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Abstract

Background: Analysis of the viral genome for drug resistance mutations is state-of-the-art for guiding treatment selection
for human immunodeficiency virus type 1 (HIV-1)-infected patients. These mutations alter the structure of viral target
proteins and reduce or in the worst case completely inhibit the effect of antiretroviral compounds while maintaining the
ability for effective replication. Modern anti-HIV-1 regimens comprise multiple drugs in order to prevent or at least delay the
development of resistance mutations. However, commonly used HIV-1 genotype interpretation systems provide only
classifications for single drugs. The EuResist initiative has collected data from about 18,500 patients to train three classifiers
for predicting response to combination antiretroviral therapy, given the viral genotype and further information. In this work
we compare different classifier fusion methods for combining the individual classifiers.

Principal Findings: The individual classifiers yielded similar performance, and all the combination approaches considered
performed equally well. The gain in performance due to combining methods did not reach statistical significance compared
to the single best individual classifier on the complete training set. However, on smaller training set sizes (200 to 1,600
instances compared to 2,700) the combination significantly outperformed the individual classifiers (p,0.01; paired one-
sided Wilcoxon test). Together with a consistent reduction of the standard deviation compared to the individual prediction
engines this shows a more robust behavior of the combined system. Moreover, using the combined system we were able to
identify a class of therapy courses that led to a consistent underestimation (about 0.05 AUC) of the system performance.
Discovery of these therapy courses is a further hint for the robustness of the combined system.

Conclusion: The combined EuResist prediction engine is freely available at http://engine.euresist.org.
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Introduction

To date 33.2 million [30.6–36.1 million] (http://www.who.int/

mediacentre/news/releases/2007/pr61/en/index.html) people are

estimated to be infected with the human immunodeficiency virus

type 1 (HIV-1). Currently, about 20 antiretroviral compounds

targeting four different stages of the viral replication cycle exist to

fight the pandemic. Targets of these antiretrovirals are: entry of the

virus into the host cell, reverse transcription of the viral RNA into

DNA, integration of the viral genome into the host genome, and

maturation of new viral particles through proteolytic processing of

viral polyproteins. The group of drugs available for the longest time

interrupt the process of reverse transcription. These reverse

transcriptase (RT) inhibitors are subdivided in two groups.

Nucleoside and nucleotide reverse transcriptase inhibitors (NRTIs)

are chemically modified versions of deoxynucleosides that interfere

with reverse transcription by blocking chain elongation after their

incorporation into newly synthesized DNA. Instead, non-nucleoside

reverse transcriptase inhibitors (NNRTIs) bind to the viral reverse

transcriptase and block DNA polymerization by impairing the

mobility of particular RT domains. Protease inhibitors (PIs) target

the assembly of new infectious particles by occupying the active site

of the viral protease that processes viral precursor polyproteins into

structurally and functionally mature proteins. Compounds for

preventing entry of the virus into the host cell and integration of the

viral genome in the host’s genome are relatively new, and not yet

established or infrequently used in clinical routine.

Antiretroviral therapy
The large variety of compounds designed for combating a single

pathogen is the response to the virus’ potential of escaping drug

pressure by developing resistance mutations that reduce the
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susceptibility of the virus to the drug. Mutations leading to drug

resistance are generated frequently, since the process of reverse

transcription lacks a proofreading mechanism and generates single

nucleotide mutations at a high rate (3.4 * 1025 per nucleotide base

per cycle of replication; [1]). To date, NRTIs, NNRTIs and PIs

form the basis for daily routine in treating HIV patients. The

current standard of care, highly active antiretroviral therapy

(HAART), aims at maximally suppressing the viral replication

and thus preventing or at least delaying the development of resistant

variants and, thereby, the progression of the disease to AIDS and

death. A typical HAART comprises three or more drugs from at

least two different drug classes. Applying such a therapy can slow

down the emergence of resistant variants substantially, since

mutants that are resistant to all components of the regimen are

unlikely to preexist, and new variants need to bring forth several

escape mutations while retaining the ability of effective replication.

However, treatment failure is eventually observed in most of the

patients. When it occurs, clinicians face the problem of finding a

new effective drug cocktail. Despite the presence of more than 20

different compounds this is a challenge, since the number of

treatment options in patients failing HAART is not only reduced by

resistance to the drugs administered, but also by resistance to

compounds never given to the patient. This is due to the

phenomenon of cross-resistance, by which a virus by becoming

resistant to a drug simultaneously acquires resistance to most if not

all drugs in the same drug class. Selecting an effective therapy is

mandatory, because ineffective drugs lower the barrier for the virus

to escape the remaining compounds and tend to result in a

treatment failure after a short period.

Genotypic assays are now standard methods for guiding

treatment selection by providing the genetic information of the

viral strain prevalent in the patient. The information routinely

extracted from the viral genome comprises all the 99 amino acid

positions of the protease and the first 240 amino acid positions of

the RT. Several existing tools (reviewed in [2]) support the

interpretation of the complex dependence between the viral

genotype and its drug susceptibility profile in vitro and in vivo.

