially

shuffles the trace less thoroughly, and so the difference between

surrogates and the original may not be detectable, even if

deterministic repeats do exist. That is, the sensitivity of the

detector program (i.e., the search program that finds repeats), may

not be equipped for the task. Mokeichev et al. (2007) is aware of

this caveat and tests it by injecting a 1 second long artificial repeat

(i.e., absolutely deterministic) into the original recording, and then

performs the 400 msec shuffling tests on this repeat-injected trace.

They show that the detector does indeed distinguish the original

with artificial repeat very well from the shuffled surrogates,

arguing that the detector is sufficiently sensitive.

However, there is a significant problem with this sensitivity test:

the LRI detector window itself is matched perfectly to the length of

the artificial repeat (1 second). The basis of the detector algorithm

is cross-covariance, and this function performs poorly if the

detector window (set at 1 second in this program) does not match

the actual length of the repeat to be detected. The original

rationale for this sub-optimal detector (i.e., the LRI detection) is

that it is merely a first-pass and saves much computation time. The

actual values produced in the final analysis from HRI do not suffer

from this defect since the detector window is matched to the width

of the individual PSC (20 msec) or PSP (100 msec). Unfortunately,

there can be many false positives from this 1st pass in the detector

algorithm such that many candidates never pass the threshold for

gaining HRI analysis.

We demonstrated this defect in the detector program by

implanting a motif that was not matched to the LRI detector

window: the implanted motif was 850 msec, in contrast to the

1 sec detector window (Fig. 6). The implanted motif consisted of a

series of 5 PSPs, and this motif was summed into a 400 msec

interval shuffled surrogate from a 190 second cat in vivo current

clamp recording. This implanted motif was inserted every

10 seconds, yielding 171 motif-repeat pairs. This implanted trace

was then shuffled using the 400 msec interval shuffling technique,

producing 50 surrogate traces. Using the LRI-HRI detector

program, no difference could be found between the implanted

trace and its shuffled surrogates (Fig. 6).

Creating a better detector
In response to these results, we strived to create a detector

program that could detect implanted repeats in the face of the

Figure 3. Phase randomized surrogates display many fewer repeats than original traces. (A) An 8-min voltage-clamp trace recorded from
a layer 5 pyramidal cell in a mouse visual cortex slice (red) was compared to fifty surrogates generated by phase randomization (blue). Trace
segments that gave the highest HRI values are shown in the top panels, and the HRI sores of all detected segments are shown in the bottom panel
after rank sorting. In the original trace, more segments passed the LRI threshold, and their HRI scores are higher, as compared with phase-shuffled
surrogates. (B) The same analysis was conducted on a 3-min current-clamp recording in vivo from an anesthetized cat, producing similar results.
doi:10.1371/journal.pone.0003983.g003
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Figure 4. Poisson-generated surrogates display significantly fewer repeats than original traces. (Ai) An 8-min voltage-clamp trace
recorded from a layer 5 pyramidal cell from mouse visual cortex (blue, top) was mimicked by a Poisson process that produced a surrogate trace (red,
bottom). (Aii) The same procedure was conducted on a 3-min current-clamp recording in vivo from an anesthetized cat, producing a Poisson-
generated trace (red, bottom) modeled from the original (top). (B and C) Using an error-minimization algorithm, the variables used to generate the
Poisson-surrogate were altered until a best fit could be made between the original and surrogate in terms of both power spectrum (B) and current/
voltage distribution (C). Results displaying this goodness of fit for a single surrogate trace (red), as compared to the original (blue) are shown for both

Repeating Neuronal Patterns
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400 msec interval shuffle test. The goal was to create a detector

that does not identify putative repeats with an arbitrary 1 second

LRI window. Instead, putative repeats were detected by the onset

times of PSPs. This new detector, PHRI (PSP-based detection,

High Resolution Index), identifies the onsets of PSPs by their

stereotypical risetimes, and then uses those PSP onset times as the

pointers for the subsequent HRI analysis (Fig. 7). That is, every

identified PSP is used as a point of alignment for a motif-repeat

pair; the two selected PSPs, occurring at disparate times in the

recording are aligned, and the trace that follows each is included

as the motif-repeat pair to be examined. The 190 second long in

vivo cat recording used in Fig. 7 contained 1351 identified PSPs,

yielding 911925 motif-repeat pairs to be examined for subsequent

HRI analysis—more than 1006 the number of pairs identified

with LRI analysis (6750 pairs). In order to reduce this substantial

increase in computation time, the HRI analysis in PHRI is

reduced by computing T values only for the regions identified as

having PSPs (Fig. 7). In contrast, the LRI-HRI technique

measures T values for every 1 msec interval of the 1 second trace

(yielding 900 T value calculations).

