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Abstract

Transcriptional networks are constituted by a collection of building blocks known as network motifs. Why do motifs appear?
An adaptive model of motif emergence was recently questioned in favor of neutralist scenarios. Here, we provide a new
picture of motif assembly in Escherichia coli which partially clarifies these contrasting explanations. This is based on
characterizing the linkage between motifs and sensing or response specificity of their constituent transcriptional factors
(TFs). We find that sensing specificity influences the distribution of autoregulation, while the tendency of a TF to establish
feed-forward loops (FFLs) depends on response specificity, i.e., regulon size. Analysis of the latter pattern reveals that
coregulation between large regulon-size TFs is common under a network neutral model, leading to the assembly of a great
number of FFLs and bifans. In addition, neutral exclusive regulation also leads to a collection of single input modules -the
fourth basic motif. On the whole, and even under the conservative neutralist scenario considered, a substantial group of
regulatory structures revealed adaptive. These structures visibly function as fully-fledged working units.
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Introduction

The collection of transcriptional interactions in a cell constitutes

a network able to sense diverse biochemical signals and execute, in

response, a range of cellular programs. Recent analyses of this

network revealed a series of strategies of cellular control at the

system-level, which have later shown to be applicable to other

classes of biological networks [1].

More specifically, the successive analysis of Escherichia coli’s

transcriptional network, where interactions involve a pair of

operons encoding the transcription factor (TF) and regulated genes

[text S1 section 1], respectively [2], identified the presence of a

number of recurrent regulatory patterns as basic constituents of

the network. Initial studies first found the presence of the simplest

of these patterns, the one-element feedback loop [3]. More

exhaustive examinations confirmed the prevalence of these

structures [approximately 56% of E.coli’s TFs are autoregulated,

Materials and methods], and further observed the use of other

types of regulatory circuits, generally termed as network motifs [4].

What do motifs emerge? Two general models are currently

considered. The most accepted one associates the presence of

motifs to the singular information-processing tasks they can

accomplish (see [5], for a review). Additional properties could

further support this picture, such as the strong dynamical stability

exhibited by motifs [6], or the correlation of their abundance with

the global functional requirements acting on the network, e.g., the

necessity of short response times in transcription [7]. Motifs in this

model are then adaptive and isolated working units, a view that

seems partially confirmed by their appearance in several

transcriptional networks (e.g., those of Bacillus subtilis [8] or

Saccharomyces cerevisiae [9]), and by the experimental confirmation of

some of their suggested functional attributes [10,11,12,13,14].

An alternative model proposes that the occurrence of motifs is

rather nonadaptive. Motifs might arise, according to this hypothesis,

by the action of neutral population-based forces –like random

genetic drift [15]– as the result of intrinsic mechanisms of genome

evolution [16,17,18], or as a consequence of null network growth

constraints [19]. These aspects would additionally suggest a fuzzy

signal of motif conservation across species, a prediction that seems

partially confirmed [20]. Moreover, this interpretation also chal-

lenges the relevance of motifs as separated functional entities [21].

Here we propose an integrative approach to understand the

assembly of motifs that partially solves this controversy. This strategy

is based on characterizing the relation between motif assembly and

the capacity of their constituent TFs to integrate and transmit

biochemical signals. We thus denote the capacity to integrate several

environmental stimuli as sensing specificity (coarsely quantified with

the presence/absence of upstream transcriptional regulation on a TF

which could also be described as sensing ability), and the specificity of

the TF to transmit signals as response specificity (this being

quantified by the size of the corresponding regulon). We show

how these measures –even as coarse as they are– are helpful to obtain

a new picture of motif assembly.

In particular, while analysis of the first feature reveals an uneven

distribution of autoregulation, the study of response specificity

uncovers a linkage between the tendency of a TF to establish FFLs

and its regulon size, with the first decreasing with the second.

Investigating this pattern in detail, we identify several causes of

motif emergence.
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First, TFs with small regulons correspond to a class of FFLs

caused by the hierarchical regulation of groups of operons, mostly

associated to catabolite repression. In comparison, TFs with large

regulons (hubs) leads to the assembly of both FFLs and bifans

aggregates by coregulating third elements in combination with

other hubs. Interestingly, most of this coregulatory signal appears

to be neutral following a network null model, which in turn helps

us to strengthen the adaptive nature of a complementary small

group of such aggregates. Hubs also exhibit a complementary

regulatory strategy, i.e., exclusive regulation. This induces the

emergence of large single input modules (SIMs) structures, whose

appearance is again partially neutral. The basic idea of network

motifs was that a number of regulatory patterns appeared in extant

networks much more often than in randomized ones [4,22]. Our

analysis ultimately shows how only a small subset of motifs, within

each motif class, originates the statistical signature that helped

unravel these structures in E. coli’s transcriptional network.

Results and Discussion

Specificity and autoregulation
In analyzing why autoregulation, the simplest motif, is such a

pervasive regulatory attribute in E. coli’s network, we could be asking

two complementary questions. We could first ask whether

autoregulation is usually acting in combination with other

transcriptional interactions. This strategy could enhance the

interpretation of environmental states [22] by allowing the

integration of several signals, i.e., the bacterial sensing specificity

[23]. A second question would be whether the distribution of

autoregulation relates to the specificity of the response. We followed

here a simple network-based definition, and roughly quantified this

specificity by the number of genes regulated by the TF (regulon size),

e.g., small regulons indicating highly specific responses.

To study the first question, we partitioned all TFs in the network

into two broad classes: TFs that do not experience any upstream

regulation and those which do. Note that TFs of the first group are

at the top of the network multi-layered structure [24,25,26,27] –

autoregulation, when present, would act in isolation– while those

in the second class constitute the network lower layers. In this

latter group autoregulation would act in combination with those

TFs exerting upstream regulation (Fig. 1.A, top). We observed a

smaller incidence of autoregulated TFs (ATFs) at the top (27 of 63

TFs are ATFs, 43%) as compared to lower layers (37/60, i.e., a

62% with p = 0.03 by assigning randomly all autoregulations, i.e.,

keeping fixed the number of ATFs and network hierarchy, 10 000

times, text S1 section 2).

