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Abstract

Gangliosides are particularly abundant in the central nervous system (CNS) and thought to play important roles in memory
formation, neuritogenesis, synaptic transmission, and other neural functions. Although several molecular species of
gangliosides have been characterized and their individual functions elucidated, their differential distribution in the CNS are
not well understood. In particular, whether the different molecular species show different distribution patterns in the brain
remains unclear. We report the distinct and characteristic distributions of ganglioside molecular species, as revealed by
imaging mass spectrometry (IMS). This technique can discriminate the molecular species, raised from both oligosaccharide
and ceramide structure by determining the difference of the mass-to-charge ratio, and structural analysis by tandem mass
spectrometry. Gangliosides in the CNS are characterized by the structure of the long-chain base (LCB) in the ceramide
moiety. The LCB of the main ganglioside species has either 18 or 20 carbons (i.e., C18- or C20-sphingosine); we found that
these 2 types of gangliosides are differentially distributed in the mouse brain. While the C18-species was widely distributed
throughout the frontal brain, the C20-species selectively localized along the entorhinal-hippocampus projections, especially
in the molecular layer (ML) of the dentate gyrus (DG). We revealed development- and aging-related accumulation of the C-
20 species in the ML-DG. Thus it is possible to consider that this brain-region specific regulation of LCB chain length is
particularly important for the distinct function in cells of CNS.
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Introduction

Gangliosides are glycosphingolipids consisting of mono- to poly-

sialylated oligosaccharide chains of variable lengths attached to a

ceramide unit. They are inserted in the outer layer of the plasma

membrane with the hydrophobic ceramide moiety acting as an

anchor, while their oligosaccharide moiety is exposed to the

external medium[1]. Gangliosides are particularly abundant in the

central nervous system (CNS) and are thought to play roles in

memory formation[2], neuritogenesis[3], synaptic transmission[4],

and other neural functions. In addition, they are particularly

involved in brain development and maturation[5,6].

Gangliosides comprise a large family (Figure 1); their constituent

oligosaccharides differ in the glycosidic linkage position, sugar

configuration, and the contents of neutral sugars and sialic acid.

Based on the number of sialic-acid contained, they subdivided into

GM (i.e. mono-sialilated), GD (di-sialilated), GT (tri-sialilated) and

GQ(quadra-sialilated) groups. The oligosaccharide unit is important

because gangliosides interact with proteins that participate in signal

transduction through membrane microdomains. For example, the

ganglioside GM3 has been found to be closely associated with

signaling proteins, such as c-Src, Rho, FAK, and Ras, in cultured

cells[3,7,8], and GD3 is associated with the Src-family kinase Lyn

and the neural cell adhesion molecule TAG-1 in rat brain[9,10].

The ceramide moiety of gangliosides also varies with respect to

the type of long-chain base (LCB) (sphingosine base) and fatty acid

moiety. Such structural heterogeneity results in part from the

different chain lengths, especially of the LCB (See also Figure S1).

While some complex mammalian sphingolipids such as C18-

sphingosine, i.e., C18-LCB species, are distributed in all tissues,

C20-sphingosine (C20-LCB species) is present in significant

amounts only in the gangliosides of the nervous system[11–14],

and its content increases throughout life[15–17]. This structural

heterogeneity of ceramides allows flexibility for performing

different cellular functions, for example, cAMP-mediated signal

transduction[18]. Thus, it has been suggested that C18- and C20-

gangliosides are differentially regulated and might play different

roles in neuronal function in vivo[11].
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At present, few methods exist for the holistic study of the

distribution of these ganglioside molecular species in biological

specimens. Antibodies to some oligosaccharide moieties are

available for visualizing the molecular species with different

constituent oligosaccharides[19], but immunological methods

cannot detect the differences in the ceramide structure, which is

hidden in the lipid bilayer.

In this respect, IMS of biological tissues by using matrix-assisted

laser desorption/ionization (MALDI) is a useful method. It can

distinguish between different ganglioside molecular species by

determining the differences in the mass-to-charge ratios (m/z)

simultaneously[20–24]. Furthermore, use of tandem mass spec-

trometry (MSn) to examine tissue surfaces enables identification of

the visualized molecules and further provides detailed information

on their structures[21,25–27].