As in the previous LRI-HRI technique, the criterion for a motif-

repeat pair to pass HRI analysis is that it contains at least 3 regions

where the T values exceed a minimum threshold. For the PHRI

technique, the length of the motif-repeat is constrained to being at

least 800 msec and no more than 1200 msec. The final length of

the motif-repeat is defined as the length that yields the highest

HRI value, and the mean length of the 10 best repeats from the cat

in vivo trace in Fig. 7, using PHRI, is 933632 msec.

The various parameters of the PHRI analysis were varied in

order to enable it to distinguish the implanted trace (see Fig. 6)

from shuffled surrogates. When comparing PHRI values from 50

shuffled surrogates of the implanted trace to those of the

unshuffled implanted trace there appears to be a significant

difference in the distribution (Fig. 8B), or at least a much great

difference in the difference compared to results obtained with the

LRI-HRI method (Fig. 8A).

We then used the PHRI analysis with the original 190 second

recording, computing PHRI values from the original and fifty

400 msec interval shuffled surrogates. The rank ordered distribu-

tions of these scores are normally distributed for each rank order

(using Jarque-Bera test of normality), allowing confidence intervals

to be computed. As shown, the distribution of the PHRI scores for

the original recording is outside the 99% confidence interval

computed from the 50 shuffled surrogates (Fig. 8C). Motif-repeat

examples from the original recording, selected from a range of

PHRI values, are displayed in Figure 9.

Revisiting recording conditions: an experiment
Having convinced ourselves that some in vivo and in vitro

recordings show evidence of significantly repeating patterns, we

then addressed a previously discussed hypothesis: repeats of

synaptic inputs are better detected during hyperpolarized

membrane potentials. To this end, we recorded a neuron from

mouse somatosensory cortex, in vivo, in current clamp at

approximately 260 mV resting membrane potential, and then

applied a DC hyperpolarizing current, bringing the membrane

potential to approximately 290 mV. This particular recording

allowed the identification of some PSPs at 260 mV, but PSPs

appeared to be more easily detectable at 290 mV (Fig. 10A,B).

Both HRI and PHRI analysis yielded significantly higher values

for the 290 mV section of the recording versus the 260 mV

section (p,0.01 Kolmogorov-Smirnoff tests for each analysis,

100 seconds of recording in 260 mV and 290 mV). Further-

more, when fifty 400 msec shuffled surrogates were created for

each, the 290 mV section of the recording exceeded the

distribution by a significantly greater margin, exceeding 99.9%

confidence intervals (Fig. 10C).

Discussion

Based on our new analysis and data, we believe that the basic

conclusions from Ikegaya et al. (2004) with regards to the analysis

of the intracellular recordings remain valid. The data presented in

Figure 5. Intracellular recordings in different conditions. (A)
Whole cell voltage clamp recording in vitro from a layer 5 pyramidal
neuron, mouse V1 cortex. Vclamp = 270 mV. (B) Sharp electrode
current clamp recording from cat visual cortex, in vivo, supragranular
layer, with a large tonic hyperpolarizing current. (C) Current clamp
recording from mouse cortex, in vivo and no tonic hyperpolarizing
current. Note the similarities in recordings from A and B and how they
both differ from C.
doi:10.1371/journal.pone.0003983.g005

the 8-min voltage-clamp recording (Bi and Ci), and in vivo cat recording (Bii and Cii). (D) 50 Poisson surrogates were thus generated for both in vitro
and in vivo recordings, and tested with the HRI detector, producing results for the in vitro mouse data (Di) and in vivo cat data (Dii). Traces in red
represent the Poisson surrogate results, blue traces represent the HRI results from the original data, and the black dashed trace in Dii represents the
99% confidence interval for the Poisson surrogate results (analysis with the Jarque-Bera test of normality demonstrates that the rank ordered
distributions of these scores are normally distributed for each rank order).
doi:10.1371/journal.pone.0003983.g004
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that paper pass the surrogate tests presented in Mokeichev et al.

