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Abstract

Background: It is well known progesterone can have anxiolytic-like effects in animals in a number of different behavioral
testing paradigms. Although progesterone is known to influence physiology and behavior by binding to classical
intracellular progestin receptors, progesterone’s anxiety reducing effects have solely been attributed to its rapid non-
genomic effects at the GABAA receptor. This modulation occurs following the bioconversion of progesterone to
allopregnanolone. Seemingly paradoxical results from some studies suggested that the function of progesterone to reduce
anxiety-like behavior may not be entirely clear; therefore, we hypothesized that progesterone might also act upon progestin
receptors to regulate anxiety.

Methodology/Principal Findings: To test this, we examined the anxiolytic-like effects of progesterone in male rats using the
elevated plus maze, a validated test of anxiety, and the light/dark chamber in the presence or absence of a progestin
receptor antagonist, RU 486. Here we present evidence suggesting that the anxiolytic-like effects of progesterone in male
rats can be mediated, in part, by progestin receptors, as these effects are blocked by prior treatment with a progestin
receptor antagonist.

Conclusion/Significance: This indicates that progesterone can act upon progestin receptors to regulate anxiety-like
behavior in the male rat brain.
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Introduction

Progesterone (P) can have anxiolytic-like effects in animals in a

number of behavioral paradigms [1–6]. P is known to influence

physiology and behavior by binding to classical intracellular

progestin receptors (PR), which in turn can act at the genome to

regulate gene expression [7–9]. The anxiolytic-like actions of P are

believed to occur mainly following its conversion by 5a-reductase

to one of its ring A reduced metabolites, 3a-hydroxy-5a-pregnan-

20-one (allopregnanolone) [10,11]. The effects of allopregnano-

lone occur in a rapid non-genomic membrane-mediated manner

[11,12], as it allosterically modulates GABAA receptors [13,14],

and it is through this interaction that allopregnanolone has its

anxiety-reducing effects on behavior [2,15–17].

Different approaches have been used to examine the relative

importance of P versus allopregnanolone in reducing anxiety-like

behavior. Some of these studies have uncovered results inconsis-

tent with the contention that there is a single pathway by which

anxiety is reduced. While one study utilizing female progestin

receptor knockout (PRKO) mice did report anxiolytic-like effects

of P [18], another study reported that male PRKO mice displayed

more anxiety-like behavior in the elevated plus maze. These

animals spent significantly less time in the open arms compared to

their wild type background strain [19]. These data suggest that PR

may play some role in regulating anxiety-like behaviors in males. If

reduction in anxiety-like behavior is only accomplished by

neurosteroid action in the brain, then mice containing the PRKO

mutation should not have altered anxiety levels. On the contrary,

it appears that the absence of PR in these mice leads to more

anxiety-like behavior compared to their wild type controls,

suggesting that PR might be involved in reducing anxiety-like

behavior.

Further support comes from studies that block 5a-reductase.

This treatment interferes with the production of allopregnanolone.

Mice deficient in this enzyme still showed anxiolytic-like behavior

in response to P within the elevated plus maze, suggesting that P

was still reducing anxiety-like behavior through some mechanism

other than its conversion into allopregnanolone [20]. Similarly,

lactating females, that have endogenously high levels of P, still

showed less anxiety-related behavior than control rats even after

treatment with an inhibitor of 5a-reductase, [21]. In this

experiment, however, the 5a-reductase inhibitor was effective, as

the turnover of P to allopregnanolone was significantly reduced.

Still anxiety-related behavior was low. These data suggest that an

additional pathway to regulate anxiety may exist, a pathway which

does not necessitate the conversion of P to its neuroactive

metabolites, and in which PR appear to play some role in

regulating anxiety-like behavior.
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In the current study, we aimed to test the hypothesis that P can

modulate anxiety-like behavior partly by acting upon PR in the male

brain. Therefore, we examined the anxiolytic-like effect of P in the

presence or absence of the PR antagonist RU-486 using the elevated

plus maze, a validated test of anxiety [22,23], and the light/dark

chamber. We present evidence here to suggest that, in male rats, the

anxiolytic-like effects of P are indeed mediated, in part, by its actions

at the PR, as the anxiolytic-like actions of a physiologically-relevant

dose of P can be blocked by a PR antagonist.

Materials and Methods

This research was approved by the University of Wisconsin

Animal Care and Use Committee.

