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Abstract

Background: Polyketides are a diverse group of biotechnologically important secondary metabolites that are produced by
multi domain enzymes called polyketide synthases (PKS).

Methodology/Principal Findings: We have estimated frequencies of type I PKS (PKS I) – a PKS subgroup – in natural
environments by using Hidden-Markov-Models of eight domains to screen predicted proteins from six metagenomic
shotgun data sets. As the complex PKS I have similarities to other multi-domain enzymes (like those for the fatty acid
biosynthesis) we increased the reliability and resolution of the dataset by maximum-likelihood trees. The combined
information of these trees was then used to discriminate true PKS I domains from evolutionary related but functionally
different ones. We were able to identify numerous novel PKS I proteins, the highest density of which was found in
Minnesota farm soil with 136 proteins out of 183,536 predicted genes. We also applied the protocol to UniRef database to
improve the annotation of proteins with so far unknown function and identified some new instances of horizontal gene
transfer.

Conclusions/Significance: The screening approach proved powerful in identifying PKS I sequences in large sequence data
sets and is applicable to many other protein families.

Citation: Foerstner KU, Doerks T, Creevey CJ, Doerks A, Bork P (2008) A Computational Screen for Type I Polyketide Synthases in Metagenomics Shotgun
Data. PLoS ONE 3(10): e3515. doi:10.1371/journal.pone.0003515

Editor: Dawn Field, NERC Centre for Ecology and Hydrology, United Kingdom

Received July 7, 2008; Accepted September 22, 2008; Published October 27, 2008

Copyright: � 2008 Foerstner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: MetaHit (HEALTH-F4-2007-201052)

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: bork@embl.de

Introduction

The majority of the microorganisms on earth cannot be cultured

under standard laboratory conditions [1]. Therefore, uncultured

organisms from environmental samples are promising sources of new

enzymes and chemical compounds with biotechnological and

pharmaceutical applications. Currently, three screening techniques

are commonly applied for exploring protein functions in environ-

mental samples: the function-based, the sequence-based and the

substrate-induced gene-expression screening (SIGEX) [2]. Here we

present a framework for sequence-based computational screens in

environmental shotgun sequences, i.e. metagenomics data. It

involves both homology-based and phylogenetic classification. While

there has been some success in identifying important subfamilies in

metagenomics data [3–6], there are also immense challenges ahead

as tools and computational infrastructure often do not scale with the

increase in metagenomics data and as many protein families have

complicated evolutionary histories.

In order to explore a difficult and also important protein family

in the context of diverse metagenomics data sets, we have chosen

type I polyketide synthases (PKS I) as target proteins for screening.

They synthesize a highly diverse group of secondary metabolites

that covers many biological functions and have considerable

medical relevance. Polyketides in general can act among other

functions as antibiotics, immunosuppressants, pigments but also as

toxins or carcinogens [7] via different mechanisms. Antibiotics like

Erythromycin, Rifamycin and Oleandomycin are only a few

examples with medical relevance. Polyketides are usually large

chemical compounds that are synthesized in a series of repetitive

steps. Similar to the synthesis of fatty acids short acyl-units are

added to the growing molecule and are modified. All of these steps

are catalyzed by a combination of domains, namely a acyltrans-

ferase domain (AT – transfers the acyl unit to the acyl carrier

protein), a ketoacyl synthase domain (KS - performs the

decarboxylative condensation), and an acyl carrier protein (PP -

contains the phosphopantetheinyl arm) domain. Additionally the

ketoreductase (KR), the dehydratase (DH), the enoyl reductase

(ER) and the methyltransferase (MT) domain can modify the acyl

unit after the condensation. The thioesterase domain (TE) releases

the finished polyketide. PKS members have been found in

bacteria, fungi, plants, slime mold [8], Alveolata [9] and animals

[10,11]. Like the fatty acid synthases (FAS), PKS are classified

according to the arrangement of their domains: type I with

multiple domains per protein and type II in which each single

domain represents an independent protein. Bacterial type I PKS

are usually modular where each module is responsible for a single

fusion step [12] while fungal type I PKS proteins usually occur as

‘‘iteratively’’ acting enzymes in which the domain combinations

catalyze several steps. In plants a third class - PKS type III

(chalcone synthases) – was discovered and later also described in

bacteria [13]. It is common to classify the PKS into these three

types although many exceptions of this classification are known

[14,15] as the evolution of PKS is rather complex [10,12,16–18].
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There have been numerous attempts to identify PKS in

environmental samples using non-computational methods (e.g.