(2007), although with the caveat that the repeat detector used in

both of those papers was problematic. We further conclude that

the phase randomization surrogates do not advance this study for

generating surrogates, given the fact that they destroy the PSC/

PSP structure of intracellular recordings.

We also conclude that the Poisson surrogates do not offer insight

into the root question of this study. Unlike the phase randomi-

zation surrogates, they can at least imitate PSC/PSPs and thus

retain these inherent, short repeats. In generating these surrogates,

we reached the same conclusion as in Ikegaya et al. (2004), i.e., the

surrogates contain significantly fewer repeats than the original.

However, the argument against the surrogate data in Ikegaya et al.

(2004) can also be used against these surrogates: the possibly trivial

two consecutive PSC/PSP sequences are not conserved. There-

fore, we conclude that the Poisson surrogates in this study do not

resolve the root controversy.

It may be worth noting that it is much easier to generate Poisson

surrogates that are very well-matched to original traces from in

vitro, voltage-clamp recordings, as compared to in vivo current

clamp recordings, as seen in the power spectrum and voltage

distribution (Figs. 4B and 4C). This may not be surprising as the

current clamp recordings should contain more intrinsic voltage-

gated responses that require a more complicated model than that

offered in this study. Indeed, the match in power spectrum and

voltage distributions from the Poisson surrogates generated in

Mokeichev et al. (2007) appear to be ill-matched to the original

recordings (Fig. S2, Mokeichev et al., 2007). Furthermore, power

spectrum and amplitude distributions are only two means of

matching surrogates to original, and may exclude other important

qualities of the original data. These problems in matching Poisson

surrogate data to original data further undermine the results of this

technique.

However, the 400 msec interval shuffling technique offered by

Mokeichev et al. (2007) is a significant advance, and we focus on

this particular surrogate generating technique for the remainder of

the discussion. The interval shuffling technique inspired a re-

examination of the original study and detection technique, and we

discovered some flaws in the latter. In particular, the stated

average repeat length of approximately 1 second reported in

Ikegaya et al. (2004) should not be considered the true average

length of repeats found intracellularly, but rather, an artifice

resulting from the repeat detector program itself. That is, the

initial LRI search in the detector program looks for repeats that

are 1 second in duration—the repeat length itself is predetermined

by the initial search window, which, as stated in Ikegaya et al.

(2004), was chosen arbitrarily. The actual lengths of deterministic

repeats in these networks are not indicated by these methods. This

is a shortcoming of the detector program we originally used.

Another shortcoming, as revealed to us by results from

Mokeichev et al. (2007), is the fallibility of using cross-covariance

as a measure for similarity. This flaw is demonstrated by the

Figure 6. Implanting an artificial repeating motif into a shuffled recording. (A) A 400 msec shuffled surrogate from an original cat in vivo
current clamp recording is composed. A one second segment from this shuffled surrogate recording is displayed (blue) with another one second
segment from 9 seconds later superimposed (red). (B) The implant: a series of PSPs is constructed from the original recording, imposed on a 0 mV
baseline. (C) The implant is summed into the 1 second segments, producing an implanted trace with recurring repeats. The implants are added
approximate every 10 seconds into a 190 second recording, yielding 171 repeats. (D) Fifty 400 msec shuffle surrogates are constructed from the
implanted recording, and the HRI values produced from those surrogates are compared to the values produced from the unshuffled implant
recording. As shown, the LRI-HRI detection algorithm does not distinguish the implanted recording from the shuffled surrogates.
doi:10.1371/journal.pone.0003983.g006
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detector’s inability to distinguish a trace with implanted repeats

from shuffled surrogates (Fig. 6). This finding suggests that if the

initial detector window (1 second) is not matched to length of the

repeat (in this case, 850 msec), then a false-negative result can be

produced. This shortcoming is not so much a problem in the HRI

detection part of the algorithm as the detector window is matched

to the length of the synaptic events (between 20 msec and

100 msec). However, as the HRI algorithm scans only those

sections of the recording indicated by the LRI search, then the

entire LRI-HRI detector is compromised by the failing in the LRI.