Animals
Adult male Sprague Dawley rats from our breeding colony

(400–600 g; breeders from Charles River Labs, Inc., Wilmington,

MA) were housed under a 12:12 light/dark cycle (lights off at

1100 h) with food and water available ad lib. As previous studies

have shown that progestogens can reduce endogenous levels of T

by directly inhibiting testicular steroidogenesis [24–27],rats were

castrated at approximately 3 months of age and implanted with

s.c. SilasticH implants (2.5 cm long, 1.5 mm inner diameter,

2.4 mm outer diameter, Dow Corning Corp. Midland, MI) filled

with testosterone (T).

Elevated plus maze
The elevated plus maze, a validated and widely used test of anxiety

in rodents [22,23], consists of 2 opposing runways, one open and one

closed, each measuring 100 cm in length and constructed of black

Plexiglas. Each arm of the closed runway is fitted with 39 cm high

Plexiglas walls on either side of the runways. The maze stands 50 cm

off the floor. The rats were placed in the center of the maze, where

the two arms intersect, facing an open arm. The animal’s behavior in

the maze was recorded for 5 minutes with a video camera connected

to a DVD player for later behavioral observation. DVD recorded

material was converted to MPEG format using VideoWaveH
Professional (Roxio, a division of Sonic Solutions, Novato CA) and

then analyzed using The ObserverH (Noldus Information Technol-

ogies, Wageningen, The Netherlands) by an experimenter blind to

the treatment groups. Parameters quantified were the number of

entries into the open and closed arms, and total time spent in the open

and closed arms and the center chamber. An entry was counted when

all four paws crossed into a certain portion of the maze.

Light/dark chamber
The light/dark chamber consists of a polycarbonate chamber that

is divided into one lighted chamber (39635 cm) and one darkened

chamber (39625). A piece of polycarbonate made to be opaque is

used to separate the light and dark sides of the chamber via insertion

into specially crafted guides to ensure a tight fit across the entire

width of the chamber. There is also an opening on the lower edge of

this insert (5610 cm) so the animal can move freely from one part of

the chamber to the other. The dark side of the chamber is

constructed of polycarbonate that is made to be opaque and this side

of the chamber is equipped with an opaque lid. A white incandescent

light is situated above the light side of the chamber. The walls of this

side of the chamber are constructed of clear polycarbonate. The

animal was placed in the middle of the light side of the chamber

facing away from the opening toward the darkened side. A cross

from one compartment to the other was recorded when all four paws

were in one compartment. The animals were observed in the

chamber for 5 minutes by an experimenter blind to the treatment

groups. Parameters quantified were latency to cross over to the dark

compartment of the chamber, and total amount of time spent on the

lit side of the chamber.

Data analysis
Statistical comparisons were carried out using Sigma Stat

statistical software for Windows v3.11 (Systat Software, Inc., Point

Richmond, CA). Data were compared with a One-Way ANOVA,

and further analyzed using the Fisher LSD Method. The level of

significance was set at p,0.05.

Treatment
Six weeks following surgery rats received s.c. injections of either

RU-486 (Sigma-Aldrich, St Louis, MO; 5 mg per animal) or vehicle

once daily for 3 days. On each of these days, 2 hours following the

RU-486 or vehicle injection animals received an injection of either P

(Sigma-Aldrich, St Louis, MO; 1 mg per animal) or sesame oil. The

dosage of RU-486 used was chosen because a dose response study

[28] indicated that this dose was successful at blocking the effects of P

on behavior in female rats and guinea pigs. Also, in a study that

examined the anti-glucocordicoid properties of the same dose of RU-

486 as has been used in the current experiment, cortisol treatment

given simultaneously with RU-486 was not able to prevent RU-486

from blocking P-facilitated behavior [29]. These data suggest that

this dose of RU-486 is blocking P-induced behavior by interfering

with the activation of PRs. The dosage of P was chosen because it

yields physiological levels of P that are observed following stress in

male rats [30,31], and is sufficient to induce sexual behavior in

female rats [32,33]. Four hours after the final P injection animals

were tested in the elevated plus maze and light/dark chamber during

the dark phase of the light cycle under dim red light.