[19]). Here, we present a computational approach based on

Hidden-Markov-Model (HMM) sequence searches (as done in other

PKS focused studies like [20]) followed by the construction of

maximum-likelihood trees. This allows us to screen for multi-domain

proteins and to estimate the potential of the different environments

to serve as a source of PKS I sequences. Although the discrimination

of type I PKS from type II PKS and type II FAS is simple, due to the

large evolutionary distance [12] and PKS III are also a clearly

separable group, a unique PKS I identification remains challenging.

Reasons among others are the paralogy of type I PKS with type I

fatty acid synthases [12] and with other enzymes and the fast

evolution of PKS I. As PKS I proteins can be very large, it is unlikely

that complete proteins are found in the highly fragmented shotgun

metagenomic sequences. However, their multi-domain, repeated

structure provides multiple instances of evidence to find real PKS I

orthologs when searching independently with HMM of each of the

eight domains introduced above.

Our approach included the creation and use of domain specific

HMMs to find members of the type I PKS domain in six published

metagenomic data sets - Minnesota farm soil (MSF) [21], Sargasso

Sea (SGS) [22], human gut (HGUT) [23], acid mine drainage

(AMD) [24], enhanced biological phosphorus removal sludges

(EBPRS) [25] and whale falls (bones from sunken whales) (WLF)

[21]. We used the UniRef database [26] as an reference set by

treating it as another sample to be able to identify biases and the

status of PKS I annotation. In contrast to most other studies that

cover computational PKS analysis we did not only focus on AT and

KS domains but took all eight domains into account. The results of

the searches were the basis for the construction of maximum-

likelihood trees which allowed the more precise classification of the

HMM hits into type I PKS and non-PKS I members.

Results

Extracting PKS I candidate sequences using Hidden
Markov Models

From 926 annotated type I PKS domain sequences in the

PKSDB dataset [27], we generated multiple alignments and

constructed eight Hidden Markov Models (one for each domain)

that were searched against 6,613,204 predicted proteins in six

metagenomics samples and UniRef (for details see methods).

In total 22,106 candidate sequences of the eight PKS I domains

were retrieved and analyzed. They range from 45 MT domain

sequences to 4355 sequences of the KS domain type (for individual

datasets see Table S1). For most of the domains the UniRef set has

the highest total and relative (compared to the total number of

analyzed proteins) number of candidate type I PKS.

Refining potential PKS I sequences using maximum
likelihood trees

Although we did not find type II PKS sequences, due to the

similarity of PKS I to FAS I and other enzymes, HMMs alone were

not sufficient to discriminate PKS I proteins and related enzymes.

Therefore, we applied a phylogenetic approach [28] which allowed

the subsequent characterization of type I PKS subgroups.

In agreement with previous knowledge the trees of the AT, DH,

ER, KR, KS and PP domains show in general a consistent

phylogenetic profile and contain PKS I and non-PKS I taxa (see

Fig. 1 as an example, all other trees can be found in Methods S1

and S2). The main fraction of leaves in the PKS I branches is

contributed by the Actinobacteria and clusters mostly together (see

Table S2). Members of the Proteobacteria and other bacteria

phyla occur in mixed groups. The fungal sequences form in most

of the trees one or two groups within the PKS I branch and are

closely located to sequences of other eukaryotes like Dictyostelium

and animals. It was previously described that most of these animal

proteins are FAS I members which are phylogenetically related to

the fungal type I PKS [12,16] and also the occurrence of PKS-like

sequences in animal genomes (e.g. in sea urchin for the production

of pigments) has been reported [10].

Not all domains perform equally in identifying PKS I members.

For example, in the TE domain tree two clades are dominated by

PKS I sequences but a clear discrimination between PKS I and

non-PKS I members cannot be made for the rest of the tree. For

example, the MT domain tree contains only a few members as the

domain occurs quite rarely in type PKS I; also due to the short

length of the PP domain the results in this tree are less resolved

than those of the other seven domains.