To examine the second question, we introduced three TF classes

in terms of response specificity (quantified by regulon size, Fig. 1.A,

bottom). We observed that the tendency to be autoregulated grows

with regulon size (Fig. 1.B). Moreover, both sense and response

specificity could underlie selection for autoregulation. For instance, a

large regulon size TF (a hub) at the top of the network could sense

very general nutrient conditions and react by globally changing

bacterial physiology [26,27]. One could hypothesize that autoreg-

ulation in this case would contribute to a more precise control of the

expression of the TF inducing such major physiological changes [22]

(see also following discussions).

We thus studied sense and response specificity in combination.

We found that the set of TFs lacking upstream regulation and with

low regulon size are hardly autoregulated (Fig. 1.C). However,

within this same set, hubs are mostly autoregulated (7 out of 8 hubs

are ATF, e.g., CRP). These patterns are not observed in TFs

under upstream control. In this case, operons exhibited a relatively

homogeneous presence of autoregulation, independent of response

specificity (Fig. 1.D).

Autoregulation and the assembly of complex motifs
While a relation between autoregulation and regulon size

(response specificity) was apparent in some of the previous

Figure 1. Distribution of autoregulation. (A) Sensing specificity (presence/absence of external regulation) and response specificity (regulon size).
(B–D) Abundance of autoregulation in three TF response specificity classes quantified by regulon size. This includes first an analysis including all
network TFs (B), followed by two more examinations considering those subsets of TFs without (C) or with (D) upstream transcriptional control,
respectively. Classes: low (one to four regulated operons), medium (five to nine) or high (ten or more, considered as TF hubs). We also plotted the null
behavior obtained by random sampling of the corresponding class –preserving group size– within the specific TF group (B,C, or D), 10 000 times
(mean, continuous gray line, 62 standard deviations, shaded area). Lines between points to help visualization. (E) Autoregulated TFs with upstream
regulation as part of a FFL, a motif constituted by three elements X, Y, and Z, two of them being always a TF in this context (X and Y). In (D), the ratio
of autoregulated Y for each specificity class is also showed (orange), see main text.
doi:10.1371/journal.pone.0003657.g001

What Causes Network Motifs?

PLoS ONE | www.plosone.org 2 November 2008 | Volume 3 | Issue 11 | e3657



patterns, the homogeneous distribution of ATFs in lower layers

alternatively suggested a fairly neutral linkage between these

properties. Could this distribution be masking some other patterns

of network organization? Interestingly, ATFs with upstream

regulation are common constituents of FFLs [5], with the ATF

and the additional regulator as Y and X of this motif, respectively

(Fig. 1.E), so we asked if this association could reveal any pattern.

To investigate this, we initially counted the number of FFLs

with an Y-element belonging to each of the TF response-specificity

classes, and within these groups the percentage of FFLs with

autoregulated Ys. This revealed a striking dependence with

specificity, ranging from a 71% of Ys autoregulated in the low

regulon-size class to a 50% in the high class (Fig. 1.D, orange line).

To better understand this dependence, we quantified the

tendency of a TF (autoregulated or not; but with upstream

regulation) to establish FFLs with a measure that we named the

FFLness (F, 0#F#1). This score is the ratio between the number

of FFLs with this TF –as Y– found in E.coli’s network, and the

maximum number of FFLs that such TF could potentially

assemble (given by the product of the number of upstream TFs

regulating Y and its regulon size, Fig. 2.A, and Text S1 section 2

and Figs. S1, S2, S3, S4). Figs. 2.B–C shows FFLness as a function

of response specificity for autoregulated and non-autoregulated

TFs, both in the extant network and in a null model (considering

randomized networks with the same connectivity sequence,

Materials and methods).

The distribution of autoregulation discussed before is confirmed

in the new FFLness measure. For instance, the excess of

autoregulation in the low regulon-size Ys (Fig. 1.D, orange line,

low class) is also reflected in a stronger mean FFLness observed in

the low class ATFs with respect to the non-autoregulated ones

(compare mean FFLness values of low class in Fig. 2.B and

Fig. 2.C, respectively). In addition, the FFLness measure

highlighted a characteristic decay with regulon size in the

establishment of FFLs by a TF, not found in the null model

(Figs. 2.B–D, shaded areas). Since this decrease is observed in both

autoregulated and non-autoregulated TFs, and since the distribu-

tion of autoregulation is, in contrast, homogeneous with regulon

size (Fig. 1.D, black line), we asked what additional factors could

help explain the strong tendency to establish FFLs (high FFLness)

and its decay.

What underlies the strong tendency to establish FFLs?
In the following, we considered two neutral models that could

contribute to the strong tendency of low regulon-size TFs to

establish FFLs: genomic architecture and homology between motif

constituents. For the first model, we examined the association

between this signal and neighbor regulation –of a TF on a

genomically adjacent operon– a characteristic genome architec-

ture in prokaryotic transcriptional control [28,29] that can readily

promote FFL assembly (Fig. 2.E). However, genome architecture

could only partially explain high FFLness, as low regulon-size TFs

with upstream regulation also showed a strong disposition to

establish FFLs with nonadjacent operons (Figs. S1–S2) that did not

even colocalize in the genome in broader terms (text S1 section 4).

We thus analyzed if homology between motif components could

be explaining this pattern [32,33]. The fact that these combined

models could not totally account for the strong FFLness score, and

that we also identified a remarkable functional association between

the constituents of these FFLs, indicates selection for a pattern of

aggregated FFLs that we propose in a later section in detail.