In order to address these concerns, we devised a new detector,

PHRI (Fig. 7). This detector differed from the previous in two ways:

Figure 7. Repeat detection with PHRI. The onset times of putative PSPs are estimated by calculating all cross-covariance values of an average
risetime waveform against the entire recording (190 seconds, in vivo cat, current clamp recording, hyperpolarized). This yields correlation values for
every point in the recording, and those points with a high cross-covariance value and minimum amplitude are marked as onset time of a PSP, as
shown above by the tally marks below the recording. These onset times comprise the comparisons that will be performed: n onset times yields
n(n21)/2 comparisons. One such comparison is shown above: two putative PSPs are identified with the longest blue tally and longest red tally. These
PSPs are then aligned such that they yield the highest T value (using 30 msec rather than 100 msec window, see eq. 2). This alignment is preserved
with respect to the comparisons made between the subsequent PSPs in each respective trace extracted from the recording. The T values are
calculated for the intervals dictated by the PSP onset times in the motif trace (blue), indicated with blue arrows. T values below a set threshold are
discarded from the HRI calculation, thus the black ‘‘X’’ indicating its non-incorporation into the HRI calculation. The minimum and maximum lengths
of the motif-repeat traces that are included in the HRI calculation are 800 and 1200 msec, respectively. The minimum number of T values required for
an HRI calculation are 3 (same as LRI-HRI criteria), and HRI is calculated as per eq. 3. The HRI values for all lengths between 800 and 1200 msec are
calculated, and the motif-repeat length that yields the highest HRI value is saved. In the above example, the length of the motif and repeat is
853 msec, the PHRI = 5.3, and the delay between the motif and repeat is approximately 42 seconds.
doi:10.1371/journal.pone.0003983.g007

Figure 8. The improved detector finds implanted motifs and distinguishes the original recording from its 400 msec shuffled
surrogates. (A) The original LRI-HRI detector is unable to distinguish the implanted recording from its shuffled surrogates. (B) The PHRI detector,
applied to the same data set as A, appears to distinguish the unshuffled (blue) from the shuffled surrogates (red). (C) The original 190 sec cat in vivo
current clamp recording and fifty 400 msec shuffle surrogates are examined with the PHRI detector. The rank ordered values from the original are
shown in blue, and shuffled surrogates in red. As these values were normally distributed for each rank order, it was possible to construct confidence
intervals for the distribution, and the 99% confidence interval is shown (dashed black line). The original recording results (blue line) are distinguished
from the 99% confidence interval (p,0.01).
doi:10.1371/journal.pone.0003983.g008
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(1) putative repeats, to be carried over to HRI analysis, are selected

based on the onset times of PSPs; (2) the algorithm that scans the

putative repeats, creating T values, does not measure every 100 msec

interval, but rather measures each interval as indicated by the onset

times of the PSPs (Fig. 7). As for (1), this prevents the mistakes invoked

by using an a priori 1 second detector window, and (2) reduces

greatly the number of T calculations, yielding a faster analysis. This

new detector distinguishes the implanted trace from shuffled

surrogates (Fig. 8). In addition, the original cat in vivo recording is

distinguished from shuffled surrogates in the rankings of repeat

indices found in those recordings (p,0.01).

However, the question remained, why are some intracellular

recordings, such as in vitro voltage clamp recordings, or the cat in

vivo current clamp recording presented here, so different from the

other in vivo current clamp recordings? The original idea of our

method was to record the activity of many neurons in a synaptic

network by recording the intracellular activity of just one neuron

embedded within that network. This idea is not tested if the

synaptic events are not resolved. The blurring of synaptic events

could occur during current clamp recordings as the intrinsic

voltage responses of the neuron are allowed to influence the

recording. In addition, sharp electrode recordings may not reveal

smaller synaptic events, in comparison to whole-cell recordings,

perhaps allowing even greater reduction of synaptic events relative

to the intrinsic voltage fluctuations. It is also conceivable that this

technique is inappropriate for in vivo recordings where the number

of synaptic inputs is so great that resolving them individually is not

feasible with a recording at the soma alone.

