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Abstract

Recent studies suggest that copy number polymorphisms (CNPs) may play an important role in disease susceptibility and
onset. Currently, the detection of CNPs mainly depends on microarray technology. For case-control studies, conventionally,
subjects are assigned to a specific CNP category based on the continuous quantitative measure produced by microarray
experiments, and cases and controls are then compared using a chi-square test of independence. The purpose of this work
is to specify the likelihood ratio test statistic (LRTS) for case-control sampling design based on the underlying continuous
quantitative measurement, and to assess its power and relative efficiency (as compared to the chi-square test of
independence on CNP counts). The sample size and power formulas of both methods are given. For the latter, the CNPs are
classified using the Bayesian classification rule. The LRTS is more powerful than this chi-square test for the alternatives
considered, especially alternatives in which the at-risk CNP categories have low frequencies. An example of the application
of the LRTS is given for a comparison of CNP distributions in individuals of Caucasian or Taiwanese ethnicity, where the LRTS
appears to be more powerful than the chi-square test, possibly due to misclassification of the most common CNP category
into a less common category.
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Introduction

Large-scale copy number polymorphisms (CNPs) are a recently

discovered feature of human genomic architecture [1]. As reported

by Sebat et al. [1], large-scale copy number polymorphisms

(CNPs) (about 100 kilobases and greater) contribute substantially

to genomic variation among normal humans. These authors

documented CNPs of 70 different genes within CNP intervals,

including genes involved in neurological function, regulation of

cell growth, regulation of metabolism, and several genes known to

be associated with disease. For example, investigators have

documented that copy number variation of the region encom-

passing the CCL3L1 gene [MIM 601395] is associated with HIV/

AIDS susceptibility [2] [MIM 609423]. Other investigators have

documented that copy number variation of the orthologous rat

and human FCGR3 genes [MIM 146740] is a determinant of

susceptibility to immunologically mediated glomerulonephritis

[3,4] [MIM 610665]. Additional recent publications suggest that

CNPs may play a role in cardiovascular disease [5], lipoprotein

and metabolic phenotypes [6], nervous system disorders [7], age-

related macular degeneration [8,9] [MIM 610149], autism [10],

cancer [1,11], and schizophrenia [12]. More generally, CNPs may

play an important role in disease etiology for common, complex

traits. Additionally, CNPs, like SNPs and microsatellite markers,

may have different distributions for populations with different

ethnicities [13,14].

Case-control genetic association designs can be a powerful way

to map disease susceptibilty genes, particularly for diseases with

smaller effect sizes [15,16,17,18,19]. In such designs, unrelated

cases (with the phenotype of interest) and controls (who do not

have the phenotype) are genotyped usually for thousands to

hundreds of thousands of single nucleotide polymophisms (SNPs)

across the human genome. Standard statistical analyses include the

chi-square test of independence or the linear trend test [20,21]

applied to the individual SNP genotype counts from cases and

controls. These genotypes are usually determined through use of

clustering algorithms applied to underlying quantitative measure-

ments (e.g., see [22]).

Compared to SNP genotyping technologies, procedures for

calling CNPs are less developed and less accurate [23]. Earlier

CNP studies focused on discovery [24], with copy number changes

being called using data from a single array, comparing DNA from

an individual with a reference DNA sample. Recently developed

methods classify known CNPs using array data collected from a

large group of individuals. One method classifies known CNPs

from the distribution of a univariate quantitative measure (C.

Yoon; manuscript in preparation). Such a quantitative measure is

either an average log fluorescent intensity ratio (between sample
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and reference DNA) over multiple probes representing the CNP,

or the log-intensity ratio of the best probe within the CNP region.

One reason for the relative difficulty of CNP classification is that

such classification is determined by relative intensity of a signal at a

probe (or probe sets). In contrast, the two alleles of a SNP have two

distinct nucleotides that can be represented by two distinct probes.

Moreover, for multi-allelic CNPs, only the total number of copies

(or categories) and not the alleles are observed for each individual.

As an example, for a CNP locus of three alleles, with 1 copy, 2

copies and 3 copies respectively and probe intensity proportional

to the number of copies, an intensity observation of 4 can be a

genotype of 2/2 copies or a genotype of 1/3 copies.