In this study, we used IMS to perform molecular imaging of

ganglioside molecular species in mouse hippocampal formation.

We clarified the distributions of different ganglioside molecular

species, especially of those that contain different LCB moieties,

namely C18- and C20-sphingosine. We have demonstrated, for

the first time, that the distribution of ganglioside molecular species

in vivo is brain-region selective. We speculate that this selectivity is

associated with the different functions of the gangliosides expressed

in different brain regions.

Results

Detection of gangliosides directly from mouse
hippocampal formation

The negative-mode MALDI-MS spectra obtained directly from

the mouse hippocampal formation are shown in Figure 2A.

Negatively charged glycerophospholipids, such as phosphatidyl

inositol, phosphatidyl ethanolamine, and phosphatidyl serine, and

sphingolipids such as sulfatides (STs) were detected in the mass

range of 800,m/z,950. Mass peaks corresponding to GM1,

GD1, and GT1 gangliosides were detected in the mass range of

1500,m/z,2300. As shown in Table 1, we detected ions

corresponding to GM1, GD1, and GT1, which contain either

C18- or C20-sphingosine.

Structural analysis by MSn allows us to analyze more detailed

structure of detected ions. To confirm that the differences of 28-u

which corresponds to a (CH2)2 unit, observed between the C18 and

C20 species, can be certainly attributed to the LCB chain lengths, we

performed a structural analysis of ions corresponding to GM1

gangliosides by MSn (Figure 2B). MSn can provide detailed structural

information of the ions of interest. The MS2 results for both m/z

1544 and 1572 showed a ceramide peak and peaks corresponding to

oligosaccharides containing a sialic acid (Figure 2B (a)). The peaks in

the MS2 spectra for oligosaccharides of m/z 1544 and 1572 were

exactly the same; thus, these gangliosides have the same oligosac-

charide moiety. We therefore performed MS3 of the ceramide peak

to determine the detailed structure of the ceramide. In the MS3

spectra obtained, the common peak was observed at m/z 283.0,

which corresponded to (C17H35COOH)2, a fatty acid (Figure 2B

(b)). Thus, we determined that the mass difference was derived from

the difference in the chain lengths of the LCB, namely C18- and

C20-sphingosine.

IMS of gangliosides in the mouse hippocampal formation
MALDI-IMS visualizes the spatial abundance of numerous ions

simultaneously in the same tissue section, thus enabling holistic

imaging of ganglioside molecular species. Figure 3 shows the

imaging results obtained for the mouse sagittal brain section at low

instrumental step size (50 mm raster). For imaging the myelinated

region of the brain section, we visualized the ions at m/z 878.6 and

906.6, which correspond to STs with different sphingosine bases,

namely ST(22:0 OH) and ST(24:0 OH), respectively (Figure 3 b–

c). STs demonstrate the same distribution pattern regardless of the

type of ceramide moiety; however, interestingly, the distributions

of C18- and C20-ganglioside molecular species are considerably

different. In particular, IMS revealed a characteristic concentra-

tion of ions corresponding to C20 species of both GM1 and GD1

in a part of the hippocampal formation (Figure 3A, arrowheads).

On the other hand, ions corresponding to C18-GD-1 were

distributed uniformly in the gray matter region of the frontal brain,

and those corresponding to C18-GM1 were strongly distributed in

the white matter region in addition to the gray matter region

(Figure 3A).

To understand the characteristic localization of the C20-species

in the hippocampal formation in greater detail, we performed IMS

of the hippocampal formation at high instrumental step size

(15 mm raster) (Figure 3B). Ions corresponding to the C20-species

of both GM1 and GD1 were found to be localized in the outer

two-thirds of the dentate gyrus (DG) molecular layer (ML) and the

stratum lacunosum moleculare (SLM) of both CA1 and CA3.

They were, however, much less observed in the inner layer of

molecular layer of DG and the layers outside of SLM in the CAs.

In contrast, ions corresponding to C18-GD1 were detected in the

whole region of the hippocampal formation, but the signals were

weak in the DG-ML and the SLM. Ions corresponding to C18-

GM1 were also detected in region rich in the myelinated axon. We

also performed IMS of a horizontal brain section (Figure S2)

(40 mm raster) and observed clear accumulation of C-20

gangliosides in the entorhinal cortex (EC) and the regions

including projections from the EC both to the DG-ML and to

the SLM of the hippocampus.