Enzyme Immunoassay (EIA)
At least 500 ul of blood was collected from treated animals and

centrifuged at ,9700 RPMs or 10,000 gs for 10 minutes. Next,

serum was removed and stored in a clean tube at 220uC until used

in T or P EIA (Cayman Chemical Company, Ann Arbor, MI). Both

EIAs are based on the competition between the steroid of interest

and steroid-acetylcholinesterase conjugate for a limited number of

steroid specific binding sites. T or P standards were prepared

according to the manufacturer’s instructions. Following the

preparation of standards, these and the serum samples from our

treated animals were loaded into a 96-well plate, as well as the

necessary controls. Next, the T- or P-acetylcholinesterase tracer was

added to most of the wells followed by addition of the T or P

antiserum to most of the same wells. The plate was then left to

incubate for 1 hour for the P assay and 2 hours for the T assay at

room temperature on an orbital shaker. After this incubation, the

contents of the plate were discarded and the plate was rinsed 5 times

with wash buffer supplied by the manufacturer. Following these

rinses, Ellman’s Reagent, the developing reagent supplied by the

manufacturer, was added to the empty wells. The plate was then left

to develop in the dark while placed on an orbital shaker. The

developing process takes about 1 hour or until the absorbance of

the maximum binding wells equal 0.3 A.U. Following the

developing process, the plate is read at a wavelength between 405

and 420 nm with a plate reader. All samples for hormone

measurement were quantified in the same assay. The assay

specificity is 100% for T and P, respectively. The intra-assay

coefficient for each assay was 9.1% for the T and 8.5% for the P

assay, respectively. The detection limit of each assay was 6 pg/ml

and 10 pg/ml for the T and P assay, respectively. Results were

calculated using a computer spreadsheet program provided by

Cayman Chemicals (www.caymanchem.com/eiatools/promo/kit).

Progesterone and Anxiety
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Results

The effect of RU-486 on the anxiolytic-like effect of P in
the elevated plus maze

As expected, P treatment reduced the anxiety-like behavior of

male rats in the elevated plus maze (p = 0.019; Fig. 1a). Post hoc

analysis further revealed that the group of animals that were

pretreated with vehicle followed by P spent a larger percent of time

exploring the open arms of the maze. There were no differences in

percent open arm exploration in any of the other groups. In

addition, as might be expected, the percent of time spent exploring

the closed arms was decreased (p = 0.001; Fig. 1b) in males pre-

treated with vehicle followed by P compared to all other groups.

There were no differences in percent closed arm exploration in

any of the other groups. More importantly, however, all of the

anxiolytic-like actions of P in male rats were blocked by prior

treatment with the PR antagonist, RU-486 (Fig. 1a and b). There

was no difference in the total number of arm entries in each of the

groups (p = 0.06 Table 1).

The effect of RU-486 on the anxiolytic-like effect of P in
the light/dark chamber

There was a significant effect of treatment on time spent on and

latency to enter the light side of the light/dark box (p = 0.006;

Fig. 2; p = 0.01; Table 1, respectively). Vehicle plus P treated

animals spent more time on the light side of the chamber than

males in any of the other treatment groups. There were no

differences in time spent on the light side of the chamber in any of

the other groups. In addition, animals pre-treated with vehicle

followed by P also had longer latencies to cross over to the dark

side of the chamber compared with all the other groups tested.

There were no differences in latency to cross over to the dark side

in any of the other groups. More importantly, post hoc

comparisons indicate that the anxiolytic-like actions of P in male

rats were blocked by prior treatment with the PR antagonist, RU-

486 (Fig. 2 and Table 1).

Hormone levels
The levels of T assayed in our animals was in the range of 1.5–

2.5 ng/ml. This level is within the normal range for adult male

rats [34]. The levels of T found in each of the treatment groups

was similar (p = 0.194; Fig. 3a).

The levels of P was significantly increased by P treatment

(p = 0.001; Fig. 3b). The animals not treated with P, the vehicle-oil

and the RU-486-oil groups, had levels of P that were in the range

of typical levels for males of this age [30,31]. The level of P in the

vehicle-oil and in the RU-486-oil groups was 2.26.2 ng/ml and

1.46.2 and 2.296.26 ng/ml, respectively. The animals treated

with P had much higher levels of P; however, these levels were

similar to the physiological levels observed in animals that are

exposed to stress paradigms [30]. The level of P in the vehicle-P

and in the RU-486-P groups was 8.96.4 and 7.760.7 ng/ml,

respectively.

Figure 1. The effect of P and RU-486 on the percent time spent
in the open and closed arms of the elevated plus maze. (A),
Animals pre-treated with vehicle (Veh) and then treated with
progesterone (Prog) spent a significantly longer percentage of time in
the open arms compared to all groups. This effect was blocked in the
animals pre-treated with RU-486 (RU) and treated with progesterone.
(B), Percent time spent in the closed arms of the elevated plus maze.
Animals pre-treated with vehicle and then treated with progesterone
spent a significantly shorter percentage of time in the closed arms of
the maze compared to all other groups. (N = 7–9 animals per group;
Bars indicate mean6SEM; * indicates a significant difference between
animals treated with vehicle and progesterone and all other groups
P,0.05).
doi:10.1371/journal.pone.0003606.g001

Table 1. Data are separated by task.