The non-PKS I branches are large in some trees. In particular, in

AT, KS and TE domain trees many unspecified acyltransferases,

ketoacyl synthases and thioesterases respectively, were apparently

not filtered out by the HMM searches. In the DH domain tree the

non-PKS I sequences are predominately annotated as FAS members

while ER and KR domain HMM searches seems to attract non-

specified dehydrogenases and other oxidoreductases. The non-PKS

I PP domain members were mainly adenylate amino acids or

nonribosomal peptide synthetases (NRPS).

Quality analysis of the tree-based approach and HMM
searches

The enormous computational requirements of the tree recon-

structions made bootstrap analyses infeasible. However, the

fragmented environmental sequences could strongly influence

the quality and significance of the branches. We thus compared

the trees with reference trees without metagenomic sequences and

randomly created trees with the same amount of taxa. The

Robinson-Foulds distances [29] between the test trees and the

references trees were in general much smaller than the distances to

random trees (see Fig. S2, Table S3 and Methods S3). Also, the log

likelihood of the reference tress and trees with metagenomics

samples show a much better fit to the sequence alignments and are

much more similar to each other than to trees with random

topologies (see Methods S3 and S4). This implies that the trees are

a good representation of the phylogenetic signal in the dataset and

that their topologies are not overly influenced by the inclusion of

the metagenomic sequences.

To support the tree-based annotation of the metagenomics

sequences, the placements of all manually annotated PKS I from

PKSDB were checked. They should only be found in branches of

the trees that are marked as PKS I containing branches. With

exception of the TE domain set which has three PKSDB

sequences that are located in non-PKS I branches (see Methods

S5) all sequences are placed as expected in PKS I branches.

Using the trees for classification, it became apparent that the

HMM bit score values are not a sufficient criterion for

discriminating the type I PKS from the non-PKS I sequences.

To quantify this, sequences of the HMM searches were grouped

by their tree based annotation (implying that this is close to the

true function). The bit score distributions of these groups were

compared domain-wise and plotted as box plot (Fig. 2 for the AT

domain, Fig. S1 for all domains). All domains have a higher

median value for the PKS I than the non-PKS I. But for most of

the domains there is a large overlap of the bit score value between

these groups. Especially the many outliers with low bit scores in

the type I PKS group coming from metagenomic proteins fall in

the inter-quartile range of the non-PKS I group.

PKS I Screen in Metagenomes
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Taken together, these quality measurements indicate that the

tree approach can properly classify the candidate sequences

retrieved by HMMs into PKS and non-PKS I members.

PKS I domain densities in various environments
The number of domains that fall in branches which are

classified as type I PKS members as they contain known PKS I

sequences are visualized in Fig 3. In nearly all seven data sets the

KS domain is found most frequently (with the exception of

enhanced biological phosphorus removal sludge data sets)

followed by the AT, PP or KR domains. ER and TE sequences

occur generally in much lower counts. In agreement with

previous studies the MT domain appears very rarely and could

only be found in UniRef, the Minnesota farm soil sample and

the phosphorus removal sludge. The discrepancy between the

AT and KS domain occurrences might indicate different,

domain specific HMM sensitivities as they tend to occur at

equal copies, but it could have also biological reasons as the

number of AT domains in PKS I proteins might differ from the

number of KS domains if a trans-acting AT domain is involved

[30].

The density of PKS I domains has the highest value in UniRef

when the number of tree-refined PKS I sequences is normalized

by the total number of proteins in each of the data sets (Fig 4A). It

is around three times higher than that of Minnesota farm soil

sample which has the highest in all environments.

Figure 1. Maximum likelihood-tree of the AT domain.
doi:10.1371/journal.pone.0003515.g001

PKS I Screen in Metagenomes
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In UniRef, many different PKS I domains are found in the same

protein while the metagenomic sequences mostly encode protein

fragments with a single domain due to the shotgun approach taken

during data generation. Assuming that each of these metagenomic

domain sequences represent a full type I PKS protein we

normalized the number of single and multi domain hit proteins

by the number of screened proteins (Fig. 4B). We found that only

the farm soil has a higher PKS I density than UniRef, and PKS I

seem most rare in the gut sample where only a single domain

occurrence could be detected.