These speculations do not address the current clamp sharp

electrode recording from cat cortex, in vivo, where significant

repeats could be found using all shuffle surrogates tested. One

feature of this recording that distinguishes it from the rat in vivo

recordings so far reported is the large tonic hyperpolarizing

current that was applied to the neuron. This current was applied

to prevent action potentials from occurring, in accordance with

the protocols from Lampl et al. (1999) [26]. It is conceivable that

such a large hyperpolarizing current may prevent many voltage-

gated channels from operating, especially as many of those

channels are activated at more depolarized levels. In addition, it’s

possible that the neuron is held either at or hyperpolarized to the

GABA-A reversal potential. Thus, all synaptic events are either

strongly depolarizing or negligible, allowing a flat baseline upon

which these currents may be resolved. We tested these ideas by

recording a neuron from mouse somatosensory cortex in vivo in

current clamp where half of the recording was at a membrane

potential of about 260 mV, and the latter half at 290 mV. We

demonstrate that the repeats found at 290 mV have a

significantly greater distribution of repeat indices than those at

260 mV (p,0.001), and we show that this recording also has a

greater distribution than its shuffled surrogates (p,0.001) (Fig. 10).

It has been argued that there is no method for surrogate testing

of repeated patterns of spontaneous activity that will satisfy every

researcher. Therefore, we believe that future studies of these

phenomena should be more experimental in nature, addressing

their mechanism and biological function. If these repeats are

deterministic, then it should be possible to disrupt, manipulate or

Figure 9. Three examples of repeats found using the PHRI detector from a 190 second long cat in vivo current clamp recording. Each
motif-repeat example is labeled with its respective PHRI and its length. The PHRI values are a subset of those that make up the full set of PHRI values
for this recording that are displayed in Fig. 8c.
doi:10.1371/journal.pone.0003983.g009
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evoke them. Indeed, MacLean et al. (2005) [6], where intracellular

repeats were actually evoked by thalamic stimulation, is an

example of such an experiment, where the reality of the repeats

was demonstrated, since they were generated by the stimulation.

Without experiments that demonstrate deterministic origins, the

biological significance of these repeat phenomena will remain a

topic of contention.

Materials and Methods

Intracellular recordings
In vitro voltage clamp recordings and the cat intracellular in vivo

recording are the same recordings that were analyzed in Ikegaya et

al. (2004).

Mouse in vitro recordings: 8 minute long whole cell voltage

clamp recordings were performed with 6–9 MV intracellular

electrodes in large layer 5 pyramidal cells in mouse V1. Neurons

were voltage clamped at 270 mV in standard ACSF (1 mM

MgSO4, 2 mM CaCl2, 3 mM KCl, 34uC), and no stimulation was

applied (spontaneous activity recorded). The coronal slices,

350 mm thick, were taken from P18–22 C57Bl/6 mice. Further

details can be found in Ikegaya et al. (2007) [7].

Cat in vivo recordings: neurons in supragranular cortex in area V1

were recorded intracellularly with sharp electrodes filled with 2 M

potassium acetate. The adult cats were paralyzed and barbiturate-

anesthetized, and no stimulation was given during the recordings

(spontaneous activity only). For the recording analyzed in this study,

a tonic hyperpolarizing current was applied to prevent spontaneous

action potentials, and the recording was stable for 10 minutes.

Further details of the in vivo recordings can be found in Lampl et al.

(1999) [26] and Chung and Ferster (1998) [27].

Mouse in vivo recordings: Postnatal day 17 to 23 ICR mice were

anesthetized intraperitoneally (ip) with 1 g/kg Urethane or 50 mg/

kg pentobarbital. The head was immobilized using a metal pedestal

fastened to the skull. After a craniotomy either with a needle or

forceps, the skull was covered with 2% agarose in 0.1 M phosphate

buffer. Glass micropipettes (4–6 M) were filled with (in mM) 135 K-

gluconate, 4 KCl, 0.1 Ca2Cl2, 0.4 Na2GTP, 4 MgATP, 1 EGTA

and 10 HEPES (pH 7.2). The somatosensory or motor cortex was

approached dorsocaudally at a 90u angle with the horizontal under

high positive pressure, which was lowered to approximately 30

mBar at about 200 mm below the skull surface. Data were acquired

with a MultiClamp 700A patch-clamp amplifier and pCLAMP 9

software (Axon Instruments). Potentials were filtered at 10 kHz

(eight-pole Bessel filter) and sampled at 20 kHz with a 16-bit A/D

converter (Digidata 1322A). These mouse in vivo experiments were

performed under the approval of the animal experiment ethical

committee at the University of Tokyo (approval number 19–35 and

19–41), according to the National Institute of Health guide for the

care and use of laboratory animals.