Consider the pictorial examples in Figures 1a and 1b, which are

created to represent a hypothetical CNP with a total of four different

copy number categories (labeled ‘‘1’’ through ‘‘4’’). For each

category, different subjects will have a quantitative measure following

a fixed continuous distribution, whether or not the subject is a case or

control. The case category frequencies are then the mixing

proportions of the component distributions [25]; similarly for the

controls. In Figure 1a, the quantitative measures for CNP category i,

1#i#4 comes from a univariate normal distribution with mean i and

variance 1=36 each. Studying the figure, we see there is clear separation

among the component normal distributions, so that classification of

individuals into categories 1,…, 4 is highly accurate [26]. An example

where classification is more problematic is presented in Figure 1b. In

this figure, the CNP quantitative measures for subjects have normal

distributions with the same means as in Figure 1a, but with variance

J each. That is, for each univariate distribution in Figure 1b, the

variance is nine times that of the variance in Figure 1a, resulting in

greater overlap among component distributions. As suggested by

Figure 1b, when the component distributions have more overlap, the

rate of misclassifying an individual having true CNP category i as

having CNP category j?i is much higher. It has been reported that

the chi-square test of independence loses power as the misclassifica-

tion rate increases [26,27,28].

An additional concern is that the CNP category that increases

risk may occur with low frequency, as is often the situation with

Mendelian diseases [29]. In case-control association studies using

SNPs with low at-risk allele frequency, an increase in the genotype

misclassification error rates requires indefinitely large increases in

sample size to maintain constant power [30,31]. We hypothesize

that CNP classification errors may lead to underpowered studies

when the at-risk CNP category has low frequency. Challenges of

performing association studies using CNP data were recently

documented by McCarroll and Altshuler [32], who note, ‘‘To the

extent that the precise allelic state of any DNA is not well

measured, power declines.’’ We raise the question: Is there a more

(statistically) powerful method of using CNP data when testing for association

with a complex trait than the usual chi-square test of independence?

To answer this question, we propose use of the likelihood ratio

test statistic (LRTS) comparing the mixing proportions of cases and

controls estimated from the underlying quantitative measures for

CNPs. Rather than assign classifications to each individual’s CNP,

we perform a test of association on the CNP quantitative measure.

We present an analytic solution to computation of power and

sample size calculations for genetic association with CNP

quantitative measures. We then calculate the efficiency of the

chi-square test of independence using Bayesian classification

compared to the LRTS to examine which test statistic has greater

power for a wide range of trait specifications. By efficiency, we

mean the ratio of sample size requirements for the chi-square test

of independence and LRTS, respectively, for a fixed power and

type I error rate. Finally, we demonstrate the use of the LRTS for

differences in the mixing proportions of the CNP categories

between two ethnic groups for a CNP with relevance to a genetic

disease.

Methods

Notation
The following notation is used throughout this work:

Xa = A continuous random variable representing the CNP

quantitative measure; a is an index indicating control (a = 1) or

case (a = 2) status.

Figure 1. 1a and 1b. In this figures, we present probability density plots for statistical distributions that are mixtures of four
univariate normal distributions with equally spaced means 1, 2, 3, and 4, and a common variance. In Figure 1a, the variance of each
component distribution is 1=36. In Figure 1b, the variance of each component distribution is J.
doi:10.1371/journal.pone.0003475.g001
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The number of controls is n1, and cases n2, with N = n1+n2 and

Qa~
na

n1zn2
, a~1,2, which is the proportion of controls or cases in

the total sample.

d = The number of CNP categories; the subscript i indexes the

category, 1#i#d.

f(x|hi,g) = The probability density function (pdf) of the contin-

uous random variable X = x, conditional on the CNP category.

This pdf is a function of the parameters hi and g, where g is a

parameter that is constant for all component distributions. For

example, if f is a normal pdf, then hi is the mean and g is the

variance.

p!a~ pa1, � � � ,padð Þ= A vector of mixing proportions; here, the

values pai, 1#i#d, are the proportions of CNP category i in the a
affection status class (a = 1 for controls, a = 2 for cases). Under the

null hypothesis, p1i = p2i.

p0i = Q1p1i+Q2p2i. Since, under the null hypothesis, p1i = p2i, then

p1i = p2i = p0i, under the null.

qi = The CNP category frequencies in the population from

which cases and controls are drawn.

cai~
ffiffiffiffiffi
N
p

pai{p0ið Þ= A parameter needed for specification of

the alternative hypothesis and hence power and sample size

calculations.

h
!