The identified PKS I proteins were also normalized by the

number of genome equivalents for the Minnesota farm soil,

Sargasso Sea, whale falls and acid drainage mine data sets as for

these environments average effective genome sizes have been

estimated [31]. With nearly seven type I PKS per genome

equivalent, the farm soil has the highest density of these proteins

(Fig. 5). This is in the range of fully sequenced genomes of

organisms from soil habitats [12].

In UniRef, the largest proportion of potential PKS I proteins

identified originated from Actinobacteria (5642 sequences),

followed by Proteobacteria (3625 sequences). This is similar to

statements of previous studies and may be biased by the number of

sequenced genomes of these phylogenetic groups [12]. The

counting of all taxonomic groups can be found in Table S2. We

did not find potential type I PKS members in archaeal proteins. A

possible reason for this is the lack of an FAS AT domain in

archaea [12] and the low likelihood of horizontal transfer of PKS I

genes. As the source organisms of proteins from environmental

samples are unknown, a detailed analysis of the taxonomic

distribution is currently impossible.

As expected, the majority of the environmental sequences are

located in clades dominated by bacterial PKS I domains, but there

Figure 2. Box plots of the bit score distribution of HMM search
result sequences for the AT domain classified as PKS I or as
non-PKS I using the tree.
doi:10.1371/journal.pone.0003515.g002

Figure 3. Number of sequences in the data sets that are
annotated as type I PKS domains based on the maximum-
likelihood tree. The intensity of the color is equivalent to the relative
number of sequences inside a data set. The KS domain has in the larger
data sets the highest number of hits and the ratio of the AT, KS and PP
domain is mostly similar.
doi:10.1371/journal.pone.0003515.g003

Figure 4. A – PKS I classified sequences normalized by total
number of screened proteins. B – PKS I classified sequences
normalized proteins-wise (all domains of one protein are counted
together as one entity) by total number of screened proteins.
doi:10.1371/journal.pone.0003515.g004
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are metagenomic sequences that seem to have a closer relationship

to eukaryotic type I PKS members. For example six Sargasso Sea

sequences can be found close to C. elegans and Alveolata proteins in

the AT domain tree. The originating species of these sequences is

unfortunately unclear.

Despite the fragmentation of the metagenomic sequences we

were able to find proteins with multiple domains in some of the six

environments. In the Sargasso sea sample, 15 of these with a

maximum number of seven domains were detected. The farm soil

collection hosted nine multidomain proteins but none extended

beyond two domains. The phosphorus removal sludge set

contained six (up to three domains) and the whale fall one (two

domains) of such sequences. The small number of multi domain

hits found reflects the low coverage of the samples. But the fact

that at least some are found give high confidence that we have

detected real PKS I members and that these communities might

be useful as sourced for further and more focused sequencing and

screenings.

Distribution of potential type I PKS members in the
different Sargasso Sea samples

The Sargasso Sea data set is composed of seven samples. It has

been suggested that sample 1 of the Sargasso Sea data set was

contaminated with Burkholderia and Shewanella species [32]. To

exclude the possibility that this contamination biased the

identification of PKS I proteins, the sample of origin of each of

protein identified was examined. Additionally, their closest

relatives in UniRef were determined by using BLAST. We found

that seven of the 15 proteins with multiple domain hits were

encoded by contigs mainly built from sample 1 reads, four from

Burkholderia and two from Shewanella. Of the 171 single-domain hit

proteins in the seven Sargasso samples, only 27 are found in

contigs with contributions of sample 1 and none of these seems to

be close related to Burkholderia proteins or Shewanella proteins. The

high number of multi-domain protein hits coming from potential

contaminations may be a result of the better coverage of these

genomes in the first sample. However, the remaining single-

domain hit proteins provide enough evidence that type I PKS

proteins are not solely due to the contaminating species but that

the uncontaminated ocean sample also hosts type I PKS

producing organisms.

Detection of non-annotated PKS I members in UniRef
The screening and tree based refinement of UniRef proteins

revealed type I PKS members that were so far not annotated as

PKS I or PKS at all. This includes 971 proteins with multiple PKS

I domain HMM hits and 760 proteins (mostly short, fragmented

ones) with only one such hit. Additionally we could confirm the

proposed annotation of further proteins, 197 proteins with

multiple domain hits and 146 proteins with single domain hits,

that were marked as hypothetical, putative, probable or predicted

PKS or PKS I.

