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Abstract

The amyloid precursor protein (APP) was assumed to be an important neuron-morphoregulatory protein and plays a central
role in Alzheimer’s disease (AD) pathology. In the study presented here, we analyzed the APP-transgenic mouse model APP23
using 2-dimensional gel electrophoresis technology in combination with DIGE and mass spectrometry. We investigated
cortex and hippocampus of transgenic and wildtype mice at 1, 2, 7 and 15 months of age. Furthermore, cortices of 16 days old
embryos were analyzed. When comparing the protein patterns of APP23 with wildtype mice, we detected a relatively large
number of altered protein spots at all age stages and brain regions examined which largely preceded the occurrence of
amyloid plaques. Interestingly, in hippocampus of adolescent, two-month old mice, a considerable peak in the number of
protein changes was observed. Moreover, when protein patterns were compared longitudinally between age stages, we
found that a large number of proteins were altered in wildtype mice. Those alterations were largely absent in hippocampus of
APP23 mice at two months of age although not in other stages compared. Apparently, the large difference in the
hippocampal protein patterns between two-month old APP23 and wildtype mice was caused by the absence of distinct
developmental changes in the hippocampal proteome of APP23 mice. In summary, the absence of developmental proteome
alterations as well as a down-regulation of proteins related to plasticity suggest the disturption of a normally occurring peak
of hippocampal plasticity during adolescence in APP23 mice. Our findings are in line with the observation that AD is
preceded by a clinically silent period of several years to decades. We also demonstrate that it is of utmost importance to
analyze different brain regions and different age stages to obtain information about disease-causing mechanisms.
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Introduction

The Amyloid precursor protein (APP) plays a central role in

Alzheimer’s disease (AD) pathology. It was implicated in a variety

of cellular processes such as axonal transport, cell adhesion,

cholesterol metabolism or gene transcription and assumed to be an

important neuro-morphoregulatory protein [1]. Furthermore,

APP is already expressed at high levels in the developing nervous

system where it is localized at regions of neuronal motility and

synapse formation [2–4]. In addition, APP is also considered to act

as a ‘‘molecular hub’’ protein in the cellular protein network [5].

According to scale-free interaction network theory, the disruption

of a hub which possesses many connections will have a more

drastic impact on the entire network than disruptions at sites with

few connections. In line with this, mutations in APP or the APP-

cleaving enzymes presenilin 1 and 2 are implicated in early-onset

familial AD cases, whereas the numerous risk factors identified for

non-familial AD cases characterize late onset disease.

In order to study AD, numerous mouse models are available. In

these mice, a gene of particular interest such as APP is knocked

out, mutated and/or overexpressed. When the effect of genome

modifications is subsequently screened at the molecular level,

usually a large number of mRNA and protein changes are

observed [6–8]. The cellular proteome is a highly interconnected

protein network that is among other restrictions dependent on

resources such as space, metabolites and unbound water to allow

protein diffusion. If the concentration of one protein or a larger

number of proteins is altered, this affects functionally linked

proteins by altering relative concentrations of those proteins to

avoid macromolecular crowding [9,10].

When analyzing the proteome of human patients or animal

models for neurodegenerative diseases, the specificity of a disease

(i.e. Alzheimer’s, Huntington’s or Parkinson’s disease) is more

likely determined by the affected brain region and not by the

identity of altered proteins in the brains of patients or genetically

modified mice [11]. Moreover, massive proteome alterations

occur during normal development and aging in the animal

model studied. Therefore, the impact of mutations on the

proteome might be strongly age-dependent. Disease models are

conventionally investigated at age stages where the disease

phenotype is prominent. However, these analyses may be already

biased by secondary effects of pathogenesis and may therefore

obscure the causative process for disease occurring earlier in

development.
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In the study presented here we investigated APP-transgenic

mice (APP23) expressing human APP751 which contains the

Swedish double mutation [12]. In APP23 mice, transgene

expression is sevenfold higher than endogenous APP. APP23 mice

develop an AD-like pathology (ß-amyloid depositions) at 6 months

of age. Plaques increase dramatically in size and number at older

stages, occupying a substantial area of the cerebral cortex and

hippocampus at 24 months of age [13,14]. Furthermore, region-

specific neuronal loss [7] and progressive age-related impairment

of cognition [15–18] were observed with increasing age.