Furthermore, a reference list of resistance mutations is maintained

by the International AIDS Society (IAS) [3]. Despite the

availability of tools for interpreting viral resistance against single

drugs there are no guidelines on how this information has to be

used to rate clinical practice regimens comprising multiple

compounds. Furthermore, none of the currently used genotype

interpretation systems addresses the critical issue of evolution of

the present virus to resistance to other drug regimens.

The EuResist approach
The EuResist project (IST-2004-027173) aims at integrating

clinical and virological data from a large number of patients and

training a data-driven therapy response prediction for drug

combinations rather than for single drugs. The EuResist Integrated

Database (EIDB) currently comprises data from Italy (ARCA

database; http://www.hivarca.net/), Germany (AREVIR database;

[4]), Sweden (Karolinska Infectious Diseases and Clinical Virology

Department), and Luxembourg (Retrovirology Laboratory, CRP-

Santé). In order to train a classifier, response to antiretroviral

therapy is dichotomized. A therapy success is defined according to

clinical standards as a viral load (VL; copies of viral RNA per

milliliter of blood) measure below 500 copies per milliliter or a

reduction of 2 log compared to the baseline VL measure. Thus, a

viral genotype and a baseline VL measure must exist at maximum

three months before start of the therapy and a follow-up VL

measure must be available after 8 (4–12) weeks of treatment to allow

for inclusion of that therapy into the training data. Statistics of the

EIDB and available training data are shown in Table 1. Three

classification models for predicting response to combination

antiretroviral therapy on the basis of the viral genotype and other

clinical features were independently developed. The single

approaches are described below. The final EuResist prediction

system provides a ranking of a number of combination therapies

with respect to their probability of success, given the viral genotype

and additional clinical information. Basis for the ranking are the

predictions of the individual classifiers. In order to provide a more

reliable and robust recommendation several methods for combining

the individual classifiers were investigated.

Related work
Lathrop and Pazzani [5] formulated the optimization of an anti-

HIV-1 regimen with respect to drug resistance given a set of HIV-

1 sequences as a triply nested combinatorial optimization problem.

They presented a branch-and-bound algorithm to efficiently solve

this problem. In [6] committees of Artificial Neural Networks were

used to predict virological response to antiretroviral treatment.

The response was not dichotomized but the actual change

between baseline and follow-up VL measure was predicted. Apart

from the viral genotype other clinical features were considered to

enhance performance. The approach was trained and validated on

a rather small set of treatment change episodes (1,150 for training,

100 for testing). In [7] the online tool geno2pheno-THEO was

introduced which uses exclusively features derived from the viral

genome and a quantitative notion of the probability of the virus

escaping to resistance in the future, namely the genetic barrier to

drug resistance, to predict success of an intended regimen. The

response to antiretroviral therapy was dichotomized as well,

although using a different definition leading to a set of 6,300

genotype-treatment pairs. However, none of the aforementioned

approaches tried to combine multiple highly optimized classifiers

for achieving a more accurate and robust prediction.

Table 1. Summary of the EuResist Integrated Database (release 11/2007) and training and test set.

Patients Sequences VL measurements Therapies Successes Failures

EIDB 18,467 22,006 240,795 64,864 - -

Labeled Therapies 8,223 3,492 40,498 20,249 13,935 6,314

Training Set 2,389 2,722 5,444 2,722 1,822 900

Test Set 297 301 602 301 202 99

The table displays the number of Patients, Sequences, VL measurements, and Therapies for the complete EuResist Integrated Database (EIDB) and the set of therapies
that could be labeled with the definition. 469 of the sequences associated with all labeled therapies belong to historic genotypes and are not directly associated with a
therapy change. Moreover, detailed information on training set and test set (comprising labeled therapies with an associated sequence) is given.
doi:10.1371/journal.pone.0003470.t001
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Combination of multiple classifiers has been widely discussed in

literature (e.g. [8]), and is also an inherent part of novel classification

methods like bagging and boosting. Previously, Sinisi et al. applied

multiple regression methods for predicting HIV-1 in vitro drug

resistance to one protease inhibitor [9]. Typically, different

combination approaches are compared on multiple datasets to

identify the most suitable method for many applications. However,

the presented comparison aims specifically at finding the best

combination method for prediction response to anti HIV-1 therapy.

Furthermore, we present a detailed analysis in terms of performance

and robustness of the complete EuResist prediction system

previously introduced in [10]. Similarities to that publication are

a mere necessity for ensuring autonomy of this work.

Methods

Individual classifiers
Three classifiers for inferring virological response to anti HIV-1

therapy were developed. One constraint on the classifiers was that

they receive the viral genotype and the intended treatment as the only

information, since the viral genotype is the information to which all

users interested in using a decision support system must have access.