The classification and functionality of PKS proteins in animals

is still unclear. Based on the analysis of AT and KS domains Jenke-

Kodama et al. [12] placed the animal FAS into the type I PKS

family which makes them a subfamily of PKS. Castoe et al. [10]

showed that sea urchins (Strongylocentrotus purpuratus and Lytechinus

variegatus), birds (Gallus gallus), and fish (Danio rerio and Tetraodon

nigroviridis) harbour PKS-like proteins with uncertain functionality,

which are closely related to PKS members of Dictyostelium. In our

study, the Metazoa contributed proteins with AT and KS domains

(in some cases also the ER domain) that were placed in the PKS I

branches of the trees while the remaining domains were found in

non-PKS I branches. This distribution was the case for some

insects, amphibia fish, echinodermata and mammals. In contrast

all detected six domains of a protein in Caenorhabditis briggsae and

eleven domains (except one DH domain) in Caenorhabditis elegans

seem to be true type I PKS domains.

The proteins in the Alveolata Cryptosporidium hominis, Cryptospo-

ridium parvum, Toxoplasma gondii are very large and contain only

PKS I annotated domains. It confirms the described occurrence of

PKS I in the protozoan pathogen Cryptosporidium parvum [9]. The

detection of type I PKS members in Ostreococcus tauri and

Ostreococcus lucimarinus sequences in UniRef supports a study that

reported type I PKS proteins in unicellular green algae based on a

KS domain tree [33]. The PKS I of these protists are described to

be different from the currently known PKS proteins and might

have a long separated evolution. The different domains detected

were found to be placed close to disparate taxonomic groups

(within bacteria and eukaryotes) in the trees generated.

Indication of horizontal gene transfer
The constructed phylogenetic trees also revealed some cases of

potential horizontal gene transfers. An example is a small group of 3

fungal protein taxa in the AT domain tree that is placed in the

Actinobacteria. In the DH domain tree, four Danio rerio (zebra fish)

sequences are nested in a small group of fungal sequences that is

surrounded by sequences from Actinobacteria. All proteins have the

same domain structure including a KS, AT and KR domain in

addition to the DH domain. It cannot be excluded that the detected

protein originated from a genome contamination though. Protein

identifiers of the described cases are listed in the Metods S3.

Discussion

Because of their size, modular structure, complicated evolution

and similarity to type I FAS and other enzymes, PKS members are

a challenging group of enzymes to identify and to classify. We were

able to detect type I PKS proteins – one subgroup of the PKS

group - in almost all the samples studied (Fig. 3). The Minnesota

farm soil sample shows the highest density of PKS I which is not

surprising as this environment has the highest species density

which leads to strong competition and an ‘‘arms race’’ between

species. The enormous potential for soil as source of useful

secondary metabolites was already discussed earlier [34] and our

results support these statements.

Figure 5. Type I PKS members per genome equivalent for the
Minnesota farm soil, whale falls, Sargasso Sea and acid mine
drainage sample estimated by Raes et al. [31]. The soil sample has
the highest density of type I PKS per genome.
doi:10.1371/journal.pone.0003515.g005
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For both the human gut (145 Mb of reads, 46503 predicted

genes) and acid mine drainage samples (140 Mb, 46862 predicted

genes), the HMM searches identified only one candidate PKS I,

albeit with high similarity to known PKS I sequences. This implies

a low PKS I density in these environments and it has to be proven

whether the respective species are members of the microbial

communities or just temporal bystanders that came in via food or

air. At least for AMD, one of the two detected PKS I proteins was

found in one of the major community members, the Leptospirillum

group III. This implies that even in an inhospitable environment

like AMD, which contains only a small number of species, the

community forces its inhabitants to arm themselves with expensive

secondary metabolites. These kinds of environments have so far

not been considered as sources of PKS proteins but our study

indicates that novel attempts to search for antibiotics and other

metabolites in them may reap rich rewards.