Is genome architecture driving high FFLness? In Fig. 2.D

we plotted the proportion of neighbor regulation in TFs under

upstream control. Low regulon-size TFs are indeed enriched by

this architecture, a signal that decreases with regulon size (similar

to FFLness, also in Fig. 2.D). This suggests neighbor regulation as

Figure 2. Assembly of FFLs and TF regulon size. (A) Computing FFLness: the maximum number of FFLs that can be potentially assembled by
the TF in this example is ninnout = 10. Imagine that only 3 FFLs were actually observed (orange arrows), then this TF would have F = 0.3. (B–D) Mean
FFLness as a function of regulon size for TFs with upstream control (classes defined as in Fig. 1). (B–C) autoregulated/non-autoregulated TFs. (D) all
TFs with upstream control. The null behavior obtained in a network null model (Materials and methods; mean, continuous gray line, 62 standard
deviations, shaded area) is also plotted. In (D) we additionally showed the ratio of TFs –with upstream control– regulating a neighbor operon (dark
orange) and its corresponding null (mean, continuous light orange line, 62 standard deviations, orange-shaded area). Lines between points to help
visualization. (E) Divergent architecture could promote FFL assembly. Spacer between two divergent operons (Y and Z in FFL) could include a binding
site leading to the coregulations of these operons by an upstream TF (X) and by the autoregulated TF (Y). Note how this genomic architecture links
autoregulation to neighbor regulation [30,28,29,31].
doi:10.1371/journal.pone.0003657.g002
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an important factor underlying part of the high FFLness signature.

Indeed, although autoregulation appeared linked to high FFLness

(but not significantly, ATFs: F = 0.64; non-autoregulated TFs:

F = 0.41, p = 0.12, Wilcoxon rank sum test; Figs. 2.B–C, low

regulon-size class), neighbor regulation is a stronger determinant

(TFs with adjacent regulation: F = 0.70; TFs without: F = 0.29,

p,0.01, Wilcoxon rank sum test).

In this same analysis, we also recovered the connection between

neighbor control and autoregulation –previously reported

[30,28,29,31]– for the TFs at the top of the network (p = 0.01,

two-tail Fisher’s exact test). This relation was lost in those TFs with

upstream control (p = 0.5, Yates-corrected x2-test, see also text S1

section 3 and Table S2). This could be partially caused by a failure to

report autoregulation in some cases –which can be particularly

difficult to resolve for divergent architectures [31]. Alternatively, the

acquisition of new binding sites to enable the upstream control could

in some occasions interfere with the autoregulatory binding site.

Is homology driving high FFLness? We considered two

possible models additionally contributing to the high FFLness

score. The first one explained this tendency by the homology

between those TFs encoded in the X- and Y-operons.

Alternatively, a second model analyzed if nonadjacent Zs (nadZs)

inherited the same regulation of the central unit –which would

lead to the establishment of additional FFLs– by duplication of

genes belonging to such central set. This unit was defined as the

group of genes constituted by the operon encoding the TF acting

as Y and, when applicable, by those of its Z-operons adjacently

located (which included also second adjacents, to control for

tandem duplications).

We found 15 out of 40 FFLs constituted with nadZs that could

be explained with the homology models above (Fig. 3.A. and text

S1 section 4). Thus, both null models only partially contributed to

explain the strong tendency to assemble FFLs with nadZs, even

though we considered very permissive scenarios. For instance, our

reasoning in the first model assumed that the duplication of X

happened after this factor established its regulatory links, a relaxed

assumption considering the prevalence of HGT [34] and the high

rate of network rewiring in bacteria [35], while the conservation of

regulation in the second model did not consider the influence in

this conservation of the order of genes on the operons [36].

Is functional fine-tuning driving high FFLness? What

about the rest of FFLs that could not be explained by the models

above? We observed a characteristic functional pattern based on

the following features. First, in most cases CRP is acting as X of the

FFL (20 out of 25 cases of FFL not explained by homology,

Fig. 3.A). While this could be a priori expected due to the large

regulon of CRP, we found that this role is particularly relevant in

these 25 cases within the low regulon-size group (p,0.014, two-tail

Fischer’s exact test). Note that CRP is also dominant in the latter

group as compared with the rest of FFLs (p = 0.008, Yates-

corrected x2-test).

Second, the function of the genes encoded in nadZs is

remarkably related to the one exhibited by genes in the central

unit. Sometimes genes in nadZs and those encoded in the

corresponding central operon are transporters responding to the

same metabolite by alternative mechanisms. For example,

arabinose and galactose sugars can be imported by low affinity

proton-driven MFS symporters or by high affinity ATP-driven

ABC transporters, Fig. 4. Other relationships do not necessarily

imply different transporter classes. The transcriptional factor DgsA

controls three nadZs associated as follows: two of them encode

sugar-specific components of respective glucose PTS transporters,

Figure 3. FFL classification. We divided the 232 FFLs identified in the network into three response specificity classes as defined in Fig. 1. i) Low
class, hierarchical. These FFLs present Y-elements with small regulon size and a tendency for autoregulation. We divided this class in two subfamilies
defined by whether Y regulates, or not, a genomically adjacent gene: 34 FFLs have an adjacent Z, while 40 FFLs do not have an adjacent Z. In the first
subfamily we scored the number of FFLs with X being CRP. In the latter subfamily, we quantified those FFLs exhibiting homology and, again, the role
of CRP in these groups. For instance, we found 20 low regulon-size FFLs with CRP as X, with Z not adjacently located and whose assembly does not
follow the homology model. ii) Medium class, complexes. FFLs established with Ys of this class are enriched by pairs (X,Y) in which the action of one
TF totally relies on the presence of its partner, e.g., RpoN on NtrC, see Fig. S3). iii) High class, hub coregulation. These FFLs mostly correspond to those
motifs whose Y-elements are hubs. We again characterized this class with respect to homology and CRP influence. Note that all numbers indicate
those FFLs found in each category, see also Table S1. (B–C) Dual regulatory logic in hierarchical FFLs (B) vs. polycistronic (C) designs, color code
represents functionally equivalent genes, text for details.
doi:10.1371/journal.pone.0003657.g003

What Causes Network Motifs?

PLoS ONE | www.plosone.org 4 November 2008 | Volume 3 | Issue 11 | e3657



while a third nadZ encodes the common non-sugar-specific

components of this transporter type. Finally, those nadZs

encoding, apart from transporters, also enzymatic reactions are

all associated to one-step pathways (e.g., chbBCARFG in charge of

chitobiose degradation) which are complementary to those found

in their respective central unit (text S1 section 4 and appendix,

Table S10, for details).

Hierarchical aggregated FFLs as adaptive functional units
What is the overall picture suggested by the discussions above?

We emphasize here the hierarchical regulatory scheme that we

identified, and propose an adaptive scenario for its emergence.