However, in many cases additional information is available to the

user, such as the VL, the CD4+ cell count, information on previous

treatment lines and previously obtained viral genotypes, the patient’s

age, or the patient’s risk group. In the remainder of this paper we will

refer to features derived from the minimal and full set of information

as minimal feature set and maximal feature set, respectively. Features

that can be derived from the minimal (maximal) feature set during

prediction were allowed for usage in the minimal (maximal) feature

set as well. For each of the three systems a different feature selection

method was applied. Although various statistical learning approaches

were explored for the systems, logistic regression proved to be the

most accurate method in all cases. Details on the individual engines

are given in the following subsections.

Generative Discriminative engine. The Generative

Discriminative (GD) engine applies generative models to derive

additional features for the classification using logistic regression.

Only a small percentage of therapies in the database (Table 1)

have an associated genotype and are therefore suitable for training

a classifier that is supposed to receive sequence information.

However, a much larger fraction of the therapies can be labeled as

success or failure on the basis of the baseline and follow-up VL

measures alone, since for the labeling no viral genotype is

required. The GD engine thus trains a Bayesian network on about

20,000 therapies (with and without associated genotype). The

network is organized in three layers and uses an indicator for the

outcome of the therapy, indicators for single drugs, and indicators

for drug classes. This generative model is used to compute a

probability of therapy success on the basis of the drug combination

alone. This probability is used as an additional feature for the

classification by logistic regression, the discriminative step of the

approach. Furthermore, indicators for single drugs and single

mutations are input for the logistic regression.

Indicators representing a drug class are replaced with a count of

the number of previously used drugs from that class when working

with the maximal feature set. In this way information about past

treatments is incorporated. In addition to features from the minimal

set, the maximal feature set comprises indicators for mutations in

previously observed genotypes, the number of past treatment lines,

and the VL measure at baseline. Correlation between single

mutations and the outcome of the therapy was used to select

relevant mutations for the model. A detailed description on the

network’s setup and the selected mutations can be found in [10].

Mixed Effects engine. The Mixed Effects (ME) engine

explores the benefit of including second- and third-order variable

interactions. Since modern regimens combine multiple drugs,

binary indicators representing usage of two or three specific

drugs in the same regimen are introduced. Further indicators

represent the occurrence of two specific mutations in the viral

genome for modeling interaction effects between them.

Moreover, interactions between specific single drugs and single

mutations or pairs of drugs and single mutations are represented

by additional covariates. In addition to the terms modeling the

mixed effects other clinical measures, demographic information,

and covariates based on previous treatments are used (further

information in [10]).

The large number of features (due to the mixed effects) requires

a strong effort in feature selection. Thus, multiple feature selection

methods were used for generating candidate feature sets. Filters

and embedded methods, i.e. methods that are intrinsically tied to a

statistical learning method, were applied sequentially: (i) univari-

able filters, such as x2 with rank-sum test and correlation-based

feature selection [11] , were applied to reduce the set of candidate

features; (ii) embedded multivariable methods, such as ridge

shrinkage [12] and Akaike information criterion (AIC) selection

[13] were used to eliminate correlated features and to assess the

significance of features with respect to the outcome in multivariate

analysis. In multiple 10-fold cross validation runs on the training

data the performance of the resulting feature sets were compared

with a t-statistic (adjusted for sample overlap and multiple testing).

The approach leading to the best feature set was applied on all

training samples to generate the final model. Unlike the GD

engine, the ME engine is based on one set of features only. Missing

variables are replaced by the mean (or mode) of that variable in

the training data.

Evolutionary engine. As stated before, one major obstacle in

HIV-1 treatment is the development of resistance mutations. The

Evolutionary (EV) engine uses derived evolutionary features to

model the virus’s expected escape path from drug therapy. The

representation of viral evolution is based on mutagenetic trees.

Briefly, a mutagenetic tree is reconstructed from all pairwise

probabilities of defined events. Here, these events are occurrences

of drug resistance mutations in the viral genome. Hence, a mixture

of reconstructed mutagenetic trees represents possible evolutionary

pathways towards drug resistance along with probabilities for the

development of the involved mutations [14]. Using

geno2pheno[resistance] [15], mutation patterns leading to

complete drug resistance against a single compound can be

identified. Together with the current drug resistance pattern of the

virus and the probabilities of the mutagenetic trees, the likelihood

of the virus remaining susceptible to that drug can be computed.

This likelihood is termed the genetic barrier to drug resistance

[16]. The genetic barrier to drug resistance is provided together

with other features, like indicators for single drugs in the treatment

and indicators for IAS mutations in the genotype. In the maximal

feature set, indicators for previous use of a drug and the baseline

VL measure extend this list. Interactions up to second order

between indicator variables are considered as well.