~ h1, � � � ,hdð Þ= A vector of parameters for the probability

density functions f(x|hi,g). In the examples used here, hi is the

mean of the CNP category i distribution. Also, in the efficiency

calculations reported later, hi+12hi = 1, i = 1,…, d21. The

separation S~ hiz1{hiffiffi
g
p is the number of standard deviations

between adjacent CNP category means.

Probability density function of the CNP quantitative
measure

The probability density function of the random variable Xa is

given by ha x p!a, h
!

,g
���� �

~
Pd
i~1

paif x hi,gjð Þ, where we assume the

number of categories d is known and equal in both cases and

controls. Given a CNP category i, the underlying pdf f(?) is the

same for cases and controls. When f(x|hi,g) is a normal

distribution, we specify that the variance (g) is equal across all

CNP categories i and affection statuses a. While these specifica-

tions are not critical for performing power and sample size

calculations, they may be advantageous when performing mixture

analyses of real data. For instance, there may be convergence

problems for the computed maximum likelihood of a univariate

normal mixture if one allows the category variances to be unequal.

Methods such as those proposed by Hathaway [33,34] may be

used when the equal variance assumption does not hold.

Likelihood function
The likelihood function under the null hypothesis is given by:

L0~ P
n1zn2

j~1

Xd

i~1

p0if xj hi,gj
� � ! !

: ð1Þ

The likelihood function under the alternative hypothesis is given

by:

L1~ P
n1

j~1

Xd

i~1

p1i f xj hi,gj
� � ! !

P
n2

k~1

Xd

i~1

p2if xk hi,gjð Þ
 ! ! !

: ð2Þ

Computationally, L0 and L1 are calculated by using the maximum

likelihood estimates (MLEs) of the parameters.

LRTS
In this work, we consider two test statistics: (1) the LRTS applied

directly to the CNP quantitative measures for cases and controls;

and (2) the chi-square test of independence applied to 26d tables

after the CNP quantitative measures have been classified into one

of d categories for cases and controls using a Bayesian classification

rule (see section immediately following). The LRTS (1) is defined as

LRTS~2 max
p1i ,p2i ,hi ,g

ln L1ð Þ{ max
p0i ,hi ,g

ln L0ð Þ
� �

, ð3Þ

where the likelihoods are defined in equations (1) and (2).

Bayesian classification rule for univariate CNP
quantitative measures

To categorize CNP quantitative measures into a CNP category, we

consider a classification formula based on Bayes rule [35]. Since this

approach minimizes the expected cost of misclassification, as proven

in Anderson [36], it is a well-accepted approach. An observation x is

assigned to CNP category i if and only if p0if x hi,gjð Þ§
max

1ƒjƒd
p0j f x hj ,g

��� �
, where p0i = Q1p1i+Q2p2i, (defined above –

Notation). For an example with d = 3 copy number categories and

a normal CNP category distribution, application of the Bayes rule

yields:

x is placed in the left-most component if x,min(c12,c13),

x is placed in the middle component if c12,x,c23,

x is placed in the right-most component if max(c13,c23),x,

where cij~
hjzhi

2
{ g

hj{hi
log

p0j

p0i

� �
, 1#i,j#3. In applications,

(c12,c13,c23) are estimated using the MLEs of the parameters.

Simulation studies to verify asymptotic null distribution
of chi-square test with Bayesian classification

We perform simulation studies to verify the accuracy of the

asymptotic null distribution of the chi-square test of independence

applied to CNP counts after classification using the Bayesian

classification rule (described above). We consider two settings each

of sample size and mixing proportion vectors (a total of four settings).

Our mixture model is a mixture of four univariate normal

distributions with consecutive mean distances hi+12hi = 1 unit apart.

Separations are fixed to be hiz1{hiffiffi
g
p ~3. We specify sample sizes

n1( = n2) = 200 or 500, and mixing proportions p!1 ~ p!2

� �
~

0:25, 0:25, 0:25, 0:25ð Þ or 0:1, 0:2, 0:3, 0:4ð Þ.

Computing asymptotic power for the LRTS of the CNP
quantitative measure

The asymptotic distribution of the LRTS under the null

hypothesis follows a x2
d{1 distribution under certain conditions

[37] (referred to as ‘‘classic regularity conditions’’); and the

asymptotic power under the alternative specified hypothesis

HN : pai~p0iz
caiffiffiffi

N
p can be calculated using the non-central chi-

square distribution x2
d{1 lLRTSð Þ with the non-centrality parame-

ter (NCP) lLRTS given in Appendix S1.