Analysis
Finding repeats of intracellular activity: LRI-HRI

method. The technique discussed here uses intracellular

recordings from single neurons as a means to ‘‘listen’’ to potentially

all of the activity of all neurons that form synapses with that recorded

neuron. As a single pyramidal neuron may receive 1000 s of synapses

from other neurons, most of them locally, then this technique has the

potential to yield information about a large fraction of a cortical

column (Fig. 1). This procedure for finding repeats of intracellular

activity has been described in Ikegaya et al. (2004) [7] as well as

Mokeichev et al. (2007) [24]. There are two stages in the search for

Figure 10. Effect of membrane potential hyperpolarization on PSP detection. (A) A sample of an in vivo current clamp recording is shown
at an approximate resting membrane potential of 255 mV (top) versus a sample recorded from the same neuron minutes later at 295 mV (bottom).
The hyperpolarized membrane potential was induced by a tonic DC injection. Underlined segments of these recordings are expanded in (B), showing
the increased ability to detect smaller PSPs during hyperpolarized membrane potentials. (C) PHRI values recorded during resting membrane potential
versus artificially induced hyperpolarized membrane potentials. (top) PHRI values are calculated from 90 seconds of resting membrane potential
recording (mean 255 mV) (blue trace) and compared to 50 shuffle surrogates (red traces). Black dashed line represents the 99.9% confidence interval
for the 50 shuffle surrogates. (bottom) The same results are shown, but with regards to 90 seconds of recording at hyperpolarized membrane
potential (mean 290 mV), from the same neuron. The PHRI values obtained from the hyperpolarized section of recording (bottom) were significantly
greater than the PHRI values obtained from the resting membrane potential recording (top) (p,0.001, Kolmogorov-Smirnoff test).
doi:10.1371/journal.pone.0003983.g010

Repeating Neuronal Patterns

PLoS ONE | www.plosone.org 10 December 2008 | Volume 3 | Issue 12 | e3983



repeats: (1) a low resolution search, producing a low resolution index

(LRI) and (2) a high resolution search, producing a high resolution

index (HRI). Both methods are forms of template matching: two

segments are isolated from a long recording and the similarity

between those segments is quantified.

Low Resolution Index (LRI). The LRI compares 1 second

segments of the recorded waveform, using a nested loop of

template matching (Fig. 2). The cross-covariance function is at the

heart of this analysis, and this function quantifies the temporal

similarities of the recorded waveforms.

h tð Þ~

PT
t~{T

xt{�xxð Þ ytzt{�yyð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t~{T

xt{�xxð Þ2
PT

t~{T

yt{�yyð Þ2
s ð1Þ

Here, x and y are amplitudes from the respective motif and its

potential repeat, and 2T+1 are the number of samples in each motif

at 1 point per msec. The length of x and y are 1 second (1000 points

at 1 point per millisecond), and t represents the lag time between x

and y. The motifs and repeats are defined by these lengths and the

incremental jump from one potential repeat to another is 250 msec

(in Fig. 2 this would represent the incremental movements of the

colored brackets). As jumps of 250 ms are unlikely to find the regions

of precise overlap, the program realigns the traces according to the

difference between the peak value of the covariance function and the

zeroeth lag of this function (i.e., the value at t= 0) and then

recomputes the function, provided that the peak value is initially

within 250 ms of the zeroeth lag. The value at the zeroeth lag (h(0)) is

then recorded. The highest values for each 1 second interval and

those passing a set threshold were collected for each recording and

formed our low resolution similarity index (LRI). The threshold was

set according to a level that yielded a reasonable number of putative

motif-repeats that could be analyzed with subsequent HRI analysis.

‘‘Reasonable’’ is defined here as taking less than a few days of

computation time with HRI analysis, and per recording this would

mean on the order of 10000 putative repeats. In most recordings the

threshold was set to approximately 0.45. In this sense, the thresholds

here not considered definitive.

The 1 second length of the motif and repeats is also arbitrary,

and, as discussed later, problematic. This initial identification is,

however, somewhat justified in reducing what would otherwise be

an overly burdensome computational task. That is, the LRI is used

to identify putative repeats, remember the locations of those

putative repeats, and then analyze more carefully those segments

in subsequent analyses. Segments that do not pass a minimum

threshold are passed over and not analyzed further, saving some

time in the subsequent intensive analysis.