The feature selection approach is based on Support Vector

Machines (SVMs) with a linear kernel. The approach works in

three steps: (i) optimization of the cost parameter in a 10-fold

cross validation setting to maximize the area under the ROC

curve (AUC); (ii) generation of 25 different SVMs by 5

repetitions of 5-fold cross validation using the optimized cost

parameter; (iii) computation of the z-score for every feature. All

features with a mean z-score larger than 2 were selected for the

final model.

Inferring HIV Therapy Response
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Methods for classifier combination
In principle there are two approaches to combining classifiers,

namely classifier fusion and classifier selection. In classifier fusion

complete information on the feature space is provided to every

individual system and all outputs from the systems have to be

combined, whereas in classifier selection every system is an expert

in a specific domain of the feature space and the local expert alone

decides for the output of the ensemble. However, the individual

classifiers described above were designed to be global experts, thus

only classifier fusion methods were explored.

Methods for classifier fusion can operate on class labels or

continuous values (e.g. support, posterior probability) provided by

every classifier. The methods range from simple non-trainable

combiners like the majority vote, to very sophisticated methods

that require an additional training step. In order to find the best

combination method we compared several approaches ranging

from simple methods to more sophisticated ones. All results were

compared to a combination that has access to an oracle telling

which classifier is correct. Intuitively, the predictive performance

of this oracle represents the upper bound on the performance that

can be achieved by combining the classifiers. The following

subsections briefly introduce the combination methods considered.

Non-trainable combiners. As mentioned above, there are a

number of simple methods to combine outputs from multiple

classifiers. The most intuitive one is a simple majority vote, whereby

every individual classifier computes a class label (in this case

success or failure) and the label that receives the most votes is the

output of the ensemble. One can also combine the posterior

probability of observing a successful treatment as computed by the

logistic regression. This continuous measure can be combined

using further simple functions: mean returns the mean probability

of success by the three classifiers [17]; min yields the minimal

probability of success (a pessimistic measure); max results in the

maximal predicted probability of success (an optimistic measure);

median returns the median probability.

Meta-classifiers. The use of meta-classifiers is a more

sophisticated method of classifier combination, which uses the

individual classifiers’ outputs as input for a second classification

step. This allows for weighting the output of the individual

classifiers. In this work we applied quadratic discriminant analysis

(QDA), logistic regression, decision trees, and naı̈ve Bayes (operating on

class labels) as meta-classifiers.

Decision templates and Dempster-Shafer. The decision

template combiner was introduced by Kuncheva [18]. The main

idea is to remember the most typical output of the individual

classifiers for each class, termed decision template. Given the

predictions for a new instance by all classifiers the class with the

closest (according to some distance measure) decision template is

the output of the ensemble.

Let x be an instance, then DPx is the associated decision profile.

The decision profile for an instance contains the support (e.g. the

posterior probability) by every classifier for every class. Thus, DPx

is an I6J-matrix, where I and J correspond to the number of

classifiers and classes, respectively. The decision template

combiner is trained by computing the decision templates DT for

every class. The DT for the class vj is simply the mean of all

decision profiles for instances x belonging that class. Hence,

DTj~
1

Nj

X
x[vj

DPx,Vj[ 1, . . . ,Jf g

where Nj is the number of elements in vj . For a new sample, the

corresponding decision profile is computed and compared to the

decision templates for all classes using a suitable distance measure.

The class with the closest decision template is the output of the

ensemble. Thus, the decision template combiner is a nearest-mean

classifier that operates on decision space rather than on feature

space. We used the squared Euclidean distance to compute the

support for every class:

mj xð Þ~1{
1

J1I

XJ

j’~1

XI

i~1

DTj j’,ið Þ{DPx j’,ið Þ
� �2

where DTj (j9, i) is the (j9, i)th entry in DTj . Decision templates

were reported to outperform other combiners (e.g. [18] and [19]).

Decision templates can also be used to compute a combination

that is motivated by the evidence combination of the Dempster-

Shafer theory. Instead of computing the similarity between a

decision template and the decision profile, a more complex

computation is carried out as described in detail in [20]. We refer

to these two methods as Decision Templates and Dempster-Shafer,

respectively.

Clusters in decision space. Regions in decision space where

the classifiers disagree on the outcome are of particular interest in

classifier combination. Therefore, we propose the following

method that finds clusters in decision space and learns separate

logistic regression models for every cluster for fusing the individual

predictions. Let si be the posterior probability of observing a

successful treatment predicted by classifier i. Then we express the

(dis)agreement between two classifiers by computing:

aij~
0 classifiers i and j agree on the label

si{sj else

�

for all i and j where i,j . Thus, in case of disagreement between

two classifiers, the computed value expresses the magnitude of

disagreement. These agreements are computed for all instances of

the training set and used as input to a k-medoid clustering. For all

resulting k clusters an individual logistic regression is trained on all

instances associated with the cluster using the si as input. The idea

is that in clusters where e.g. classifier 1 and 2 agree, and classifier 3

tends to predict lower success probabilities the logistic regression

can either increase or decrease the influence of classifier 3,

depending on how often predictions by that classifier are correct or

incorrect, respectively.