Computing asymptotic power for chi-square test of
independence

The 26d test under an alternative hypothesis HN asymptotically

follows a non-central chi-square distribution [38]. When the

component distributions have more overlap, the misclassification

rates are much higher. If the misclassification error mechanism is

random and non-differential, the observed classification probabil-
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ities p* can be written in terms of a matrix of classification

probabilities e = (eij), where eij = Pr (subject’s observed genotype = i|

subject’s true genotype = j). The power for the chi-square test of

independence with misclassification errors can be calculated from

the NCP lCS [27,28,38], where

lCS~NQ1Q2

Xd

i~1

p
1
1i{p

1
2i

� �2

p
1
0i

, and p
1
ai~

Xd

j~1

eijpaj :

Genetic model parameters for efficiency analysis
We calculate the efficiency of the chi-square test on 26d

contingency tables with respect to the LRTS on CNP quantitative

measures for two genetic models of inheritance (MOI) associated

with CNPs that have been documented as a possible MOI for

CNPs [2,39]. We first specify the disease prevalence w, the

population frequencies qi for CNP category i,1#i#d, and the

relative risks Ri of becoming affected, given that an individual has

CNP category i. We then compute the penetrances gi = Pr(affec-

ted|CNP_category = i), where we specify Ri = gi/g1, so that the

reference CNP category relative risk is 1. The reference CNP

category may be chosen arbitrarily without loss of generality. The

penetrances are given by g1~
wPd

i~1

Riqi

, and gi = Rig1. Using Bayes

Theorem, the CNP category mixing proportions conditional on

affection status are:

p1i~Pr CNP category~i unaffectedjð Þ

~
Pr unaffected,CNP category~ið Þ

Pr unaffectedð Þ

~
1{gið Þqi

1{w
,

ð4Þ

p2i~Pr CNP category~i affectedjð Þ

~
Pr affected,CNP category~ið Þ

Pr affectedð Þ

~
giqi

w
:

For our comparative analyses, we set d = 4, q1 = 0.4, q2 = 0.35,

q3 = 0.2, q4 = 0.05, and w = 0.05. In the first (Dosage) model, the

risk of becoming affected increases geometrically with increase in

CNP category. We specify R2 = 1.8, R3 = 1.82 = 3.24, and

R4 = 1.83 = 5.83, so that risk increases by a factor of 1.8 for each

increase in CNP category.

In the second (Extremes) model, risk of becoming affected

increases for CNP categories 1 and d and decreases for all other

categories. For this work, we specify R2 = 0.3, R3 = 0.3, and

R1 = R4 = 1. Finally, we set the means to be equally spaced for all

components. Specifically, hi = i for comparative analyses so that

separation is given by hiz1{hiffiffi
g
p ~ 1ffiffi

g
p .

Simulation studies to verify asymptotic null and
alternative distributions of LRTS

We perform simulation studies to verify the accuracy of the

asymptotic null and alternative distributions of the LRTS. For the

null distribution simulations, we consider two settings each of

sample size and mixing proportion vectors (a total of four settings).

For the alternative distribution simulations, we consider one

setting of sample size and two different MOIs (a total of two

settings). Also, for both sets of simulations, our mixture model is a

mixture of four univariate normal distributions with consecutive

mean distances hi+12hi = 1 unit apart. Separations are fixed to be
hiz1{hiffiffi

g
p ~3.

For the null distribution simulations, we specify sample sizes

n1( = n2) = 200 or 500, and mixing proportions p!1 ~ p!2

� �
~

0:25, 0:25, 0:25, 0:25ð Þ or 0:1, 0:2, 0:3, 0:4ð Þ. For

the alternative distribution simulations, sample sizes are n1

( = n2) = 200, and mixing proportions are determined using

equations (4) with the specified parameters (including CNP

population frequencies) for the Dosage and Extremes MOIs,

given above (Methods - Genetic model parameters for efficiency

analysis).

To find the global maximum (equations (1) and (2)), we use

Expectation-Maximization algorithms (EM). A small pilot study

found that there were typically three relative maxima under the null

specification and two under the alternative. Consequently, we use

100 random starting points (RSPs) for parameter estimation under

the null distribution simulations and 50 RSPs for the estimation

under the alternative distribution simulations. EM algorithm

computations are performed using MCLUST in the R program-

ming environment [40]. For each RSP, the convergence tolerance is

set at 1025 and the maximum iteration number is set at 300.