Figure 1. Structure of C18-LCB containing GM1a. Gangliosides comprise a large family; their oligosaccharides structures differ in the glycosidic
linkage position, sugar configuration, and the contents of neutral sugars and sialic- acid content. The ceramide moiety of gangliosides, it also has
some variation varies with respect to the type of long -chain base (LCB) (sphingosine- base) and fatty acid moiety.
doi:10.1371/journal.pone.0003232.g001

Imaging MS of C20-Gangliosides
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Figure 2. Direct MALDI-MS and MSn allows specific detection of ganglioside molecular species. A. Averaged mass spectra obtained from
the entire hippocampal formation. In the spectra, the mass peaks corresponding to GM1, GD1, and GT1 are detected, and IMS provides distinct
signals for molecular species containing C18- and C20-sphingosines. B. MSn structural analysis of ions corresponding to GM1. (a) MS2 product ion
spectra show that the ions at m/z 1544 and 1572 had the same oligosaccharide structure, i.e., they contained a sialic acid moiety, but the ceramide
mass peaks were observed at different m/z values. (b) MS3 product ion mass spectra of m/z 888.3 and 916.3 were obtained to determine the different
structural constituents in the ceramide moieties. Because of the detection of m/z 283.0 (fatty acid-related ion) in both the spectra, the 28-u difference
between m/z 1544 and m/z 1572 was attributed to the difference in the sphingosine constituent; m/z 1544 had C18-sphingosine and m/z 1572 had
C20-sphingosine.
doi:10.1371/journal.pone.0003232.g002

Imaging MS of C20-Gangliosides
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Confirmation of IMS results by MS of methyl-esterified
gangliosides

MALDI-MS of sialic acid-containing oligosaccharides should be

performed with caution because of the preferential loss of sialic acid

during mass spectrometry[28,29]. To evaluate the degree of sialic

acid loss in the experimental system used, we performed mass

spectrometry of authentic samples of GM1, GD1, and GT1 in the

presence of sodium and potassium at physiological concentrations, at

same laser power and detector sensitivity used in the IMS

experiments (Figure S3). We found that GD1 and GT1 preferentially

formed sodium/potassium adduct ions under presence of salts, and

that reduced the sialic-acid dissociation though GD1 produced

certain amount of ions at m/z 1544 and 1572, which lost one sialic-

acid. On the other hand, the presence of salts efficiently suppressed

the loss of sialic acid from GT1. In authentic GM1 samples, there

was almost no sialic-acid dissociation.

Thus, to confirm the IMS results, we extracted gangliosides from

the regions of interest, i.e., the stratum radiatum (SR) (region A) and

ML/SLM region (region B) in the mouse hippocampal formation

(Figure 4). We then derivatized them to the methyl-esterified

gangliosides. While underivatized GD1 and GT1 exhibited

significant loss of sialic acid due to dissociation by in-source or

post-source decay[28–30], such dissociation was suppressed by

methyl esterification[31], enabling the detection of their fully

sialylated molecules as dominant peaks. The results of MALDI-

MS analysis of methyl-esterified GM1 and GD1 showed that the

C20 molecular species was present in approximately 21% of the total

GM1 gangliosides in region A and 32% of those in region B. Further,

21% and 34% of the GD1 gangliosides in region A and B,

respectively, contained the C20 molecular species. Taken together,

these results confirmed the accumulation of the C20 species in both

GD1 and GM1 gangliosides in the ML and SLM.

Changes in the distribution of ganglioside molecular
species during development

To date, several articles have reported development- and aging-

related increase in the C20-ganglioside content[15–17], and we

think that it is important to know both when and where C20-

gangliosides accumulate. In order to identify and characterize

gangliosides in developing and aged hippocampal formations, we

performed IMS of the mouse hippocampal formation at 0, 3, and

14 postnatal days, 8 postnatal weeks, and 33 postnatal months.