When a new instance has to be classified then first the

agreement between the classifiers is computed for locating the

closest cluster. In a second step the logistic regression associated

with that cluster is used to calculate the output of the ensemble.

The number of clusters k, the only parameter of this method, is

optimized in a 10-fold cross validation. The approach is motivated

by the behavior knowledge space (BKS) method [21], which uses a look-

up table to generate the output of the ensemble. However, the

BKS method is known to easily over train, and does not work with

continuous predictions.

Local accuracy-based weighting. Woods et al. [22]

propose a method that uses one k-nearest-neighbor (knn)

classifier for every individual classifier to assess the local

accuracy of that classifier given the input features. The output is

solely given by the most reliable classifier of the ensemble. Since

the three classifiers in this setting are trained to be global experts,

we applied the proposed method to compute the reliability

estimate for each classifier given the features of an instance. In

contrast to the method proposed by Woods et al. [22], the output

is a weighted mean based on these reliability estimates.

Inferring HIV Therapy Response
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In order to use a knn classifier as a reliability estimator the labels

from the original instances are replaced by an indicator of whether

the classifier in question was correct on that instance or not. With

the replaced labels and the originally used features the knn

classifier reports the fraction of correctly classified samples in the

neighborhood of the query instance. This fraction can be used as a

local reliability estimator. The output by the ensemble is then

defined by a weighted mean:

�ss~

P
i risiP
i ri

where si and ri are the posterior probability of observing a

successful treatment and the local accuracy for classifier i,

respectively. For simplicity, only Euclidean distance was used in

the knn classifier, the number of neighbors k was optimized in a

10-fold cross validation setting.

Combining classifiers on the feature level. As described

above, every individual classifier uses a different feature set,

specifically, different derived features, but the same statistical

learning method. Thus, a further combination strategy is the use of

all features selected for the individual classifier as input to a single

logistic regression rather than computing a consensus of the

individual classifiers’ predictions.

Data
About 3,000 instances in the EIDB met the requirements for use

as a learning instance. From this complete set, 10% of the data

were randomly set aside and used as an independent test set

(Table 1). The split of the training data in 10 equally sized folds

was fixed, allowing for 10-fold cross validation of the individual

classifiers. The same 10 folds were used for a 10-fold cross

validation of the combination approaches. Classification perfor-

mance was measured as accuracy (i.e. the fraction of correctly

classified examples) and the area under the receiver operating

characteristics curve (AUC). Briefly, the AUC is a value between 0

and 1 and corresponds to the probability that a randomly selected

positive example receives a higher score than a randomly selected

negative example [23]. Thus, a higher AUC corresponds to a

better performance.

Results

Results for the individual classifiers using the minimal and

maximal feature set are summarized in Table 2. The use of the

extended feature set significantly improved the performance of the

GD and EV engine with respect to the AUC (p = 0.001953 for

both) using a paired Wilcoxon test. With respect to accuracy only

the improvement observed by the EV engine reached statistical

significance (p = 0.006836). Remarkably, replacement of all

missing additional features in the case of the ME engine when

working with the minimal feature set did not result in a significant

loss in performance (p = 0.3125 and p = 0.3120 with respect to

AUC and accuracy, respectively).

Correlation among classifiers
The performances of the individual classifiers were very similar.

Pearson’s correlation coefficient (r) indicated that the predicted

probability of success for the training instances using the minimal

(maximal) feature set were highly correlated (i.e. close to 1): GD-ME

0.812 (0.868); GD-EV 0.797 (0.786); ME-EV 0.774 (0.768). In fact,

the three classifiers agreed on the same label in 80.4% (81.7%) of the

cases using the minimal (maximal) feature set. Notably, agreement of

the three classifiers on the wrong label occurred more frequently in

instances labeled as failure than in instances labeled as success (39%

vs. 4% and 37% vs. 4% using the minimal and maximal feature set,

respectively; both p,2.2 * 10216 with Fisher’s exact test).

This behavior led to further investigation of the instances

labeled as failure in the EIDB. Indeed, 145 of 350 failing instances,

which were predicted to be a success by all three engines, achieve a

VL below 500 copies per ml once during the course of the therapy.

However, this reduction was not achieved during the time interval

that was used in the applied definition of therapy success. Among

the remaining 550 failing cases this ocurred only 100 times. Using

a Fisher’s exact test this difference was highly significant

(p = 4.8*10214). These results were qualitatively the same when

using the maximal feature set.

Results of combination methods
Table 3 summarizes the results achieved by combining the

individual classifiers, and Figure 1 depicts the improvement in AUC

on training and test set of the combination methods compared to the

single best and single worst classifier, respectively. Most combina-

tion methods improved performance significantly over the single

worst classifier. However, only the oracle could establish a

significant improvement over the single best classifier. Overall,

performances of the combination approaches were quite similar.