This scheme combines the action of a general and specific TF

following a hierarchical logic mostly linked to catabolite

repression: when glucose is absent, CRP regulation (X in most of

these FFLs, Fig. 3.A) activates a number of genes enabling the

sensing (Ys in FFLs, usually autoregulated) and metabolizing (Zs,

adjacently or not adjacently located) of alternative sugar sources. Y

in these FFLs is thus subordinated to X activity, and the control of

each group of operons (Zs) by the corresponding (X,Y) hierarchical

regulatory logic presents this type of aggregated FFLs as fully-

fledged independent functional units. Autoregulation in TFs

encoding Y also implies that this logic applies to this very same

TF, suggesting that its presence is not just an optional regulatory

design, but rather a fundamental ingredient of transcriptional

control. The implementation of this hierarchical control might not

be necessarily restricted to FFLs (see below).

With respect to the adaptive/neutral forces leading to the

assembly of these aggregates, we can envisage the following scenario.

Initially, pairs of neighborly regulated genes –in divergent

orientation– can be horizontally transferred to E. coli, and then

acquire an additional regulation by a global regulator, mostly CRP

[37], in their intergenic region. This leads indirectly to the assembly

of a core FFL which could only be a neutral byproduct of the

previous process (Fig. 2.E). This neutral picture of FFL assembly

seems to be lost when we consider the other FFLs in the aggregate.

The functional characterization of nadZs revealed a very close

relation among all Zs, adjacent or not (see Fig. 4, text S1 section 4

and appendix), and indicates that the emergence of these

aggregated FFLs could be a consequence of selection for the

(X,Y) combinatorial logic, independent of genome location. This

model could be further supported if some similarity of expression

and/or evolutionary dynamics between adjacent and non-adjacent

Zs were observed. The first one was experimentally reported in the

arabinose system (adjacent –araBAD– and nonadjacent –araFGH–

Zs [10]). In addition, we found that the averaged phylogenetic co-

conservation of the pairs (Y,Z) in c-proteobacteria was larger than

expected by chance, and that the difference in this co-conservation

for adjacent and nonadjacent Zs, studied independently, was non-

significant (text S1 section 4).

Moreover, we propose in this context the similarity between

hierarchical FFLs and autoregulated polycistrons. Genes acting as

Zs in the former would be part of the polycistron in the latter and

could also be subjected to a hierarchical logic (by an external

global signal and the specific one associated to the polycistronic

autoregulation, Fig. 3.B–C). This equivalence is based on the

following observations. It is implied by the fact that the set of low

regulon-size autoregulated operons, which do not regulate

adjacent ones, is enriched with long polycistrons only when

exhibiting external regulation (Tables S3, S4, S5). It is also

Figure 4. Examples of functional fine-tuning in Zs of hierarchical FFLs: the arabinose (A) and galactose (B) systems. In each case we
plotted (top) the incoming/outgoing regulatory interactions associated to the TF sensing the specific sugar and those links involved in FFL assembly,
and (bottom) the encoded metabolic pathway, with arrows or ellipses –crossed by arrows– denoting enzymes and transporters, respectively. Each
system imports the corresponding metabolite by two different (non-homolog) transporter classes: MFS sugar/proton symporters and ABC
transporters. MFS transporters encoded in araE, galP are homologs. ABC transporters in araFGH, mglBAC are also homologs. Note that both examples
exhibited maximal FFLness, i.e., F = 1. Color code Z-elements: blue, adjacent Z; red, non-adjacent Z. The same color code applies to the encoded
pathway steps. Text S1 for more examples and further discussions.
doi:10.1371/journal.pone.0003657.g004
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suggested experimentally. One of the Z-elements of the gal system

(Fig. 4.B) was showed to exhibit the very same response speed-up

to that observed in a negatively autoregulated polycistron [13].

Indeed, the Y-element of this FFL –GalS– is negatively

autoregulated, sharing thus the very same transcriptional logic of

this Z-element. When to present a hierarchical FFL or an

autoregulated polycistron regulatory architecture could be related

to the specific mechanisms of network evolution (see text S1

section 4) [38,37].

What underlies the weak tendency to establish FFLs?
Resuming the analysis of the tendency of TFs to establish FFLs,

beyond hierarchical FFLs (Fig. 2.D), we first observed that FFLs

established with medium regulon-size Ys are enriched by pairs

(X,Y) in which the action of one TF totally relies on the presence of

its partner, e.g., RpoN on NtrC (see Fig. 3.A and Fig. S3), in order

to induce the expression of third operons (Zs) and of Y itself (which

is always autoregulated in these cases). This directly leads to the

emergence of a FFL structure. What about the drastic decay of

FFLness found in TFs with large regulon size?

The decrease in FFLness in these TFs (autoregulated or not)

made this signal closer to the one seen in the null model (although

remaining statistically significant, Fig. 2.D). Such low value does

not imply that these TFs do not establish FFLs –in fact more than

half of the FFLs of the network has a hub as Y-element, Fig. 3.A–

rather that a small fraction of their potential FFLs are assembled.

Is then this family of FFLs mainly originated by neutral forces?

The likelihood of neutral assembly of a FFL by a given TF acting

as Y (FFLnull) is given by the product of the neutral FFLness

(according to the network null model, i.e., Fnull<.08, Fig. 2.D), the

number of external regulations (nin) and the regulon size (nout):

FFLnull = Fnullninnout. This directly indicates that the null assembly

(FFLnull) scales with regulon size, and also that the low FFLness of Y

hubs can still be associated to the appearance of a considerable

number of FFLs. This is caused by the partial random overlap of the

regulons of the potential X and Y TFs, an overlap favored when both

TFs are hubs. Indeed, X elements are mostly hubs in the extant

network (211 cases of the total of 232; in particular 119 FFLs have

both X and Y hubs, Fig. 3.A). Is then neutral overlap a major

contributing part of the FFLness score observed among hubs?