Figure 5 shows the IMS results for ions at m/z 1858 and 1902 and

demonstrates that the area with high C20-GD1 content increased

with neurodevelopment. On postnatal days 0 and 3, significant

signals (S/N.1.0) derived from C20-GD1 were detected from

only a few data points in the entire hippocampal formation. On

postnatal day 14, C20-GD1 signals were concentrated in the

narrow area of the DG-ML and began to be observed over the

medial edge of the region, which corresponds to the terminal area

of the projections from the lateral entorhinal area (Figure 5A,

arrow heads)[32]. At 8 postnatal months, the signals were

observed from a wide area (ML/SLM), which corresponds to

the terminal area of the projections both from the lateral and

medial entorhinal area[32]. Furthermore, in aged hippocampal

formations, the accumulation was clearly increased. Figure 5B

shows the percentage of GD1 gangliosides containing the C20-

species in the different regions. It demonstrates the development-

and aging-related increase in C20-GD1 content in the ML and

SLM, but no obvious increase in other regions in the hippocampal

formation. In contrast, the C18-GD1 content decreased in the

ML/SLM with aging (Figure 5A, arrows).

Discussion

As a next step of the previous study which characterized the

distinct composition of ganglioside molecular species between

axons/dendrites and soma of neuron in vitro [33], in the present

study, we demonstrated that gangliosides with differences in their

ceramide moieties showed distinct distribution patterns in the

mouse brain, especially in the hippocampal formation in vivo.

In the direct analysis of gangliosides using MALDI-MS, the

mass spectra showed distinct mass peaks for ganglioside molecular

species with different oligosaccharide/ceramide moieties (Figure 2),

which enabled the visualization of the distribution of individual

molecular species by IMS (Figure 3). The characteristic of

gangliosides specific to the CNS is the structure of their LCB,

i.e., the presence of 18 or 20 carbons; further, C20-gangliosides

are found only in the CNS[12–14]. Antibodies to the oligosac-

charide moieties of gangliosides are used to visualize the

distribution of gangliosides with different oligosaccharide moieties;

however, antibodies cannot distinguish between the C18 and C20

molecular species. To date, no other method has achieved

differential visualization of such molecular species.

MALDI-MS should be performed with caution when used for

the detection of oligosaccharide moieties of gangliosides because

previous MS studies of gangliosides have demonstrated that sialic

acid residues tend to be lost[28–30]. Thus, it is necessary to

evaluate the degree of sialic acid dissociation in the experimental

system described here. We performed MS of authentic samples of

GM1, GD1, and GT1 gangliosides, which account for 80% of the

total brain gangliosides[6]. From the results, we deduced that the

ion signals at m/z 1544 and 1572 correspond to ions originating

from both GM1 and GD1, but not GT1. In contrast, the ions at

m/z 1874 and 1902 contain almost no GT1-derived signals and

originated predominantly from only GD1(Figure S3).

Table 1.

Negative Ions

[M-H]2 [M+Na-2H]2 [M+K-2H]2 [M+2Na-3H]2 [M+Na+K-3H]2 [M+2K-3H]2

GM1 (d18:1/18:0) 1544 - - - - -

GM1 (d20:1/18:0) 1572 - - - - -

GD1 (d18:1/18:0) - 1858 1874 - - -

GD1 (d20:1/18:0) - 1886 1902 - - -

GT1 (d18:1/18:0) - - - 2170 2186 2202

GT1 (d20:1/18:0) - - - 2198 2214 2230

doi:10.1371/journal.pone.0003232.t001

Imaging MS of C20-Gangliosides
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Figure 3. Localization of C20-sphingosine-containing gangliosides in the hippocampal formation. IMS at 50 mm raster step size was
used to gain an overview of ganglioside distribution in different brain regions (A), and IMS at 15 mm raster size was used to study in detail the
distribution pattern of gangliosides in the hippocampus (B). In both panels, schematic diagram of the brain section (a) and ion images of STs (b–c) are
presented. For ions corresponding to the GD1 molecular species, we observed the ion distributions of both sodium and potassium complexes, i.e.,
the ions at m/z 1858 (f) and m/z 1886 (g), which correspond to the [M+Na-H]2 form of C18- and C20-GD1, and those at m/z 1874 (h) and m/z 1902 (i),
which correspond to the [M+K-H]2 form of C18- and C20-GD1, respectively. The ion distribution patterns corresponding to the GD1-Na salts and
GD1-K salts are fairly uniform for both C18- and C20- species. For GM1, m/z 1544 (d) and m/z 1572 (e), which correspond to C18- and C20-
sphingosines containing GM1 respectively are shown.
doi:10.1371/journal.pone.0003232.g003