The pessimistic min combiner yielded better performance than the

optimistic max combiner. Among the non-trainable approaches

tested, the mean combiner yielded the best performance. The logistic

regression was the best performing meta-classifier. In fact, the

logistic regression can be regarded as a weighted mean, with the

weights depending on the individual classifier’s accuracy, and the

correlation between classifiers. Moreover, using all features of the

individual classifiers as input to a single logistic regression did not

improve over the single best approach.

Table 2. Results for the individual classifiers on training set and test set.

Engine minimal feature set maximal feature set

AUC Accuracy AUC Accuracy

Train Test Train Test Train Test Train Test

GD 0.747 (0.027) 0.744 0.745 (0.024) 0.724 0.768 (0.025) 0.760 0.752 (0.028) 0.757

ME 0.758 (0.019) 0.745 0.748 (0.031) 0.757 0.762 (0.021) 0.742 0.754 (0.030) 0.757

EV 0.766 (0.030) 0.768 0.754 (0.031) 0.748 0.789 (0.023) 0.804 0.780 (0.032) 0.751

The table displays the performance, measured in AUC and Accuracy, achieved by the individual classifiers on the training set (using 10-fold cross validation; standard
deviation in brackets) and the test set using different feature sets.
doi:10.1371/journal.pone.0003470.t002
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Figure 2 shows the learning curves for the three individual

classifiers, the mean combiner, and the combiner on the feature

level. The curves depict the mean AUC (after 10 repetitions) on the

test set achieved with varying sizes of the training set (25, 50, 100,

200, 400, 800, 1600, 2722). In every repetition the training samples

were randomly selected from the complete set of training instances.

The mean combiner appeared to learn faster and significantly

outperformed the single best engine with a training set size of 200

samples (p = 0.009766 with a paired one-sided Wilcoxon test). The

improvement remained significant up to a training set size of 1,600

samples (p = 0.001953). The combination on feature level was

significantly (p = 0.001953) worse than the worst single approach for

all training set sizes (except for complete set).

Impact of ambiguous failures
In order to further study the impact of ambiguous failures (i.e.

instances labeled as failure but achieving a VL below 500 cp per

ml once during the course of treatment) on the performance of the

individual classifiers and the combination by mean or on the

feature level, they were removed from the training set, the test set,

or both sets. After removal the classifiers were retrained and tested

on the resulting new training and test set, respectively. The results

in Table 4 suggest that training with the ambiguous failures does not

impact the classification performance (columns ‘‘none’’ vs. ‘‘only

train’’, and columns ‘‘only test’’ vs. ‘‘both’’). However, the

ambiguous cases have great impact on the assessed performance.

Removal of these cases increases the resulting AUC by 0.05.

However, there might still be an influence of these ambiguous

failures on the performance of the trainable combination methods.

For verification we removed these cases whenever performance

measures were computed (also in 10-fold cross validation) and

trained a selection of the combination methods on the complete

training data and on the cleaned training data. The results in

Table 5 suggest that the trainable combination methods were not

biased by the ambiguous failures.

A possibility for circumventing the (artificial) dichotomization of

virological response is the prediction of change in VL between the

baseline value and the measurement taken at the follow-up time

point. Logistic regression was replaced by linear regression in the

individual classifiers for predicting the change in VL. Using the

maximal feature set the GD (ME, EV) engine achieved a correlation

(r) of 0.65860.023 (0.66460.023, 0.67960.020) on the training set

[10]. The mean combiner yielded a correlation of 0.69160.019.

However, the oracle achieved r = 0.83460.012. Although small, the

difference between EV and the mean prediction reached statistical

significance (p = 0.004883) using a one-sided paired Wilcoxon test.

Results on the test set were qualitatively the same: GD (ME, EV)

reached a correlation of 0.657 (0.642, 0.678) and the mean

combiner (oracle) reached 0.681 (0.814).

Discussion

The performance of the methods considered for combining the

individual classifiers improved only little over the single best

method on both sets of available features. It turns out that the

simple non-trainable methods perform quite well, especially the

mean combiner. This phenomenon has been previously discussed

in literature (e.g. [18] and [24]). Here we focused on finding the

best combination strategy for a particular task. The advantage of

the mean combiner is that it does not require an additional

training step (and therefore no additional data), although it ranges

among the best methods studied. Moreover, this combination

strategy is easy to explain to end-users of the prediction system.

Table 3. Results for the combined classifiers on training and test set.