Hub combinatorial regulation, FFLs and bifans

motifs. We investigated the relevance of neutral hub

coregulation as follows. We identified all possible pairs of hubs

in E.coli’s network (23 hubs, 253 pairs). For each pair, we

contrasted the coregulation observed in E. coli with a null averaged

value obtained with randomized networks (Materials and methods

and text S1 section 2). Interestingly, we found a fairly small

number of significant coregulations after correcting for multiple

testing (Table 1 and text S1 section 2). Note that the most

significant ones correspond to five pairs in which one TF regulates

the other, i.e., they are associated to FFL aggregates, while the

remaining ones –when hubs do not interact– correspond to bifan

aggregates [4,39,40] (Fig. 5).

What type of adaptive coregulations revealed this simple null?

Gene duplication of regulatory hubs was suggested to play an

important role in the assembly of FFLs in yeast [17], so we first

analyzed if duplication could be contributing to these significant

coregulations. We found that only the (MarA,SoxS) pair showed

homology. This common regulation indeed arose by duplication

[37]. Notably, in each of the rest of significant interacting pairs a

coordinated way of action is particularly well documented. This is

the case of the second top (FlhDC,FliA) pair, which is part of the

genetic network controlling the temporal program of flagellar

assembly, with FlhDC being its principal regulator, and FliA the

flagellum-specific s factor [12]. Additionally, the pairs

(FNR,NarL) and (FNR,ArcA) regulate anaerobic respiration and

fermentation. In this context, ArcA and NarL determine the type

of respiration mode under the coordination of FNR [41]. Finally,

RpoE is involved in heat shock and other stress responses [42].

This TF shows a strong tendency to exclusive regulation (40 out of

its 51 regulatory outputs do not receive any other transcriptional

regulation, see next section). However, reaction to membrane

stress is coordinated by coregulation with CpxR, a constituent of

the two-component regulatory system CpxA/CpxR, which senses

this type of stresses (including misfolded proteins and degrading

factors). Moreover, the set of non-significant coregulations (p.0.1,

even before controlling for multiple testing) and those established

by the (MarA,SoxS) pair implied a total of 73 out of 119 FFLs,

Table 1. Pairs of hubs exhibiting significant coregulation.

TF pair cre cren Z-score* FFL/Bi-fan**

SoxS MarA 10 66.7 17.68 R

FliA FlhDC 5 40.8 10.52 r

FNR NarL 18 42.4 9.97 R

FNR ArcA 16 27.3 5.21 R

RpoE CpxR 7 21.4 4.74 r

IHF RpoN 10 22.6 4.58 n.i.

FNR IHF 18 25.9 4.39 n.i.

IHF NarL 8 23.3 4.28 n.i.

IHF Lrp 7 19.9 3.63 n.i.

CRP ArcA 19 38.2 3.56 n.i.

CRP RpoE 2 3.6 23.21 n.i.

TFs in pairs sorted by regulon size. * Cutoff corresponds to adjusted p,0.05. **

Arrows denote regulatory order. cre: number of coregulations, n.i.: non-
interacting hub pairs. cren: normalized cre as cre

� ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
, Ri denotes regulon

size. Note that the pair (CRP, RpoE) appears as the single case of significant
anticoregulation (see main text).
doi:10.1371/journal.pone.0003657.t001

Figure 5. Motif assembly by random overlap of large regulons.
(A) In this example a couple of hubs shares two target (corregulated)
operons. As hubs may interact or not (dashed line), these coregulations
lead to the assembly of aggregated FFLs (B) or bi-fan motifs (C).
doi:10.1371/journal.pone.0003657.g005
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with X and Y being interacting hubs, and whose presence could be

explained by neutral processes alone according to the null network

model considered.

It is also interesting to observe that the mean FFLness of the Y-

elements being part of the significant FFLs (beyond MarA, i.e.,

FliA, NarL, ArcA and RpoE) is F = 0.34, while a much smaller

averaged value was observed for the rest of hubs with upstream

regulation and non-significant co-regulations, i.e., F = 0.07. This

thus helped explain why we found a small, but significant, FFLness

in the large regulon-size class: this signal is a mixture of the non-

significant and significant coregulations represented in the

decayed, but yet significant, total score (Fig. 2.D).

What about those significant coregulations established by non-

interacting hubs in Table 1? The integration host factor (IHF)

regulator appeared recurrently in this case (4 out 5 cases). This trend

could be explained by the intrinsic architectural role of IHF that

facilitates the action of other TFs by controlling DNA bending [42].

Interestingly, although there are 11 pairs of homolog hub pairs

without mutual regulation, none of them leaded to a significant

coregulation. For example, CRP and FNR –the hubs with the largest

regulons– are homologs [27], and coregulated a number of operons

similar to the null value (observed: 24 operons, random: ,20, Z–

score = 1.15). The pair (CRP, RpoE) did arise as a single case of

significant anti-coregulation, i.e., they coregulated less operons than

expected by chance. The autonomy of the RpoE stress response is

thus reflected in a necessary uncoupling of the metabolic context.

Since duplication of hubs did not play a relevant role in these

significant coregulations [17], we asked if duplications of coregulated

genes could contribute to this signal. This could be partially the case

in the coregulations established by IHF, FNR and NarL (these hubs

shared 8 coregulated operons), and only under a permissive criterion

(inheritance of binding sites imposes more strict constrains to the

location of homolog genes in their respective operons [36]).

However, there are functional arguments for the convergent

establishment of these coregulations, since IHF enhances the action

of the activators NarL and FNR, as stated above [43].

Exclusive regulation and single input modules
A somehow complementary regulatory strategy to combinato-

rial regulation is linked to exclusive regulation, this term referred

to the absence of any additional regulation on a group of operons,

beyond that of a given master TF. We first investigated if exclusive

regulation is significantly observed in the extant network

(comparing with a null network model, as previously). Note that

this question is equivalent to ask whether single input modules

(SIMs) are network motifs [4]. We found 27 exclusive regulations

($3 target operons) or SIMs in E.coli’s network. This number is

not significantly different to the random score (30.5 SIMs,

p = 0.11). However, the mean number of target operons per

SIM is indeed larger than expected (observed: 10.3 targets,

expected: 8.4, p = 0.0032), confirming that large SIM structures

are network motifs. Could this exclusive regulation be a statistically

significant pattern uniquely associated to a small number of SIMs

as we found in the case of the hub coregulation signal?