Hig Resolution Index (HRI).
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Those threshold-passing motif-repeats identified with the LRI

are saved later for calculation of HRI. For HRI, the two 1 second

segments are compared in greater detail as cross-covariance

functions are computed for every 20 msec interval between the

two 1 second segments (Fig. 2). This 20 msec interval is

determined by the average width of a PSC. When recording PSPs

in current clamp, the charging of the membrane results in longer

synaptic signals, and in those cases 100 msec intervals are used. In

both cases, it is important that the width of the cross-covariance

window is matched to the mean estimated duration of an

individual synaptic event. The HRI is computed from the number

of threshold-passing 20 msec intervals, the similarity measured in

each of those 20 msec intervals (T values, Eq. 2), as well as a

general similarity index for the entire duration of the putative

repeat (Eq. 3).

Finding repeats of intracellular activity: PHRI

method. The newer method, PHRI, differs from the LRI-

HRI method mostly in terms of how putative repeats are detected:

rather than using cross-covariance of 1 second samples from the

recording, the PHRI identifies potential repeats by the onset times

of identified PSPs (or PSCs) (Fig. 7). The PSPs are identified by

their risetimes in a method nearly identical to that from Ikegaya et

al. (2004) with regards to the extraction of PSPs in that paper:

PSPs were detected by computing a covariance function of a mean

PSP rise time waveform (4–6 msec in duration) against the entire

spontaneous recording: this produced a waveform whose peaks

marked the onset of PSPs, and peaks passing a set threshold

(typically, 0.9) were taken as the start times of PSPs. In some cases,

an amplitude threshold was used in conjunction with the

covariance function threshold. Thresholds were adjusted so that

the fewest false positives and false negative results appeared, as can

be judged in viewing Fig. 7. Importantly, the number of identified

PSPs found in surrogate traces versus original traces was

unchanged by the creation of 400 msec shuffled surrogate traces.

The identified onset times of PSPs were then used as the points

of alignment for comparing two different stretches of a recording,

called here a putative motif-repeat (Fig. 7). T values (Eq. 2) are

then calculated at these aligned motif-repeats, but in contrast to

LRI-HRI analysis, the T values are only calculated at the onset

times of PSPs found in the motif of the motif-repeat. These T

values are then used just as before in the calculation of HRI (Eq.

3). With this PHRI technique, the length of the motif-repeat is

determined by length that yields the highest HRI value, and it is

constrained by having a minimum of 800 msec and a maximum of

1200 msec. This constraint is enacted with respect to the shuffle

surrogate technique described below: if motif-repeats are allowed

that are the same length of the shuffle lengths (400 msec), then the

shuffling is likely to keep many of the motif-repeats intact (it would

be analogous to using the LRI-HRI technique and shuffling with

1000 msec segments). As in the LRI-HRI technique, a minimum

of three T values that pass threshold are required.

Surrogate traces. The production of surrogate traces was

performed using three methods described in Mokeichev et al.

(2007), namely, phase randomization, Poisson simulation, and

interval shuffling. The phase randomization technique performs a

fast Fourier transform (FFT) of the original trace, decomposing it

into its frequency components. There is a particular phase and

amplitude associate with each component, and in this shuffle

technique the original phases are replaced with randomly chosen

phases. After a reverse FFT, a surrogate trace is produced where

the temporal relationships between its various frequency

components have been randomized with respect to the original,

while the frequency power spectrum remains the same.

The Poisson simulation creates surrogate traces by stimulating a

single model neuron with synaptic inputs. The relative strengths

and frequencies of these inputs are manipulated so that the
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simulated recording in the model neuron produces a surrogate

trace that is similar with respect to the original with regards to

power spectrum and voltage (or current) distribution.

The interval shuffling protocol arguably randomizes the original

trace the least thoroughly, and so is the most rigorous shuffling

protocol. In this, the original trace is ‘‘cut’’ into segments of

approximately 400 msec long. These segments are then randomly

reattached to each other, with certain constraints so that no

artificially abrupt changes in voltage are introduced. The ‘‘cut

points’’ are determined by two different voltage levels that are

chosen according to the lower third and upper third of the total

voltage amplitude distribution. This is a shuffling in the time

domain, and produces surrogates with the same power spectrum

and voltage distribution[24].

The surrogate trace generation techniques were implemented

using Igor software (Wavemetrics). The search for repeats in these

and original traces were conducted using Matlab (Mathworks)

software on a 288-unit cluster computer.
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