In addition to a quantification of PKS I in diverse environments,

our study has also helped to classify unknown proteins in UniRef and

improved their annotation. The usage of phylogenetic trees to

discriminate between PKS I and non-PKS I sequences seems to be a

feasible approach which also partially overcomes the problem of low

bit score values and fragmentation of environmental proteins using

traditional sequence similarity searches. Depending on the target

sequences this method can be successfully applied to search in

Sanger sequencing data sets and new generation 454 pyrosequen-

cing data sets with read lengths starting from 450 bp (see Methods

S4). The approach also shows the limits of current annotation

schemes: If HMM searches had been the only approach used, this

would have resulted in many false positives and false negative PKS I

being identified. Despite this, the HMMs used here have been

carefully designed, appear PKS I specific and are much more

discriminative than those currently available (e.g. in PFAM [35] or

TIGRFAM [36]). The HMMs have been deposited in SMART

[37]. The combination of the information of all eight domain

searches was shown to be a powerful detection method.

The approach outlined here can be applied to search further

proteins of interest in environmental shotgun sequences and has

been already successfully used to screen for the much smaller

family of Nitrilases [6]. The rapidly increasing amount of

metagenomic data that will be publicly released requires methods

such as the one presented here to quickly and cheaply screen for

proteins of interest.

Materials and Methods

Metagenomic and reference data sets
Sets of predicted proteins from the following metagenomics

samples were analyzed in this study: Minnesota farm soil [21],

Sargasso Sea [22], human gut [23], acid mine drainage [24],

enhanced biological phosphorus removal sludges [25] and whale

falls (sunken whale bones) [21]. Additional to the metagenomic

samples proteins sequences from UniRef100 database [26] were

used as reference set.

Hidden-Markov-Model creation and search
Due to the fact that neither Pfam [35] nor other resources offer

Hidden-Markov-Models (HMM) of all the the eight PKS I

domains, they were constructed based on a manually curated set

of PKS I protein sequence hosted at PKSDB [27]. For each

domain the sequences were aligned with muscle [38]. Based on

these alignments HMMs were created and calibrated by hmmbuild

and hmmcalibrate HMMER-package [39]. The UniRef protein

sequences were screened with these HMMs. Alignments (by

muscle) of extracted proteins were used to calculate maximum

likelihood trees. The trees helped to manually select real PKS I

members that were afterward aligned again. After a manual

cleaning of these alignments they were used to generated HMMs

(with the above described tools). Searches for type I PKS domains

in the metagenomic sequences and UniRef were performed with

these PKS I domain specific HMMs. A non-HMM based

searching approach can be found in Methods S4 and Table S4,

S5 and S6.

Tree construction
For each domain the sequences detected by the HMM were

filtered by their e-values (see Methods S4). The selected sequences

from UniRef and the metagenomic datasets were aligned by

hmmalign (included in the HMMER-package [39]). For the KS and

PP domain the UniRef sequence collection was shrunk to a set of

representatives by making use of blastclust (from the NCBI BLAST

package [40]) and a Python script [http:python.org]: Clusters

based on a similarity cut-off of 90% were created and the

annotation strings checked if all members were either PKS I or

non-PKS I sequences. Without the resizing these two datasets

would have been too large for further processing by phyml. Based

on the alignments maximum likelihood trees were constructed

using a slightly modified (removing limitation for memory usage -

see Methods S6 for the patch file) version of phyml [28].

Data base construction and querying
Information like fasta file headers, HMM result quality, tree

position and manual, tree based classification of the sequences

were combined in a sqlite database [http://www.sqlite.org] that

was queried to created result statistics (see Methods S5).

Comparison of the tree topologies with reference trees
To test if the noise from the fragmented metagenomic samples

overwhelms the phylogenetic signal of the reference set sequence

from UniRef, a reference tree based on the alignments for the

HMMs was built for each domain. The tree containing the

environmental sequences and the reference trees were then pruned

to their set of common taxa using clann [41]. For each domain 500

random trees containing the same leaf set as these common taxa

trees were generated by the program random_tree (see sumplemen-

tary material) using a markovian approach. The pairwise

Robinson-Foulds distances [29] of all combinations of these 502

trees were calculated with the rfdist function of clann. Supported by

a python script box plots were created using R (http://www.r-

project.org/).