Efficiency of the chi-square test relative to the LRTS
The efficiency of the 26d test relative to the LRTS is denoted Eff

and is the ratio Eff ~ lCS

lLRTS
of the NCP of the chi-square test to the

NCP of the LRTS. When the relative efficiency is less than 1, the

chi-square test requires a larger sample size to achieve the same

power as the LRTS, given that both tests have the same level of

significance. For example, if the relative efficiency of the 26d test is

0.8, the 26d test requires 100 observations to have the same power

as the LRTS using 80 observations.

Example CNP data for two ancestral populations
Since recent work documents different CNP distributions in

different ethnic populations [41,42] we apply our LRTS to test for

differences in mixing proportions of CNP categories between two

groups of individuals (Caucasian and Taiwanese) using probe ratio

data for a multi-allelic CNP probe in the FCGR3 gene on

Chromosome 1. We also apply the chi-square test of independence

to the probe ratio data after the individuals are classified into

categories using the Bayesian classification rule described above.

Oligonucleotide probes are designed as described previously [43].

To be consistent with notation used throughout this work, from

this point forward we label the Taiwanese samples as ‘‘controls’’

and the Caucasian samples as ‘‘cases’’, although individuals in this

study were not ascertained for any particular disease phenotype.

Results

Simulation studies to verify asymptotic null distribution
of chi-square test with Bayesian classification

In Table 1, we report the empirical type I error rates at the 0.975,

0.10, 0.05, 0.025, and 0.01 significance levels for each set of

parameter settings. For each simulation, these type I error rates

are the proportion of replicates for which the computed LRTS

exceeds 0.2157, 6.25, 7.81, 9.348 or 11.34, which correspond to

the 0.975, 0.10, 0.05, 0.025 and 0.01 significance level cutoffs for a

central chi-square distribution with 3 degrees of freedom (the

asymptotic null distribution for each simulation). For each

empirical type I error rate, we report the 95% confidence interval,
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based on 1000 replicates. As an additional confirmation, we apply

the Kolmogorov-Smirnoff (KS) goodness of fit test [44,45] to each

simulations’ set of 1000 LRTS values (i.e., sample size for KS test is

1000), and report the p-values in Table 1.

In each simulation, the target type I error rate is contained in the

95% confidence interval for the corresponding empirical type I error

rate. In addition, the smallest KS test p-value is 0.36, indicating that

we do not reject the null hypothesis that the data are drawn from a

central chi-square distribution with 3 degrees of freedom.

Computing asymptotic power for LRTS of copy number
measurement

When the alternative hypothesis HN : pai~p0iz
caiffiffiffi

N
p is true, the

NCP of the LRTS may be written in a quadratic form as:

lLRTS~NQ1Q2 p11{p21, � � � , p1 d{1ð Þ{p2 d{1ð Þ
� �

J0

p11{p21

..

.

p1 d{1ð Þ{p2 d{1ð Þ

0
BBB@

1
CCCA

where J0 is the (d21)6(d21) symmetric matrix specified in

Appendix S1.

Simulation studies to verify asymptotic null and
alternative distributions of LRTS

As in Table 1, in Table 2, we report the empirical type I error

rates at the 0.10, 0.05, and 0.01 significance levels for each set of

parameter settings. For each simulation, these type I error rates

are the proportion of replicates for which the computed LRTS

exceeds 6.25, 7.81, or 11.34, which correspond to the 0.10, 0.05,

and 0.01 significance level cutoffs for a central chi-square

distribution with 3 degrees of freedom (the asymptotic null

distribution for each simulation). For each empirical type I error

rate, we report the 95% confidence interval, based on 1000

replicates. As an additional confirmation, we apply the Kolmo-

gorov-Smirnoff (KS) goodness of fit test [44,45] to each

simulations’ set of 1000 LRTS values (i.e., sample size for KS

test is 1000), and report the p-values in Table 2.

In each simulation, the target type I error rate is contained in

the 95% confidence interval for the corresponding empirical type I

error rate. In addition, the smallest KS test p-value is 0.34,

indicating that we do not reject the null hypothesis that the data

are drawn from a central chi-square distribution with 3 degrees of

freedom.

In Table 3, we report the simulation power at the 1023, 1024, and

1025 significance levels for each set of parameter settings. For each

simulation, these powers are the proportion of replicates for which

the computed LRTS exceeds 16.27, 21.11, or 25.90, which

correspond to the 1023, 1024, and 1025 cutoffs for a central chi-

square distribution with 3 degrees of freedom (the asymptotic null

distribution for each simulation). More stringent significance level

cutoffs are chosen for the power analyses since power at the 0.10,

0.05, and 0.01 levels is close to or equal to 100% for these parameter

specifications. As with the empirical type I error rates in Table 1, we

report the 95% confidence intervals, based on 1000 replicates each.