Method minimal feature set maximal feature set

AUC Accuracy AUC Accuracy

Train Test Train Test Train Test Train Test

Single Best 0.766 (0.030) 0.768 0.754 (0.031) 0.748 0.789 (0.023) 0.804 0.780 (0.032) 0.751

Oracle 0.914 (0.015) 0.911 0.842 (0.025) 0.844 0.917 (0.013) 0.920 0.850 (0.022) 0.860

Min 0.771 (0.020) 0.765 0.746 (0.027) 0.761 0.792 (0.021) 0.793 0.760 (0.030) 0.764

Max 0.760 (0.023) 0.765 0.742 (0.030) 0.731 0.779 (0.021) 0.779 0.757 (0.030) 0.741

Median 0.773 (0.020) 0.766 0.759 (0.027) 0.766 0.789 (0.029) 0.786 0.768 (0.029) 0.761

Mean 0.777 (0.020) 0.772 0.760 (0.024) 0.744 0.794 (0.019) 0.793 0.780 (0.028) 0.781

Majority 0.683 (0.023) 0.660 0.759 (0.027) 0.738 0.697 (0.027) 0.683 0.768 (0.029) 0.761

QDA 0.771 (0.020) 0.763 0.755 (0.031) 0.738 0.790 (0.022) 0.794 0.769 (0.027) 0.764

Logistic Regression 0.778 (0.021) 0.774 0.762 (0.028) 0.744 0.798 (0.020) 0.805 0.781 (0.030) 0.771

Decision Trees 0.718 (0.044) 0.741 0.748 (0.032) 0.757 0.722 (0.033) 0.678 0.777 (0.032) 0.757

Naı̈ve Bayes 0.732 (0.027) 0.740 0.759 (0.027) 0.738 0.752 (0.028) 0.753 0.768 (0.029) 0.761

Decision Templates 0.777 (0.021) 0.774 0.755 (0.027) 0.754 0.796 (0.019) 0.797 0.766 (0.026) 0.767

Dempster-Shafer 0.777 (0.021) 0.772 0.755 (0.024) 0.754 0.796 (0.019) 0.796 0.767 (0.026) 0.764

Clustering 0.775 (0.019) 0.773 0.758 (0.029) 0.741 0.797 (0.018) 0.800 0.783 (0.028) 0.784

Local Accuracy 0.777 (0.020) 0.771 0.761 (0.025) 0.741 0.795 (0.019) 0.791 0.781 (0.029) 0.777

Feature 0.750 (0.026) 0.747 0.745 (0.029) 0.751 0.786 (0.021) 0.779 0.780 (0.029) 0.767

The table summarizes the results achieved by the different combination approaches on the training set (10-fold cross validation; standard deviation in brackets) and the
test set. The reference methods are Single Best and Oracle, the non-trainable combiners are named according to their function, the meta-classifiers according to the
statistical learning methods. Decision Templates, Dampster-Shafer, Clustering and Local Accuracy are the methods described in detail in the Methods section. Feature is
the combination on the feature level.
doi:10.1371/journal.pone.0003470.t003

Inferring HIV Therapy Response

PLoS ONE | www.plosone.org 6 October 2008 | Volume 3 | Issue 10 | e3470



The learning curves in Figure 2 show that the mean combiner

learns faster (gives more reliable predictions with fewer training

data) than the individual prediction systems. Moreover, the curves

show that the combined performance is not dominated by the

single best approach as the results on the full training set might

suggest. Furthermore, the learning curve for the combination on

the feature level indicates that more training data is needed to

achieve full performance. In general, combining the three

individual approaches leads to a reduction of the standard

deviation for almost all combination methods. This suggests a

more robust behavior of the combined system.

In the cases of failing regimens, all three classifiers very

frequently agree upon the wrong label, precisely in 350 of 900

(39%) failing regimens in the training data using the minimal

feature set. There are two possible scenarios why the VL drop

below 500 copies per ml did not take place during the observed

time interval despite the concordant prediction of success by all the

three engines:

1. Resistance against one or more antiretroviral agents is not

visible in the available baseline genotype but stored in the viral

population and rapidly selected, which would lead to an initial

decrease in VL shortly after therapy switch, and a subsequent

rapid increase before the target time frame.

2. The patient/virus is heavily pretreated and therefore it takes

longer to respond to the changed regimen, or the patient is not

completely adherent to the regimen, both cases lead to a

delayed reduction in VL after the observed time frame.

Figure 1. Improvement in AUC of combination methods compared to the single best and single worst classifiers. The figure displays
the improvement in AUC of all combination methods over the single best (blue bars) and single worst (red bars) classifiers on the training set (upper
panel) and the test set (lower panel). Significance of the improvement on the training set was computed with a one-sided paired Wilcoxon test.
Solidly colored bars indicate significant (at a 0.05 p-value threshold) improvements, as opposed to lightly shaded bars for insignificant improvements.
On the test set no p-values could be computed.
doi:10.1371/journal.pone.0003470.g001

Figure 2. Learning curves for the individual classifiers, the
mean combiner, and the combination on feature level. The
figure shows the development of the mean AUC on the test set
depending on the amount of available training data for the individual
classifiers, the mean combiner, and the combination on the feature
level using the minimal feature set. Error bars indicate the standard
deviation on 10 repetitions.
doi:10.1371/journal.pone.0003470.g002
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Figure 3 shows the distribution of predicted success provided by the

mean combiner using the minimal feature set. There is a clear peak

around 0.8 for instances labeled as success whereas the predictions for

the failing cases seem to be uniformly distributed. Interestingly, the

distribution of the failing cases with a VL below 500 copies per ml

resembles more the distribution for success than for failure.