To analyze SIM motifs individually, we computed for each TFs

in the network regulating$3 operons the ratio between the

number of operons controlled exclusively and its regulon size –all

interactions with same sign, dual regulations not considered. We

named this score the SIMness (S, 0#S#1) of the TF, and

compared it to the averaged value obtained in a null network

model (text S1 section 2). We discovered only a limited number of

large regulon-size TFs with significantly high SIMness (Table 2).

These structures are undeniably among the most isolated

functional units in the transcriptional regulatory network.

What functions are associated to these SIMs? They generally

corresponded to autonomous systems able to rapidly induce urgent

cellular responses. The SIM for which Fis is the master (positive)

regulator is constituted by 28 operons involving a total of 75 genes.

These genes are mostly constituted by transfer or ribosomal RNA

genes (70 out of 75) coordinately expressed as adaptation to rapid

growth conditions [44]. Three of the remaining cases are stress

response regulators: LexA, exhibiting the highest (negative) SIMness,

controlling DNA damage response [14], RpoE and RpoH, regulating

several stresses like those related to heat shock [42] (RpoE also

showed a strong coregulation when acting with CpxR, as discussed

before). Finally, Fur is in charge of the control of iron homeostasis

[45]. Homology is again not relevant in these significant SIMs, like in

the case of significant hub coregulations. We only found one case of

homology between the master regulator and its targets (LexA,U-

muD). Homology among target genes was also rare (data not shown).

Note that Table 2 also included two TFs which displayed

significant anti-SIMness, i.e., they regulated exclusively less

operons than expected by chance. Anti-SIMness of CRP and

IHF are a consequence of their strong bias to coregulation. We

argued above that IHF is involved in the assembly of bifans in

combination with several hubs. Equivalently, we found that CRP

is associated to a combinatorial logic of global and specific

metabolic signals, in coordination with low regulon-size TFs.

Conclusions
What type of questions should we ask in addressing the causes of

the emergence of network motifs? Here, we initially focus on two

measures of functional specificity of E. coli’s TFs based on their

corresponding in/out network degree [1,22]. While this associa-

tion is surely very coarse, it helps us nevertheless to identify two

patterns linked to the network simplest motif, i.e., autoregulation.

First, TFs with large regulons at the top of the network hierarchy

are mostly autoregulated (Fig. 1.C), even though there is a small

incidence of this feature in TFs of this layer. This should not be

necessarily a surprise, since such global TFs at the top of the

hierarchy can elicit a considerable change in bacterial physiology

[25,26]. In such scenario, autoregulation not only contributes to

the precise integration of environmental states, but can also avoid

noisy fluctuations of TF expression [5]. For instance, the

autoregulatory circuit of the crp gene, one of the TFs at the top

of the network hierarchy, plays a major role in CRP signal

integration [46], while LexA autoregulation (another top global

TF) prevents false (noisy) triggering of the SOS response in E. coli,

due to transient fluctuations in the inducing signal [14].

Table 2. Positive and negative SIMness.

TF R+ S+ Sz
r Z-score*

RpoE 51 0.78 0.33 7.34

CRP 117 0.15 0.38 25.98

Fis 41 0.68 0.33 5.10

RpoH 25 0.68 0.31 4.07

IHF 28 0.07 0.33 23.01

TF R2 S2 S{
r Z-score*

LexA 19 0.89 0.31 5.65

Fur 28 0.57 0.31 3.20

*Cutoff corresponds to adjusted p,0.05. Ri: regulon size, Si: SIMness score, Si
r :

random SIMness score, i: positive or negative.
doi:10.1371/journal.pone.0003657.t002
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A second, and more difficult pattern to interpret, is found in TFs

with external transcriptional regulation. In this case, the distribution

of autoregulation appears independent of response specificity, i.e.,

regulon size (Fig. 1.D). Notably, when we quantify the linkage

between these TFs and the assembly of more complex motifs

(specifically, its role as Y element of a FFL or FFLness, Fig. 2), this

reveals a strong dependence between response and motif appear-

ance. TFs enabling specific responses (small regulon size) tend to

establish relatively more FFLs with their regulated genes than those

inducing less specific responses (large regulon size; the decay of

FFLness with regulon size is generally observed, i.e., even when

specificity classes are not explicitly considered, data not shown).

That low regulon-size TFs –with upstream transcriptional

regulation– tend to constitute FFLs with most of their regulon

could be ascribed to several neutral constraints, and we analyze

the two a priori more direct ones, i.e., genome architecture and

homology of the constituents of the FFL. Are these factors fully

explaining this tendency? The answer appears to be no. Indeed, a

careful functional analysis of this family of FFLs highlights a

hierarchical logic mostly linked to catabolite repression (Fig. 3.A).

This logic is also found in autoregulated polycistrons which points

at stronger selective forces acting on this type of regulation than on

the specific genetic implementation. Which forces ultimately

determine either architecture is hard to tell. In summary, the

previous reasoning presents this class of aggregated FFLs as

isolated working units beyond those arguments relying uniquely on

statistical overrepresentation (see below).

The analysis of the linkage between TF response specificity and

FFL emergence provides another relevant pattern. This is the

drastic decay in the tendency to assemble FFLs when the Y

element is a hub regulator. Since the neutral likelihood of

establishing a FFL scales with regulon size, we ask to what extend

those FFLs with Ys being hubs were mostly nonadaptive.

To answer this, and considering that most Xs in the extant

network are hubs, we contrast the coregulation between hubs

observed in E. coli with the averaged value obtained in a null

network model. We find that only a small set of coregulations

appear significant under this null (Table 1), but exclude one of them

– (SoxS, MarA)– as adaptive since it exhibits duplication.

Interestingly, the rest of potentially adaptive coregulations lead to

a number of FFL and bifan aggregates with remarkable function

coordination, e.g., (FliA, FlhDC) related to flagellar control or

several bifans associated to IHF, the integrator host factor

regulator. Finally, by investigating a complementary strategy to

coregulation, i.e., exclusive regulation, and contrasting it again to a

network null, we identify a small group of SIMs –mostly stress

response systems (Table 2)– that could also be putatively considered

as adaptive, e.g., the LexA DNA damage response SIM.