Visualization and manual annotation
We used iTOL [42] for manual rerooting and visualizing of the

trees. Tree nodes of proteins derived from UniRef or PKSDB were

colorized by the taxonomic classification of the hosting species

(different levels based on NCBI Taxonomy [43]). In addition

automated, keyword based analysis of the annotation strings lead

to a second color ring of the UniRef taxa. Further a source

classifying color code was applied to environmental protein nodes.

Both, UniRef and environmental proteins were marked by a color

ring that reflects a value that we dubbed ‘‘global protein hit score’’

(GPHS). It is the difference of the number of domains in protein

that are placed in PKS I branches and number of domains that are

place in non-PKS I branches, divides by the total number of found

domains (nPKS2nNon_PKS/nPKS+nNon_PKS). Proteins with a GPHS

higher than 0 are more likely to be PKS, Proteins with a GPHS

lower than 0 are more likely to be non-PKS I. The GPHS can only

be calculated for multi domain hit protein.

PKS I Screen in Metagenomes
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For a visualization of the results, a program is provided that

creates graphical overviews of the proteins and the detected

domains based on the database content.

Code and data availability
All python and C programs (Methods S6) that were created for

this study are open source and available under the ISC license

(http://www.opensource.org/licenses/isc-license.txt). The data

base files and all other files are free availability under the Creative

Commons Attribution License (http://creativecommons.org/li-

censes/by/3.0/).

The generated detailed results are available in the supplemen-

tary material. This includes the resulting sequences of the HMM

searches (Methods S7), the alignments (Methods S7), the trees in

Newick format (Methods S7), visualization of the trees (Methods

S1 and S2) as well as the database that hold the integrated data

(Methods S5). Also a text file of selected parts of the database is

included (Methods S5). The created Hidden-Markov-Models are

incorporate into domain search web service SMART [37].

Supporting Information

Methods S1 Maximum likelihood trees of the AT, DH, ER, and

KR domains

Found at: doi:10.1371/journal.pone.0003515.s001 (7.24 MB ZIP)

Methods S2 Maximum likelihood trees of the KS, PP, MT and

TE domains

Found at: doi:10.1371/journal.pone.0003515.s002 (4.38 MB ZIP)

Methods S3 Box plots of bit score and Robison-Foulds distances

distributions

Found at: doi:10.1371/journal.pone.0003515.s003 (0.04 MB ZIP)

Methods S4 Supplementary Information

Found at: doi:10.1371/journal.pone.0003515.s004 (0.46 MB PDF)

Methods S5 SQLite data base of the integrated information and

tables of selected columns in CSV-format.

Found at: doi:10.1371/journal.pone.0003515.s005 (4.39 MB ZIP)

Methods S6 Source code of programs (C and Python) and

patches.

Found at: doi:10.1371/journal.pone.0003515.s006 (0.06 MB ZIP)

Methods S7 Sequences, alignment and tree files of the different

domains.

Found at: doi:10.1371/journal.pone.0003515.s007 (6.92 MB ZIP)

Figure S1 Bit score distributions of the hits of HMM searches

for all eight domains.

Found at: doi:10.1371/journal.pone.0003515.s008 (9.61 MB TIF)

Figure S2 Robison-Foulds distances distributions

Found at: doi:10.1371/journal.pone.0003515.s009 (2.88 MB TIF)

Table S1 Number of HMM search result sequences of different

annotation classes

Found at: doi:10.1371/journal.pone.0003515.s010 (0.11 MB DOC)

Table S2 Domain sequences marked as PKS I per taxonomic

group

Found at: doi:10.1371/journal.pone.0003515.s011 (0.10 MB DOC)

Table S3 Number of common taxa and Robison-Fould

distances of the test and reference tress

Found at: doi:10.1371/journal.pone.0003515.s012 (0.10 MB DOC)

Table S4 BLAST hits per domain in UniRef

Found at: doi:10.1371/journal.pone.0003515.s013 (0.10 MB DOC)

Table S5 Counting of the group members of the multi hit proteins

Found at: doi:10.1371/journal.pone.0003515.s014 (0.10 MB DOC)

Table S6 Counting of the group members of the single hit proteins

Found at: doi:10.1371/journal.pone.0003515.s015 (0.10 MB DOC)
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