Task Variable V-O V-P RU-P RU-O

Light/dark chamber Latency to enter the dark chamber (sec) 15.9464.49 26.0962.72* 13.9462.42 11.4561.87

Elevated Plus Maze # Total Entries 3.126.51 4.756.81 6.06.94 3.86.61

% Time Open 6.863.10 42.33615.89* 16.1964.9 3.4061.9

%Time Closed 77.91611.15 25.99614.52* 72.6869.47 84.1067.19

Light/dark chamber; animals pre-treated with vehicle (Veh) and then treated with progesterone (Prog) had the longest latency to enter the dark side of the chamber.
Elevated plus maze; there was no difference in total number of entries in any of the groups. (N = 6–9 animals per group; Data shown are mean6SEM; *indicates a
significant difference between Veh-Prog and all other groups (p,0.01).
*indicates a significant difference between animals treated with vehicle and progesterone (V-P) and all other groups (p,0.01). N = 6–9 animals per group. V-O, Vehicle-
Oil; RU-P, RU-486-Progesterone; RU-O, RU-486-Oil.

doi:10.1371/journal.pone.0003606.t001

Progesterone and Anxiety

PLoS ONE | www.plosone.org 3 November 2008 | Volume 3 | Issue 11 | e3606



Discussion

We report that P can have anxiolytic-like actions on behavior in

male rats in two widely accepted tests of anxiety. Also, these actions

can be virtually eliminated by blocking PR. Our results indicate that

treatment with P decreases open arm avoidance on the elevated plus

maze and increases the amount of time spent on the light side of a

light/dark chamber. Importantly, prior treatment with the PR

antagonist RU-486 blocks this anxiolytic-like behavior. We do not

believe our effects can be attributed to antagonism of the

glucocorticoid receptor, as corticosterone has the opposite effects

on anxiety behavior as P [35]. We also report that P levels in animals

that were treated with P were, as might be expected, significantly

higher than the levels observed in our non-P treated control groups

and that T levels are unaffected by treatment. Our behavioral results

suggest that P acts on PR to reduce anxiety-related behavior in male

rats. While both of our P-treated groups had physiological relevant

levels of circulating P, the anxiolytic actions of P was blocked in those

males pretreated with the PR antagonist RU-486. If reductions in

anxiety-like behavior were solely a result of P metabolites acting on

GABAA receptors, both groups treated with P regardless of their

pretreatment would still have shown a reduction in anxiety-like

behavior, however they did not. Our data are also in agreement with

data which have shown that P can function to influence a single

behavior by activating both PR dependent and GABA receptor

mediated pathways [17,36–39].

PR dependent, or genomic, versus GABA receptor mediated, or

non-genomic, mechanisms for steroid hormone action have been

reported in modulating lordosis behavior, a measure of sexual

receptivity, in female hamsters [36]. Sexual receptivity in female

rodents is under the genomic control of systemic administration of

sequential estrogen (E) and P [40]. Also, sexual receptivity can be

facilitated non-genomically by GABAergic drugs implanted locally

into specific brain areas [41]. Data from a series of experiments that

examined genomic versus non-genomic regulation of lordosis

behavior, suggest that P implanted into the ventromedial hypothal-

amus (VMH), and either P or its neuroactive metabolites implanted

into the ventral tegmental area (VTA) facilitate lordosis [42,43]. In

the PR rich VMH, P functions in a genomic manner; in the VTA

where PR are not as plentiful, the metabolites of P likely function in a

membrane-mediated non-genomic manner. Based on these data and

the data from the experiment presented here, we hypothesize that P

may regulate anxiolytic-like behavior in male rats in a manner that is

consistent with a dual pathway. We suggest that in one pathway, P

influences anxiety following its metabolism to neuroactive steroids

and subsequent modulation of the GABAA receptor, indeed there is

an overwhelming amount of evidence for this mechanism [44]. An

additional, perhaps complementary, pathway may also exist by

which P influences anxiety by interacting with PR.

A previous study showed that the PR antagonist RU-486 given

to female rats did not block the anxiolytic-like effects of P [16].

These data provided support for the hypothesis that P modulates

GABAA receptors following its conversion to neuroactive steroids.

There are some differences between that study and ours that may

help to explain the discrepancies between our findings and theirs.