Overall, the results presented here help to better understand the

explicit functional signature behind the statistical definition of

network motifs in E. coli. These motifs were originally recognized as

patterns recurrently found in the extant transcriptional network

when compared to a degree-preserving random one. This was done

by using a summarized statistical score linked to any considered

circuit architecture, i.e., counting the number of regulatory patterns

of any particular type and comparing it with the null value. This

work used the same kind of null-hypothesis model to show that not

all constituents of a given motif class are equally unexpected. We also

argued that those that appeared adaptive (like the FFLs with low

regulon-size Y) could be subjected to other selective forces not

necessarily linked to the computational tasks associated to the motif.

For the rest of motifs appearing neutral, it is difficult to reject them a

priori as adaptive units, as some sort of selection to maintain these

edges in the network should be at work (e.g., [5]). Moreover, from

the global statistical overrepresentation arguments that led to the

description of the network motifs, and even assuming that each of the

regulatory links has been selected, one cannot deduce that each of

the extant motifs is under selection as a functional entity. Thus, this

work sharpens the original counting arguments and contributes to

the observations that more elaborated neutral models (see,

[15,17,19,7,47]) are required to fully understand the adaptive

dynamics of biological networks.

Materials and Methods

Network data
We assembled a transcriptional regulatory network (TRN) with

data from Escherichia coli’s RegulonDB (v.5.6) [2]. In this network,

each interaction is given by the operon encoding the transcrip-

tional factor (TF), that encoding the target gene/s, and a

directional link (edge) representing the transcriptional regulation,

being this positive, negative or dual (two links of unknown sign

were also considered). We did not include those interactions based

only on microarrays or undocumented experiments. The TRN is

constituted by 681 nodes and 1109 edges between different nodes.

135 of the nodes are TFs, including alternative s-factors. Within

the TF nodes, there are 76 which are autoregulated (approxi-

mately 56%), with 12 of them showing no further regulation over

any other operon (exclusive autoregulators). The TRN is available

in our website (http://www.cnb.csic.es/,jpoyatos. Files operon_

names.txt and interactions.txt, including operon list and specific

interactions, respectively).

For additional considerations on the assembly of this TRN see

text S1 section 1. We examined several features of this network

and that assembled in [4], where the concept of network motifs

was originally introduced (Tables S6, S7, S8, S9).

Network null model
We used a null model based on [48], i.e., fixing the number/

type of incoming and outgoing edges in the random network to

those of E. coli’s. The randomization protocol exchanges two

randomly chosen connections of the extant network, when both

edges are of the same interaction type (ARB,CRD to ARD,CRB).

This procedure is repeated twice the number of edges (261109) in

order to obtain a fully randomized network (two links of unknown

sign were considered as dual ones in these randomizations). This

null effectively implies that TF binding sites emerge neutrally.

Other statistical methods in text S1 section 2.

Supporting Information

Text S1 Additional analysis and appendix.

Found at: doi:10.1371/journal.pone.0003657.s001 (1.82 MB PDF)

Table S1 Classification of the 230 FFLs in the network based on

the connectivity of their respective X- and Y -TFs. LC, MC and

HC for low-, medium- and highconnectivity classes, respectively.

We also distinguished between autoregulated (curved arrow) and

non-autoregulated (crossed-curved arrow) TFs, and those belong-

ing to first (1st-L) and lower-layers (low-L). Small numbers denote

number of instances in each subgroup (TFs only regulating their

own operon are not considered; Y -elements belong to lower layers

of the transcriptional network). The use of the ‘‘central unit’’

association implies an alternative classification of FFLs based on

the number of nonadjacent regulated operons. Following this

criterion, exuR, nagBACD and malT, all regulating one adjacent

operon and four nonadjacent ones, are considered low connec-

tivity operons. The minor differences introduced by this latter
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classification -which is the one used in Fig. 2.A, main text- are

enclosed in parentheses.

Found at: doi:10.1371/journal.pone.0003657.s002 (0.01 MB PDF)

Table S2 Relative orientation between upstream/downstream

adjacent genes (R) and TRN operons ()). Upstream divergent

orientation (r)) is particularly enriched. Curved arrow, operons

encoding an autoregulated TF; crossed-curved arrow, operons

encoding a non-autoregulated TF; low curved arrow, operons

encoding an autoregulated low-connectivity TF; low crossed-

curved arrow, operons encoding a non-autoregulated low-

connectivity TF; not(low curved arrow), operons encoding a TF

of the TRN excluding autoregulated low-connectivity ones.

Found at: doi:10.1371/journal.pone.0003657.s003 (0.01 MB PDF)

Table S3 First-layer AOs. LC, MC and HC for low-, medium-

and high-connectivity classes respectively. In LC without adjacent

regulation we distinguish the cases of polycistronic and mono-

cistronic AOs. { d, divergent; u, unidirectional. { Regulated

second neighbors included. Calculations based only on microarray

data enclosed in brackets. Y In those cases with adjacent

regulation, we showed number of promoters corresponding to

the autoregulated and the adjacent operon, respectively.

Found at: doi:10.1371/journal.pone.0003657.s004 (0.01 MB PDF)

Table S4 Lower-layers AOs of low-connectivity class. When

there is not adjacent regulation we distinguish the cases of

polycistronic and monocistronic AOs. { d, divergent; c, conver-

gent; u, unidirectional. In the rhaSR case there is adjacent

regulation over both the upstream and downstream neighbors. {
Regulated second neighbors included. Calculations based only on

microarray data enclosed in brackets. Y In those cases with

adjacent regulation, we showed number of promoters correspond-

ing to the autoregulated and the adjacent operon, respectively.

Found at: doi:10.1371/journal.pone.0003657.s005 (0.01 MB PDF)

Table S5 Lower-layers AOs of medium- (MC) and high-

connectivity (HC) classes. { d, divergent; u, unidirectional. {
Regulated second neighbors included. Calculations based only on

microarray data enclosed in brackets. Y In those cases with

adjacent regulation, we showed number of promoters correspond-

ing to the autoregulated and the adjacent operon, respectively. "
cmk-rpsA-ihfB and thrS-infC-rpmI-rplT-pheMST-ihfA, encoding the

two components of the transcription factor IHF, counted as a

single node in the network (see the first section of text S1).