Imaging MS of C20-Gangliosides
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Based on these results, we analyzed the distribution patterns of

the C20 species. The IMS results revealed that both C20-GM1

and C20-GD1 are selectively localized in the outer two-thirds of

the DG-ML, among all brain regions (Figure 3B). The ion signal at

m/z 1572 (C20-GM1/GD1) showed more concentrated pattern

than that at m/z 1902(C20-GD1); this indicates that GM1 has a

higher C20 content than GD1 in these regions. Moreover, this

trend was confirmed by MS of methyl-esterified gangliosides after

extraction from the tissue section (Figure 4)

Because most of the afferent nerves from the EC terminate in

the SLM/ML in DG, C20-GM1 and GD1 are suggested to be

most concentrated in the axon and the axon terminals of the

neurons from the EC[32]. Furthermore, in the horizontal

sections, C20-GM1/GD1 were localized in the lateral and medial

parts of the EC area and the region including the projections (a

medial and lateral perforant path) to the DG and the area in

which they terminated[34]. These results suggest that EC neurons

selectively express the C20 species. We deduce that for other

gangliosides, in particular precursor-gangliosides to biosyntheses

GM1 and GD1, namely GM2, GD2, GM3, and GD3, the C20-

species of them are also localized in these regions. Although we

could not detect a sufficient number of ions of these gangliosides,

presumably because they are present in considerably smaller

amounts than GM1 and GD1[6], this is an interesting topic for

further study.

Moreover, observation of the concentration of C20 species

throughout development suggests that the appearance of extensive

C20-GM1/GD1 distribution in the DG-SMm corresponds to the

period of rapid synapse formation, dendritic outgrowth, and glial

proliferation in this region. Taken together, this C20-GM1/GD1

distribution and concentration may reflect the functional matura-

tion of the EC-hippocampus neural pathway, which possibly

progresses first from the LEA and then from the MEA area

(Figure 5). Indeed, it is known that EC lesions induce changes in

Figure 4. Localization of C20-sphingosine-containing gangliosides was confirmed by MS of extracted and methyl-esterified
gangliosides. To determine the percentage of GM1/GD1 gangliosides containing the C20-species in different regions without allowing sialic acid
dissociation during MS measurement, we extracted gangliosides from the dendritic region of the SR (region A, (a)) and the ML/SLM (region B, (b)).
They were derivatized to methyl-esterified gangliosides. From the result of MS of underivatized gangliosides and methyl-esterified gangliosides (c),
the percentage of GM1/GD1 gangliosides containing the C20-species were calculated (d). Three different mouse brain sections were used, and the
data were expressed as mean6S.D. * and ** indicate P,0.05 and P,0.005, respectively, Student’s t-test.
doi:10.1371/journal.pone.0003232.g004

Imaging MS of C20-Gangliosides
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the ganglioside content in the hippocampus DG-ML[35].

Moreover, it is known that animals with EC lesions show

behavioral deficits, and ganglioside administration accelerates

the recovery of the impaired functions[34,36,37]. The present

findings suggest that such ganglioside treatments have effects that

are possibly dependent on the type of molecular species they

contain. Furthermore, the IMS results suggest that aging-related

increase in the C20-GM1/GD1 content, which has also been

proven by the biochemical data obtained in studies using

HPLC[11,16,17,38], selectively occurred in the DG-ML/SLM

region in the hippocampal formation. Since C20-sphingosine is

more effective in reducing membrane fluidity than the C18

species, this age-dependent accumulation of C20-GM1 can lead to

altered properties of the cell membrane. Considering the age-

dependent accumulation and the selective distribution of the C20

species in the EC and its projections, where selective degradation

of neurons is observed in early stages of Alzheimer diseases[39],

this accumulation may increase the risk for the age-dependent

neurological diseases such as Alzheimer disease.