We also report the asymptotic power at each of the significance

levels, determined by computing the non-centrality parameter

(equation (A1)) for each set of parameter settings. As an additional

confirmation, we apply the Kolmogorov-Smirnoff (KS) goodness of

fit test [44,45] to each simulations’ set of 200 LRTS values (i.e.,

sample size for KS test is 200), and report the p-values in Table 3.

While the KS p-values are much smaller, we see that, for the

1023 and 1024 significance levels, the simulation power is

contained in the 95% confidence interval for each simulation.

The results of this table suggest that our simulation results are

consistent with asymptotic results for at least the 1023 and 1024

significance levels.

Table 1. Simulation results of the null distribution of chi-squared test.

Sample size Proportions Empirical type I error rate* KS-Test P-value

0.975 Level 0.10 Level 0.05 Level 0.025 Level 0.01 Level

200 (0.25, 0.25, 0.25, 0.25) 0.976 0.107 0.042 0.018 0.005 0.72

500 (0.25, 0.25, 0.25, 0.25) 0.971 0.092 0.047 0.025 0.007 0.78

200 (0.1, 0.2, 0.3, 0.4) 0.979 0.094 0.046 0.018 0.006 0.54

500 (0.1, 0.2, 0.3, 0.4) 0.983 0.106 0.056 0.036 0.010 0.36

Based on 1000 replications for each settings.
doi:10.1371/journal.pone.0003475.t001

Table 2. Simulation results of the null distribution of LRTS.

Sample size Proportions Empirical type I error rate* KS-Test P-value

0.975 Level 0.10 Level 0.05 Level 0.025 Level 0.01 Level

200 (0.25, 0.25, 0.25, 0.25) 0.979 0.103 0.045 0.015 0.007 0.81

500 (0.25, 0.25, 0.25, 0.25) 0.971 0.097 0.052 0.021 0.013 0.79

200 (0.1, 0.2, 0.3, 0.4) 0.977 0.106 0.046 0.020 0.005 0.34

500 (0.1, 0.2, 0.3, 0.4) 0.982 0.109 0.060 0.028 0.011 0.41

Based on 1000 replications for each settings.
doi:10.1371/journal.pone.0003475.t002
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Relative efficiency of the 26d chi-square test relative to
the LRTS

Using the result for the NCP of the LRTS,

Eff ~

Pd

i~1

p
1
1i

{p
1
2ið Þ2

Q1p
1
1i

zQ2p
1
2iPd{1

i~1

Pd{1

j~1

Jij p1i{p2ið Þ p1j{p2jð Þ
, where

Jij~E0
f x hi ,gjð Þ{f x hd ,gjð Þð Þ f x hj ,gjð Þ{f x hd ,gjð Þð ÞPd

k~1

Q1p1kzQ2p2kð Þf x hk ,gjð Þ

	 
2

0
BBB@

1
CCCA. Figure 2 contains

the relative efficiency of the 264 chi-square test with Bayesian rule

classification with respect to the LRTS for the Extremes and Dosage

models against the separation between successive category means.

In all models, the relative efficiency is less than 1; that is, the LRTS is

more powerful. When the separation is 5 standard deviations or

greater, both tests have essentially the same power. The relative

efficiency steadily declines as the separation between category

means decreases, with less efficiency for the Extremes model.

Example CNP data for two populations
Results for the LRTS applied to P4077 probe ratio data for the

Caucasian and Taiwanese samples are presented in Table 4.

Figure 3 contains the histograms of each group’s probe ratio data,

as well as of the combined groups (Caucasians and Taiwanese).

There are an estimated three CNP categories, and the LRTS p-

value for the P4077 probe is 0.014. In comparison, the chi-square

test of independence p-value based on the asymptotic null

distribution for the P4077 probe data with classification by the

Bayesian rule is 0.03. The p-value based on Fisher’s Exact Test is

0.0175. The numbers of Caucasian and Taiwanese individuals in

CNP categories 1, 2, and 3 are: 229, 31, and 1; and 67, 20, and 1,

respectively, as determined by the Bayesian classification rule.