Found at: doi:10.1371/journal.pone.0003657.s006 (0.01 MB PDF)

Table S6 General features of SO and CP networks. Curved

arrow, operons encoding an autoregulated TF (autoregulated

operons); crossed-curved arrow, operons encoding a non-autoreg-

ulated TF. Operons encoding a TF that only regulates its own

operon in parentheses.

Found at: doi:10.1371/journal.pone.0003657.s007 (0.01 MB PDF)

Table S7 Comparison between autoregulated operons in SO

and CP networks. An autoregulated operon in the CP network can

be autoregulated (curved arrow), non-autoregulated (crossed-

curved arrow) or absent (Abs) in the SO network, and conversely.

We specified those operons located in first and lower network

layers. Operons appearing in the network only as target operons in

parentheses.

Found at: doi:10.1371/journal.pone.0003657.s008 (0.01 MB PDF)

Table S8 Coherent and incoherent FFLs in SO and CP

networks (as defined in ref. [2], text S1). Coh: coherent FFLs;

Inc: incoherent FFLs, Other: FFLs with at least one dual-type

interaction (see also note 3 in text S1).

Found at: doi:10.1371/journal.pone.0003657.s009 (0.00 MB PDF)

Table S9 Distribution of operons per layer in SO and CP

networks. We showed explicitely the distribution of autoregulated

(curved arrow) and non-autoregulated TF (crossed-curved arrow).

{ The two components of the marRAB-rob loop are considered to

be located both in the 6th layer.

Found at: doi:10.1371/journal.pone.0003657.s010 (0.01 MB PDF)

Table S10 Characterization of low-connectivity Y -TFs estab-

lishing FFLs with at least one nadZ. First and second columns: Y

and X TFs -homolog pairs in bold (two-component systems are

also shown). Third and fourth columns: functional characteriza-

tion of proteins in the central unit and corresponding nadZs

labeled with numbers. This also shows the homology relationship -

highlighted by same color- between genes in nadZs and those in

the associated central unit. Abbreviations: TF, transcriptional

factor; 2c, two-component system; E, Enzyme; T, transporter;

PTAE, periplasmic transportassociated enzyme; U, uncharacter-

ized protein; NP, near pathway, products acting in regions of the

metabolic pathway near those of the central unit; RP: redundant

pathway, including proteins which constitute multienzymatic

complexes with those encoded in the central unit; P: pathway,

sometimes there is no pathway encoded in the central unit, but in

the nadZs. See Appendix in text S1 for further details.

Found at: doi:10.1371/journal.pone.0003657.s011 (0.00 MB PDF)

Figure S1 Regulatory links associated to lower-layers operons

encoding a low-connectivity autoregulated TF (1#out-degree,5).

We showed incoming and outgoing regulations and also those

additional ones to describe FFLs (X-Z interactions). Edges color

code: blue, activation; red, repression; gray, dual regulation. Z-

operons filling color code: black, Z- and Y -operon are adjacent;

gray, Z and Y are second neighbors; white, Z and Y are not

adjacent. Dashed lines denote links where the TF encoded in the

autoregulated operon is not affected by the regulation. This

particularly applies to the regulation of pdhR-aceEFlpdA by arcA,

and leads to the constitution of two pseudo-FFLs. Abbreviations:

,rpo., nlpD-rpoS; ,hyp., hypABCDE-fhlA; ,hyc., hycABCDEF-

GHI; ,hyf., hyfABCDEFGHIJR-focB; ,rpoN., lptB-rpoN-yhbH-

ptsN-yhbJ-npr; ,ihf., cmkrpsA-ihfB; ,csiD., csiD-ygaF-gabDTP;

,bae., mdtABCD-baeSR; ,pdhR., pdhRaceEF- lpdA; ,srl.,

srlAEBD-gutM-srlR-gutQ; ,tdcA., tdcABCDEFG. Averaged

FFLness: ,F. = 0.77.

Found at: doi:10.1371/journal.pone.0003657.s012 (0.02 MB PDF)

Figure S2 Regulatory links associated to lower-layers operons

encoding a low connectivity non-autoregulated TF (out-de-

gree,5). Abbreviations: ,ompR., ompR-envZ; ,yiaK.,

yiaKLMNO-lyxK-sgbHUE, rest of abbreviations as before. Color

coding as in Figure S1. ,F. = 0.46.

Found at: doi:10.1371/journal.pone.0003657.s013 (0.02 MB PDF)

Figure S3 Regulatory links associated to lower-layers operons

encoding a medium connectivity autoregulated TF (5#out-

degree,10). In the alternative classification of TFs based on the

number of nonadjacent regulated operons nagBACD is considered a

low-connectivity operon. Maximal FFLness of rcsA, glnALG and cytR

corresponds to pairs (X,Y) in which the action of one TF totally relies

on the presence of its partner (RcsA on RcsB, RpoN on NtrC -

encoded in glnG- and CytR on CRP). Abbreviations: ,mraZ.,

mraZW-ftsLI-murEF-mraYmurD- ftsW-murGC-ddlB-ftsQAZ; ,wza.,

wza-wzb-wzc-wcaAB; ,mutY., mutYyggX- mltC-nupG, rest of abbrevi-

ations as before. Color coding as in Figure S1. ,F. = 0.66.

Found at: doi:10.1371/journal.pone.0003657.s014 (0.02 MB PDF)

Figure S4 Regulatory links associated to lower-layers operons

encoding a medium connectivity non-autoregulated TF (5#out-

degree,10). In the alternative classification of TFs based on the
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number of nonadjacent regulated operons malT is considered a

low-connectivity operon. The type of transcriptional interaction

between cmk-rpsA-ihfB and flhDC is not known (in black).

Abbreviations: ,malK., malK-lamB-malM, rest of abbreviations

as before. Color coding as in Figure S1. ,F. = 0.39.

Found at: doi:10.1371/journal.pone.0003657.s015 (0.01 MB PDF)
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