Finally, in this study, we successfully characterized the location

of age-dependent C20-GD1 accumulation (Figure 5) besides that

previous studies have established this phenomenon with highly

quantitative methods in brain lysate[11]. However, one should

bear mind that IMS is developing method especially for

quantitative analysis because of nature of MALDI, in which

ionization efficiency of analyte is easily affected by number of

factors such as crystallization condition of matrix and extraction

efficiency of analyte from tissues [23]. We consider that

established-quantitative methods such as HPLC are effective to

complement its quantitative aspect of MALDI-IMS.

Figure 5. Development- and aging-related accumulation of C20-GD1 in the ML and SLM of the hippocampal formation. We visualized
the ion corresponding to GD1 (m/z 1874 and 1902) in the mouse hippocampus at the indicated time points (P0, P3, P14, 1 month, and 33 months).
For each time point, intensity scale of C20-GD1 is normalized in order that the brightest pixels of C20-GD1 have 60% of the maximal C18-GD1
intensity value. In the P14 mouse hippocampus, C20-GD1 was concentrated in the narrow area of DG-SMm and began to spread over the medial
edge of the region (arrow heads). In contrast, the concentration of the C-18 species decreased in the ML/SLM with aging (arrows). Quantification
result of C20-GD1 on the total GD1 signal in the ML, SLM and SR region has also been shown (B). *; At P0 and P3, we could not distinguish between
the ML and SLM area; therefore, values obtained from the region corresponding to ML/SLM have been used for both the regions in the graph.
doi:10.1371/journal.pone.0003232.g005

Imaging MS of C20-Gangliosides
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Materials and Methods

Chemicals
Methanol, trifluoroacetic acid (TFA) and methyl iodide were

purchased from Wako Chemical (Tokyo, Japan). Calibration

standard peptide and 2,5-dihydroxybenzoic acid (DHB) were

purchased from Bruker Daltonics (Leipzig, Germany).

Section Preparation
We used the brains of male C57BL/6Cr mice and at the indicated

time point (0, 3, and 14 postnatal days, 8 postnatal weeks, and 33

postnatal months), they were sacrificed. The extirpated tissue blocks

were immediately frozen in powdered dry ice and stored at 280uC
until use. The frozen sections were sliced at 216uC with a cryostat

(Leica CM 3050) at a thickness of 5 mm according to the previous

reports [40,41]. To fix each tissue block, an optimum cutting

temperature (OCT) polymer was used. When the sections were

sliced, the cutting block was not embedded in OCT since any

residual polymer on the tissue slices might have degrade mass

spectra[41]. Frozen sections were thaw-mounted on indium-tin-

oxide (ITO)-coated glass slides (Bruker Daltonics) and ITO-coated

sheets (Tobi Co., Ltd., Kyoto, Japan). ITO-coated glass slide was

used for the measurement using TOF/TOF instrument and ITO-

coated sheet was used for quadrupole ion trap (QIT)-TOF

instrument. For matrix, we used a DHB solution (50 mg/mL;

70% methanol, 0.1% TFA) because this matrix minimizes the loss of

sialic acid and carbon dioxide from gangliosides[28]. The matrix

solution was uniformly sprayed over the tissue surface using a

0.2 mm nozzle caliber air-brush (Procon Boy FWA Platinum; Mr.

Hobby, Tokyo, Japan). In this study, the distance between the

brush’s nozzle tip and the tissue surface was kept at 15 cm and the

spraying period was fixed at 3 minutes. All experiments with mice

were conducted using protocols approved by the Animal Care and

Use Committee of the Mitsubishi Kagaku Institute of Life Sciences.

Tandem Mass Spectrometry
For the MSn analysis, we used a QIT-TOF mass spectrometer

(AXIMA-QIT; Shimadzu, Kyoto, Japan). The MSn analysis was

performed directly on the hippocampus area of the mouse brain

sections. Acquisition was performed in the ‘‘mid-mass range’’

mode (m/z 750–2000) at a stage voltage of 218 V in the negative-

ion detection mode. In the MSn analysis, the conditions for data

acquisition (i.e., laser power, collision energy, and the number of

laser irradiations) were changed in order to obtain product ion

mass spectra with peaks that have high intensity and a high signal-

to-noise ratio. The calibration was performed using an external

calibration method.