The approach to predicting the change in VL exhibited

moderate performance. In general, the task of predicting change

in VL is harder, since many host factors, which are not available to

the prediction engines, contribute to the effective change in

individual patients. However, guidelines for treating HIV patients

recommend a complete suppression of the virus below the limit of

detection [25]. Thus, dichotomizing the outcome and instead

solving the classification task is an adequate solution, since

classifiers can be used for computing the probability of achieving

complete suppression.

Conclusion
The use of the maximal feature set consistently outperformed the

minimal feature set in the combined system. Among the studied

combination approaches the logistic regression performed best,

although not significantly better than the mean of the individual

classifications. The mean is a simple and effective combination

method for this scenario. Variations in the size of the training set

showed that a system combining the individual classifiers by the

mean achieves better performance with fewer training samples than

the individual classifiers themselves or a logistic regression using all

the features of the individual classifiers. This and the consistent

reduction of the standard deviation of the performance measures

lead to the conclusion that the mean combiner is more robust than

the individual classifiers, although the performance is not always

significantly improved. Moreover, the mean is a combination

strategy that is easily explainable to the end-users of the system.

In this study we discovered ambiguous failures. These therapies are

classified as failure but have a VL measurement below 500 copies per

ml. Although these instances did neither significantly influence the

learning of the individual classifiers nor the learning of the

combination method, they lead to an underestimation of the

performance. This suggests that clinically relevant adjustments of

the definition of success and failure can result in increased accuracy of

the combined engine. Comparative studies aiming at evaluating

EuResist vs. state-of-the-art systems and expert opinion are under

way.

The combined EuResist prediction system is freely available

online at http://engine.euresist.org.
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Table 4. Results on the (un)cleaned test set when individual classifiers are trained on the (un)cleaned training set.

Engine minimal features set maximal feature set

ambiguous instances removed from ambiguous instances removed from

none only train only test both none only train only test both

GD 0.744 0.738 0.784 0.786 0.760 0.747 0.808 0.806

ME 0.745 0.739 0.770 0.771 0.742 0.757 0.808 0.810

EV 0.768 0.776 0.811 0.824 0.804 0.812 0.846 0.855

Mean 0.772 0.767 0.812 0.814 0.793 0.791 0.849 0.849

Feature 0.747 0.754 0.797 0.808 0.779 0.787 0.832 0.842

The table summarizes the results, measured in AUC for the individual classifiers, the mean combiner, and the combination of feature level when retrained on the
(un)cleaned training set and tested on the (un)cleaned test set. Cleaned refers to the removal of ambiguous failing instances.
doi:10.1371/journal.pone.0003470.t004

Table 5. AUC for the combined engines on training set and
test set with the ambiguous cases removed from test set and
training set or test set only.

Method minimal feature set maximal feature set

Train Test Train Test

removed from test only

Single Best 0.809 (0.021) 0.811 0.839 (0.017) 0.847

Oracle 0.935 (0.012) 0.936 0.945 (0.014) 0.950

Min 0.817 (0.019) 0.807 0.847 (0.022) 0.848

Max 0.807 (0.024) 0.810 0.832 (0.018) 0.824

Median 0.820 (0.020) 0.810 0.844 (0.021) 0.835

Mean 0.823 (0.019) 0.816 0.850 (0.019) 0.847

Logistic Regression 0.824 (0.019) 0.816 0.852 (0.017) 0.856

Decision Templates 0.823 (0.018) 0.818 0.851 (0.019) 0.850

Clustering 0.822 (0.020) 0.808 0.852 (0.017) 0.850

Local Accuracy 0.823 (0.019) 0.813 0.850 (0.019) 0.844

removed from train and test

Logistic Regression 0.825 (0.019) 0.816 0.852 (0.017) 0.856

Decision Templates 0.823 (0.018) 0.818 0.851 (0.019) 0.850

Clustering 0.822 (0.021) 0.796 0.852 (0.017) 0.844

Local Accuracy 0.823 (0.019) 0.813 0.850 (0.019) 0.843

The table displays the results, measured in AUC, on training set (10-fold cross
validation; standard deviation in brackets) and test set for a selection of
combination approaches when trained on the (un)cleaned training set. For
computation of the AUC the ambiguous cases were always removed.
doi:10.1371/journal.pone.0003470.t005
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Figure 3. Distribution of predicted success probabilities. Distribution of the predicted success for all successful therapies (blue solid), all
failing therapies (red solid), failing therapies with at least one VL measure below 500 during the regimen (red dashed), and failing therapies with all VL
measures above 500 (red dotted) of the mean combiner using the minimal feature set.
doi:10.1371/journal.pone.0003470.g003
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