Additionally, we report the estimated classification rates as follows:

e~

0:963 0:037 0:000

0:335 0:663 0:002

0:000 0:087 0:913

0
B@

1
CA,

where eij = Pr(reported CNP classification = j|true CNP classification = i).

The LRTS method provides a slightly more significant p-value.

When we use the estimated misclassification parameters in the

matrix e along with the estimated mixing proportions under the

alternative hypothesis (Table 4) in the Power for Association With

Error (PAWE) webtool, the power at the 5% significance level for

the sample sizes specified in our example is 98% with error-free

data, and is 76% with error rates given in e, a power loss of 22%.

From the perspective of power loss, Kang et al. [30,31] showed

that misclassification of the most common category to any other

category is the most costly; here, the estimated error rate of 3.7%

in classification CNP category ‘‘1’’ as category ‘‘2’’ results in the

greatest power loss. Other investigators have previously docu-

mented that the chi-square test of independence and the linear

trend test lose power under such misclassification when data are

genotypes or multi-locus haplotypes [30,31,46,47].

Additionally, if we compute the separation values hiz1{hiffiffi
g
p , i = 1,

2, using the estimated parameters from Table 3, we see that

separation between categories 1 and 2 is 1:42{1:056ffiffiffiffiffiffi
0:03
p ~2:09, and

separation between categories 2 and 3 is 2:18{1:42ffiffiffiffiffiffi
0:03
p ~4:38. That is,

Table 3. Simulation results for LRTS under alternative distributions.

MOI
Method to calculate
power Simulation Power* KS-Test P-value

1023 Level 1024 Level 1025 Level

Dosage Simulation 0.958 (0.946, 0.970) 0.866 (0.845, 0887) 0.735 (0.708, 0.762) 0.01

Asymptotic 0.949 0.856 0.712

Extremes Simulation 0.950 (0.936, 0.964) 0.857 (0.835, 0.879) 0.738 (0.711, 0.765) 0.07

Asymptotic 0.946 0.848 0.700

Legend for Table 2. Based on 1000 replications and 200 sample size per case/control group.
*95% approximate confidence intervals for simulated power are given in parentheses.
Here, we present simulated and asymptotic power for the LRTS when the alternative hypothesis that mixing proportions are different in each of two groups is true. The
mixing proportions are computed using equations (4) for the Dosage and Extremes models, where CNP population frequencies are as specified above (Methods -
Genetic model parameters for efficiency analysis). For the Dosage model, the relative risks are: R2 = 1.8, R3 = 1.82 = 3.64, R4 = 1.83 = 5.83. For the Extremes model, the
relative risks are: R1 = 1, R2 = 0.3, R3 = 0.3, R4 = 1. Asymptotic power is computed using the non-centrality parameter documented in equation (A1). The column ‘‘KS-Test
P-value’’ refers to the p-value computed using the Kolmogoroff-Smirnoff goodness of fit test, as implemented in R programming environment.
doi:10.1371/journal.pone.0003475.t003

Figure 2. Here we present the relative efficiency Eff (defined in
Methods) of the chi-square test of independence in relation to
the LRTS as a function of separation ( 1ffiffi

g
p ) between the four

component distributions that comprise the mixture distribution.
All information regarding parameter specification for the Dosage and
Extremes models for which relative efficiencies are calculated is
presented in the Methods section (Genetic model parameters for
efficiency analysis).
doi:10.1371/journal.pone.0003475.g002
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for the majority of samples (categories 1 and 2) the separation is

only 2.09. Our results of the relative efficiency studies in Figure 2

also suggest that, for such separation, the chi-square test with

Bayesian classification is a less powerful procedure than the LRTS.

While one cannot use parameters estimated from data collected

to calculate actual power, we present these calculations as

indications of the source of the greater power of the LRTS due

to the relatively high misclassification rates that are consistent with

the estimated parameters.

Discussion

We have derived the non-centrality parameter for the LRTS of

the mixture proportions applied to the CNP quantitative

measurements. The relative efficiency of the 264 chi-square test

is less than 1 for the example disease MOIs considered here, with

greater decreases as the separation between category-means

decreases. That is, for the models considered, the LRTS is more

powerful than the chi-square test. In the example, power may have

been lost for the chi-square test because of relatively high

estimated misclassification rate from the most common category

to the second most common category. The chi-square test of

independence can lose substantial power under such misclassifi-

cation [30,31,47].