One difference may be that we used males in our studies and the

previous experiment used females, and PR function may differ

between the sexes. Also, both studies used doses of P and RU-486

that were similar, however, the females in the previous experiment

were tested in the elevated plus maze 4 hours after 1 P treatment.

In the current experiment, we treated animals with P and/or RU-

486 for three days. P can rapidly, in a non-genomic manner,

influence anxiety via GABAA receptors [10], perhaps then over a

longer period of time, P can influence anxiety through

Figure 3. The effect of P and RU-486 on plasma testosterone
and progesterone levels in male rats. (A), Testosterone levels were
statistically the same in each treatment group. All animals in this
experiment were castrated and implanted with testosterone-filled
capsules. (B), Progesterone levels were higher in both groups of
progesterone-treated animals compared to control groups. (Bars
indicate mean6SEM; * indicates a significant difference between
groups (p = 0.001).
doi:10.1371/journal.pone.0003606.g003

Figure 2. The effect of P and RU-486 on time spent in the light
side of a Light/Dark chamber. Animals pre-treated with vehicle
(Veh) and then treated with progesterone (Prog) spent a significantly
longer amount of time on the light side of the chamber than all other
groups. This effect was blocked by pre-treatment with RU-486 (RU).
(N = 6–7 animals per group; Bars indicate mean6SEM; * indicates a
significant difference between animals treated with vehicle and
progesterone and all other groups (p = 0.006).
doi:10.1371/journal.pone.0003606.g002
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mechanisms that require PR. While the exact time course for

genomic versus non-genomic action to occur is unclear, it is often

agreed upon that genomic action can be measured in hours or

days while non-genomic action can take place in seconds and/or

minutes [45,46]. Indeed, we have shown that systems regulated by

P are only influenced by P after multiple days (3–5) of treatment

[47]. Based on this reasoning, it may be the time course of

treatment that holds the answer to the differential results presented

in the past and the data we present here.

A potential mechanism by which P may be acting on other

systems in the brain may be through modulation of the vasopressin

system. A role for altered transmission in the vasopressin system in

mediating anxiety-related behaviors has been supported in

numerous studies [48–51]. We have recently shown that treatment

of male rats with P reduces the expression of vasopressin protein in

portions of the vasopressin system [52]. These portions of the

vasopressin system are highly sexually dimorphic (i.e., males have

56as many cells and fibers in these areas as females), and steroid

responsive [53,54]. As P treatment can reduce vasopressin

expression in the male brain, and reduced vasopressin action in

the brain results in decreased anxiety-like behavior, the effect of P

on anxiety-related behavior in male rats may be through

modulation of the vasopressin system.

The distribution of PR in brain regions that are involved in

anxiety is consistent with the idea that P may regulate anxiety by

binding to intracellular PR. Indeed, the distribution of PR in both

the male and female rat brain has been well described. A number

of techniques, from binding assay to PCR, have been used to

localize PR in the brain [47,55–58]. Areas classically associated

with reproduction, the preoptic area, the ventromedial, dorsome-

dial and arcuate nucleus of the hypothalamus all contain PR. In

addition, PR has been reported in the olfactory bulb, frontal

cortex, hippocampus, cerebellum and brainstem. Areas that have

been implicated in the neural basis of fear, stress, and anxiety [59]

also contain PR [47]. For example, the bed nucleus of the stria

terminalis contains especially high numbers of PR and the

amygdala, as well, contains PR immunoreactivity. These data

suggest that P could act on PR in areas that play a large role in

modulating anxiety-like responses.

The data presented here add to the growing body of knowledge

as to the mechanisms by which P influences anxiety. Much of the

data concerning the effect of P on anxiety have shown that P’s

effects are highly dependent upon dose. It is important to note that

many of the studies investigating the anxiolytic actions of P use

supraphysiological doses. In most of these studies, when dose is

adjusted for species and size of animal, single doses range from

about 5 to 50 times higher [1,10,18,60] than the treatment course

of P used in the current study. We chose to keep the current dose

low, as male rats tend to have an average level of about 1.5–

2.0 ng/ml circulating P [30,31]. The dose of P used in our study

results in physiological levels of serum P levels in males that

resemble those of males enduring stress [30]. It is important to

note, however, that the elevated levels of P seen in our animals

were a result of 3 days of P treatment; a longer amount of time

than elevated P levels seen in stress. Higher endogenous levels of P

are coincident with higher levels of neurosteroids in the brain and

in the circulation [4], and it therefore stands to reason that

treatment with high doses of P result in higher levels of P

metabolites. These higher levels of metabolites may have a more

potent effect at GABAA receptors. Indeed, dose response studies

have shown that larger doses of P metabolites can have increasing

anxiolytic-like effects [1,15]. Taken together, it is conceivable that

our animals may have had low levels of brain neurosteroids

following treatment with low P doses, as is evidenced by

physiological circulating levels of P.