Protocols of IMS
IMS were performed using a MALDI time-of-flight (TOF)/

TOF-type instrument (Ultraflex 2 TOF/TOF; Bruker Daltonics).

This instrument was equipped with a 355 nm Nd:YAG laser. The

data were acquired in the negative-reflectron mode under an

accelerating potential of 20 kV by using an external calibration

method. In this analysis, signals between m/z 800 to 2500 were

collected. The raster scan on the tissue surface was performed

automatically by FlexControl and Fleximaging 2.0 software

(Bruker Daltonics). The number of laser irradiations was 100

shots in each spot. Image reconstruction was performed using

FlexImaging 2.0 software.

Data processing
In the IMS results, the variation in the ionization efficiency,

which is caused by the heterogeneous distribution of matrix

crystals and their sublimation during measurement, was eliminat-

ed for each data point by equalizing the total ion current of each

mass spectra, using the ‘‘Normalize Spectra’’ function of

FlexImaging 2.0 software. In addition, in IMS of developing

hippocampus formation (Figure 5), for each time point, intensity

scale of C20-GD1 is normalized in order that the brightest pixels

of C20-GD1 have 60% of the maximal C18-GD1 intensity value

using the ‘‘Edit Mass Filter Parametrs’’ function of FlexImaging

2.0 software.

For calculation C20-ganglioside percentage (Figure 5), we used

the most intense ion peak derived from GM1 and GD1, namely

[GM1-H] 2 and [GD1+K-2H]2 , and intensities of these peaks in

the summed spectra from each hippocampal region (at least 1300

spectra were summed for one region) were used for the calculation.

For spectrum summation, Flex Analysis 3.0 software was used

(Bruker Daltonics).

Analysis of Methyl-esterification of gangliosides
Tissues of the interested regions were dissected using an

injection needle (Terumo 22G needle; Terumo Corporation,

Tokyo, Japan) under stereo-microscopic observation and imme-

diately immersed in 20 ml of methanol. After vortexing, the

solution was centrifuged and the supernatants were added to 6 ml

of methyl iodide. The reaction was performed for 3 h at room

temperature. Gangliosides in the reaction mixture were eluted

from a PepClean C18 spin column (Thermo Fisher Scientific,

Kanagawa, Japan), according to the procedure described by S.

Handa and K. Nakamura [42]. Mass spectrometry was performed

with TOF/TOF instrument using DHB as matrix (5 mg/mL;

50% methanol, 0.1% TFA), on the steel target plate (MTP 384

target plate ground steel; Bruker Daltonics).

Supporting Information

Figure S1 Structures of ganglioside molecular species containing

C18-LCB and C20-LCB. C20 species has 2 more carbons in their

LCB moiety than C18 species (arrow).

Found at: doi:10.1371/journal.pone.0003232.s001 (0.48 MB TIF)

Figure S2 C20 gangliosides were concentrated in the dendritic

region of hippocampal granule neurons. A. Low-resolution MSI

(40 mm raster) was performed to gain an overview of ganglioside

expression in the horizontal section of mouse brain. For ions

corresponding to the GD1 molecular species, we visualized the ion

distribution of the potassium complex, i.e., the ions at m/z 1874

and m/z 1902, which correspond to the [M+K-H]- form of C18-

and C20-GD1, respectively. For those corresponding to GM1, the

ions at m/z 1544 and m/z 1572, which correspond to C18-

spingosine- and C20-sphingosine-containing GM1 species, respec-

tively, are shown. B. To show the projections from the EC to the

DG, an optical image of successive sections stained by the KB

method has been presented.

Found at: doi:10.1371/journal.pone.0003232.s002 (6.37 MB TIF)

Figure S3 Formation of sodium/potassium complex ion sup-

pressed loss of sialic-acid in GD1 and GT1 ganglioside. A.

Summary of the results of the MALDI-MS experiments performed

using authentic samples of GM1 (a), GD1(b), and GT1 (c), which

were analyzed in the presence/absence of sodium and potassium

at physiological concentrations. (d) The spectra obtained from the

mouse hippocampal formation. B. Gangliosides were detected

without (white bar), and with 1 (black bar), and 2 (gray bar) sialic-

acid dissociated forms

Found at: doi:10.1371/journal.pone.0003232.s003 (1.65 MB TIF)
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