A key advantage of the LRTS is that it can be computed on any

CNP data, whether or not that data can be categorized. While the

example presented (Table 4 and Figure 3) used only a single CNP

Table 4. Parameter estimation with 3 component normal
mixtures for probe P4077 ratio data.

Hypothesis Estimated parameters CNP Category

i = 1 i = 2 i = 3

Null (H0) Mixing proportions 0.815 0.179 0.006

Means (hi) 1.062 1.446 2.191

Alternative
(HN)

Mixing proportions for Taiwanese (p1i) 0.626 0.362 0.011

Mixing proportions for Caucasians (p2i) 0.843 0.152 0.005

Means (hi) 1.056 1.420 2.180

Legend for Table 4. Data are determined for 261 individuals of Caucasian
ethnicity and 88 individuals of Taiwanese ethnicity. The estimated variance (g)
under both the null and alternative hypotheses is 0.03.
doi:10.1371/journal.pone.0003475.t004

Figure 3. In these figures, we provide histograms of P4077 probe ratio data for Taiwanese, Caucasian and Combined (Taiwanese
and Caucasian) samples. We also provide a fitted probability density function line for each data set. These graphs were created using the R
programming environment. The horizontal axis labeled ‘‘MEASUREMENT’’ refers to each individual’s probe ratio data value (after log transform) for
the P4077 probe.
doi:10.1371/journal.pone.0003475.g003
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as an illustration, the LRTS can be calculated for multiple SNPs

analyzed simultaneously through specification of a multivariate

pdf. The formal statistical analysis is the same, in that the LRTS is

calculated as shown in Equation (3). Additionally, extensions of a

multivariate procedure can incorporate more complex modeling

of the mixture mechanism, for example, including a Hidden

Markov Model approach.

The results indicated in Table 1 and Figure 2, namely that non-

differential misclassification errors do not result in a change in the

type I error rate and that there is power loss for the chi-square test

of association, are consistent with numerous publications on the

subject of non-differential genotyping error. Pompanon et al. [48]

and Gordon and Finch [49,50] provide reviews of the literature.

As an alternative analysis, one might consider a logistic

regression model with case/control status as the dependent

variable and CNP quantitative measure as the independent

variable. One potential advantage of this method is that

determination of optimal estimates is less computationally

intensive than the LRTS procedure documented in this work.

Another potential advantage of logistic regression is that it allows

for the possible inclusion of covariates. In this work we focus on

the LRTS to avoid specification of a mathematical model of

association. That is, the LRTS presented here only tests whether

mixing proportions are different in two groups. There are mixture

models that examine whether covariates are associated with CNP

category membership [51,52]. A natural next step to extend our

work is to allow the inclusion of covariates. The LRTS is similar in

spirit to the commonly used chi-square test of independence for

genotype data on cases and controls. That statistic similarly tests

for differences in allele or genotype frequencies among different

categories (e.g., cases and controls). We further note that there is

literature on power and sample size for logistic regression [53,54].

While robustness of logistic regression procedures when the

independent variable is drawn from a single univariate normal

distribution is well documented (e.g., see [55]), the extension to

logistic regression procedures when the independent variable is

drawn from a mixture of distributions, as is the situation with

CNPs, needs further investigation.

The recent work documenting differences in CNP distributions

for different ethnic populations is consistent with the frequently

replicated results that there are different allele and genotype

frequency distributions in different ethnic populations [13,56]. Yu

et al. [57] confirmed CNP values with ‘‘gold-standard’’ sequencing

data. It is a limitation of our example that our estimated CNP

classifications are not confirmed with sequencing data. Recent

methodological research has documented several benefits of

having standard and gold-standard measurements simultaneously

on a subset of individuals [58,59,60]. Such sampling has been

referred to as double-sampling [61,62].

An additional limitation in the data analysis of our example is

our assumption of equal variances among the component

distributions. While this assumption appeared to be true for this

example, it will not hold in general. In that event, methods such as

those proposed by Hathaway [33,34] may be used.

The power and sample size calculations presented here are

based on asymptotic theory; that is, our results should hold when

sample sizes are sufficiently large. When sample sizes are smaller,

one can use simulation methods to estimate power. Of course, p-

values should be based on permutation tests in such instances.

Web Resources
Online Mendelian Inheritance in Man (http://www.ncbi.nlm.

nih.gov/Omim)

Power for Association With Error (http://linkage.rockefeller.

edu/pawe/)

Supporting Information

Appendix S1

Found at: doi:10.1371/journal.pone.0003475.s001 (0.02 MB

PDF)
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