In summary, our data suggest an additional pathway by which P

can regulate anxiety-like behavior in males. They also support a

physiologically and behaviorally relevant role for P in the male

brain. While the data indicating a role for neuroactive steroids in

the reduction of anxiety-like behavior are quite compelling and by

no means in question, the data presented here suggest that there

may be an important role for PR in the reduction of anxiety-like

behavior in male rats.

Acknowledgments

We gratefully acknowledge the invaluable assistance of Dr. Kristin M.

Olesen.

Author Contributions

Conceived and designed the experiments: CJA. Performed the experi-

ments: CJA RMFL. Analyzed the data: CJA RMFL. Contributed

reagents/materials/analysis tools: CJA. Wrote the paper: CJA.

References

1. Picazo O, Fernandez-Guasti A (1995) Anti-anxiety effects of progesterone and

some of its reduced metabolites: an evaluation using the burying behavior test.

Brain Res 680: 135–141.

2. Bitran D, Hilvers RJ, Kellogg CK (1991) Anxiolytic effects of 3 alpha-hydroxy-5

alpha[beta]-pregnan-20-one: endogenous metabolites of progesterone that are

active at the GABAA receptor. Brain Res 561: 157–161.

3. Mora S, Dussaubat N, Diaz-Veliz G (1996) Effects of the estrous cycle and

ovarian hormones on behavioral indices of anxiety in female rats. Psychoneur-

oendocrinology 21: 609–620.

4. Frye CA, Petralia SM, Rhodes ME (2000) Estrous cycle and sex differences in

performance on anxiety tasks coincide with increases in hippocampal

progesterone and 3alpha,5alpha-THP. Pharmacol Biochem Behav 67: 587–596.

5. Rodriguez-Sierra JF, Howard JL, Pollard GT, Hendricks SE (1984) Effect of

ovarian hormones on conflict behavior. Psychoneuroendocrinology 9: 293–300.

6. Toufexis DJ, Davis C, Hammond A, Davis M (2004) Progesterone attenuates

corticotropin-releasing factor-enhanced but not fear-potentiated startle via the

activity of its neuroactive metabolite, allopregnanolone. J Neurosci 24: 10280–10287.

7. Tsai MJ, O’Malley BW (1994) Molecular mechanisms of action of steroid/

thyroid receptor superfamily members. Annu Rev Biochem. pp 63451–63468.

8. Mani SK, Blaustein JD, O’Malley BW (1997) Progesterone receptor function

from a behavioral perspective. Horm Behav 31: 244–255.

9. Mulac-Jericevic B, Conneely OM (2004) Reproductive tissue selective actions of

progesterone receptors. Reproduction 128: 139–146.

10. Gomez C, Saldivar-Gonzalez A, Delgado G, Rodriguez R (2002) Rapid

anxiolytic activity of progesterone and pregnanolone in male rats. Pharmacol

Biochem Behav 72: 543–550.

11. Mellon SH, Griffin LD (2002) Neurosteroids: biochemistry and clinical

significance. Trends Endocrinol Metab 13: 35–43.

12. Robel P, Schumacher M, Baulieu EE (1999) Neurosteroids: From Definition and

Biochemistry to Physiopathologic Function. In: Baulieu EE, Robel P,

Schumacher M, eds. Neurosteroids: A new regulatory function in the nervous

system. New Jersey: Humana Press Inc. pp 1–25.

13. Paul SM, Purdy RH (1992) Neuroactive steroids. FASEB J 6: 2311–2322.

14. Rupprecht R (2003) Neuroactive steroids: mechanisms of action and

neuropsychopharmacological properties. Psychoneuroendocrinology 28:

139–168.

15. Wieland S, Lan NC, Mirasedeghi S, Gee KW (1991) Anxiolytic activity of the

progesterone metabolite 5 alpha-pregnan-3 alpha-o1-20-one. Brain Res 565:

263–268.

16. Bitran D, Shiekh M, McLeod M (1995) Anxiolytic effect of progesterone is

mediated by the neurosteroid allopregnanolone at brain GABAA receptors.

J Neuroendocrinol 7: 171–177.

17. McCarthy MM, Felzenberg E, Robbins A, Pfaff DW, Schwartz-Giblin S (1995)

Infusions of diazepam and allopregnanolone into the midbrain central gray

facilitate open-field behavior and sexual receptivity in female rats. Horm Behav

29: 279–295.

Progesterone and Anxiety

PLoS ONE | www.plosone.org 5 November 2008 | Volume 3 | Issue 11 | e3606



18. Reddy DS, O’Malley BW, Rogawski MA (2005) Anxiolytic activity of

progesterone in progesterone receptor knockout mice. Neuropharmacology
48: 14–24.

19. Schneider JS, Burgess C, Sleiter NC, Doncarlos LL, Lydon JP, et al. (2005)

Enhanced sexual behaviors and androgen receptor immunoreactivity in the
male progesterone receptor knockout mouse. Endocrinology 146: 4340–4348.

20. Frye CA, Walf AA, Rhodes ME, Harney JP (2004) Progesterone enhances
motor, anxiolytic, analgesic, and antidepressive behavior of wild-type mice, but

not those deficient in type 1 5 alpha-reductase. Brain Res 1004: 116–124.

21. Kellogg CK, Barrett KA (1999) Reduced progesterone metabolites are not
critical for plus-maze performance of lactating female rats. Pharmacol Biochem

Behav 63: 441–448.

22. Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm

entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci

Methods 14: 149–167.

23. Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of

anxiety-related behavior in rodents. Nat Protoc 2: 322–328.

24. Gordon GG, Southren AL, Tochimoto S, Olivo J, Altman K, et al. (1970) Effect

of medroxyprogesterone acetate (Provera) on the metabolism and biological
activity of testosterone. J Clin Endocrinol Metab 30: 449–456.

25. Satyaswaroop PG, Gurpide E (1978) A direct effect of medroxyprogesterone

acetate on 17 beta-hydroxysteroid dehydrogenase in adult rat testis. Endocri-
nology 102: 1761–1765.

26. Barbieri RL, Ryan KJ (1980) Direct effects of medroxyprogesterone acetate
(MPA) and megestrol acetate (MGA) on rat testicular steroidogenesis. Acta

Endocrinol (Copenh) 94: 419–425.

27. Zumpe D, Michael RP (1988) Effects of medroxyprogesterone acetate on plasma
testosterone and sexual behavior in male cynomolgus monkeys (Macaca

fascicularis). Physiol Behav 42: 343–349.

28. Brown TJ, Blaustein JD (1984) Inhibition of sexual behavior in female guinea

pigs by a progestin receptor antagonist. Brain Res 301: 343–349.

29. Brown TJ, Blaustein JD (1986) Abbreviation of the period of sexual behavior in
female guinea pigs by the progesterone antagonist RU 486. Brain Res 373:

103–113.

30. Andersen ML, Bignotto M, Machado RB, Tufik S (2004) Different stress

modalities result in distinct steroid hormone responses by male rats. Braz J Med

Biol Res 37: 791–797.

31. Auger CJ, Jessen HJ, Auger AP (2006) Microarray profiling of gene expression

patterns in adult male rat brain following acute progesterone treatment. Brain
Res 1067: 58–66.

32. Powers JB, Valenstein ES (1972) Individual differences in sexual responsiveness

to estrogen and progesterone in ovariectomized rats. Physiol Behav 8: 673–676.

33. Blaustein JD, Wade GN (1977) Sequential inhibition of sexual behavior by

progesterone in female rats: comparison with a synthetic antiestrogen. J Comp
Physiol Psychol 91: 752–760.

34. Kalra PS, Kalra SP (1977) Circadian periodicities of serum androgens,
progesterone, gonadotropins and luteinizing hormone-releasing hormone in

male rats: the effects of hypothalamic deafferentation, castration and

adrenalectomy. Endocrinology 101: 1821–1827.

35. Korte SM (2001) Corticosteroids in relation to fear, anxiety and psychopathol-

ogy. Neurosci Biobehav Rev 25: 117–142.

36. DeBold JF, Frye CA (1994) Progesterone and the neural mechanisms of hamster

sexual behavior. Psychoneuroendocrinology 19: 563–579.

37. DeBold JF, Frye CA (1994) Genomic and non-genomic actions of progesterone
in the control of female hamster sexual behavior. Horm Behav 28: 445–453.

38. Cornil CA, Ball GF, Balthazart J (2006) Functional significance of the rapid
regulation of brain estrogen action: where do the estrogens come from? Brain

Res 1126: 2–26.

39. McEwen BS (1991) Non-genomic and genomic effects of steroids on neural

activity. Trends Pharmacol Sci 12: 141–147.
40. Powers JB (1970) Hormonal control of sexual receptivity during the estrous cycle

of the rat. Physiology and Behavior 5: 831–835.

41. McCarthy MM, Masters DB, Fiber JM, Lopez-Colome AM, Beyer C, et al.
(1991) GABAergic control of receptivity in the female rat. Neuroendocrinology

53: 473–479.
42. Pleim ET, Lisciotto CA, DeBold JF (1990) Facilitation of sexual receptivity in

hamsters by simultaneous progesterone implants into the VMH and ventral

mesencephalon. Horm Behav 24: 139–151.
43. Frye CA, Leadbetter EA (1994) 5 alpha-reduced progesterone metabolites are

essential in hamster VTA for sexual receptivity. Life Sci 54: 653–659.
44. Dubrovsky B (2006) Neurosteroids, neuroactive steroids, and symptoms of

affective disorders. Pharmacol Biochem Behav 84: 644–655.
45. Rupprecht R, Holsboer F (1999) Neuropsychopharmacological properties of

neuroactive steroids. Steroids 64: 83–91.

46. McEwen BS, Coirini H, Schumacher M (1990) Steroid effects on neuronal
activity: when is the genome involved? Ciba Found Symp 153: 3–12; discussion

12–21: 3–12.
47. Auger CJ, De Vries GJ (2002) Progestin receptor immunoreactivity within

steroid-responsive vasopressin-immunoreactive cells in the male and female rat

brain. J Neuroendocrinol 14: 561–567.
48. Bielsky IF, Hu SB, Szegda KL, Westphal H, Young LJ (2004) Profound

impairment in social recognition and reduction in anxiety-like behavior in
vasopressin V1a receptor knockout mice. Neuropsychopharmacology 29:

483–493.
49. Ring RH (2005) The central vasopressinergic system: examining the opportu-

nities for psychiatric drug development. Curr Pharm Des 11: 205–225.

50. Landgraf R, Gerstberger R, Montkowski A, Probst JC, Wotjak CT, et al. (1995)
V1 vasopressin receptor antisense oligodeoxynuclotide into septum reduces

vasopressin binding, social discrimination abilities, and anxiety-related behavior
in rats. J Neurosci 15: 4250–4258X.

51. Caldwell HK, Lee HJ, Macbeth AH, Young WS III (2008) Vasopressin:

behavioral roles of an ‘‘original’’ neuropeptide. Prog Neurobiol 84: 1–24.
52. Auger CJ, Vanzo RJ (2006) Progesterone treatment of adult male rats suppresses

arginine vasopressin expression in the bed nucleus of the stria terminalis and the
centromedial amygdala. J Neuroendocrinol 18: 187–194.

53. De Vries GJ, Buijs RM (1983) The origin of the vasopressinergic and
oxytocinergic innervation of the rat brain with special reference to the lateral

septum. Brain Res 273: 307–317.

54. De Vries GJ, Buijs RM, van Leeuwen FW, Caffe AR, Swaab DF (1985) The
vasopressinergic innervation of the brain in normal and castrated rats. J Comp

Neurol 233: 236–254.
55. Sar M, Stumpf WE (1973) Neurons of the hypothalamus concentrate

(3H)progesterone or its metabolites. Science 182: 1266–1268.

56. Brinton RD, Thompson RF, Foy MR, Baudry M, Wang J, et al. (2008)
Progesterone receptors: form and function in brain. Front Neuroendocrinol 29:

313–339.
57. Rainbow TC, Parsons B, McEwen BS (1982) Sex differences in rat brain

oestrogen and progestin receptors. Nature 300: 648–649.
58. Blaustein JD, Wade GN (1978) Progestin binding by brain and pituitary cell

nuclei and female rat sexual behavior. Brain Res 140: 360–367.

59. Walker DL, Toufexis DJ, Davis M (2003) Role of the bed nucleus of the stria
terminalis versus the amygdala in fear, stress, and anxiety. Eur J Pharmacol 463:

199–216.
60. Frye CA, Sumida K, Dudek BC, Harney JP, Lydon JP, et al. (2006)

Progesterone’s effects to reduce anxiety behavior of aged mice do not require

actions via intracellular progestin receptors. Psychopharmacology (Berl) 186:
312–322.

Progesterone and Anxiety

PLoS ONE | www.plosone.org 6 November 2008 | Volume 3 | Issue 11 | e3606