To analyze the age-specific impact of transgenic APP on the

brain proteome, we designed a time course starting at very early

stages where no phenotypes were reported so far. We investigated

age-stages spanning adolescence (1 and 2 months of age) and

adulthood (7 and 15 months of age) of mice [19]. Furthermore, the

embryonic stage at day 16 post coitum (ED16) which represents late

neurogenic phase of mouse brain development [20], was

investigated. To analyze the tissue-specificity of transgenic APP

in different brain regions, hippocampal (H) as well as cortical (C)

proteomes of APP23 mice were investigated.

Our results show a large number of protein changes in the

proteomes of APP23 mice at prenatal stages. However, the largest

number of alterations was observed during adolescence in the

hippocampal region, where brain plasticity is predominant.

Together, our results indicate a perturbance of hippocampal

plasticity in adolescent APP23 mice which may result in the

development of memory deficits later during disease progression.

Results

In the study presented here, we analyzed the cortical and

hippocampal proteomes of the AD mouse model APP23 using a 2-

dimensional gel-electrophoresis (2-DE) based proteomics ap-

proach. Protein spot patterns of cortex and hippocampus obtained

from transgenic and wildtype mice at 1, 2, 7 and 15 months of age

as well as cortices of 16 days old embryos were investigated (n = 6).

We used our highly reproducible and extensively validated

large-gel 2-DE technology [21] in combination with 2-D

fluorescence difference gel electrophoresis (DIGE). Wildtype and

transgenic samples were always labeled with the same dye (Cy3) to

avoid dye-specific spot abundance variations (false positives). To

allow data comparison among groups, we predefined a fixed group

of 1769 spots (figure 1) that was analyzed at all age stages and

brain regions. Thus, every protein spot had the same spot

identification number (ID) on spot patterns of all stages and brain

regions. Only 2-D patterns of embryonic day 16 brains were

analyzed separately due to major differences of the embryonic

compared to adult spot patterns.

Alterations in protein abundance
When comparing 2-DE spot patterns of APP23 versus wildtype

brain tissues, we found that many protein spots were significantly

(p#0.05) altered in abundance in APP23 brain tissue even as early

as in ED16. At this stage, expression of transgenic APP was

already present (figure 2, figure 3A and B).

When comparing the total number of variant proteins at each

stage, we made an interesting observation. A considerable peak in

protein alterations was detected in hippocampus of 2 months old

APP23 mice. At this stage, 140 protein spots (7.9%) were altered in

contrast to 51 spots (2.9%) at 1 month, 72 spots (4.1%) at 7 months

and 82 spots (4.6%) at 15 months (figure 3B). In cortex, a smaller

peak of alterations was detected at the same age. 79 spots (4.5%)

were altered at 2 months in contrast to 62 spots (3.5%) at 1 month

and 63 spots (3.6%) at 7 and 15 months (figure 3A). Similar results

were obtained when the relative protein concentration instead of

the number of variant proteins was analyzed (figure 3C, 3D). Total

protein amounts changed at each stage were calculated as sums of

the spot volumes of all significantly altered spots. This sum

corresponds to the total change in protein concentration.

When comparing the numbers of up- versus down-regulated

protein spots (figure 3A and B) as well as their protein concentrations

Figure 1. Standard pattern of protein spots analyzed. A protein spot pattern comprising 1769 spots (indicated with blue circles on a
hippocampus spot pattern of a 7 months old wildtype mouse) was analyzed on all gels within this study.
doi:10.1371/journal.pone.0002759.g001
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(figure 3C and D), we observed that down-regulation predominated

up-regulation at early stages. In hippocampus, this was observed in 1,

2 and 7 months old APP23 mice. In cortex, predominant down-

regulation was observed in ED16 and in 1 month old mice. In older

stages, up- and downregulation was more balanced.

In order to monitor proteome alterations related to develop-

ment, age stages 1 versus 2, 2 versus 7 and 7 versus 15 months

were compared. Comparisons were made within wildtype, trans-

genic, cortex and hippocampus groups.

As shown in figure 4A, a higher number of proteins was generally

altered within transgenic mice when compared to wildtype mice.

However, in hippocampus, both stage comparisons including the 2

months-stage showed a remarkable exception to this rule. There the

number of altered protein spots was considerably lower within the

transgenic group (figure 4B). Only about 9% of investigated proteins

were altered in APP23 mice whereas 23% of proteins were altered in

wildtypes during the same period. In detail, 328 (wildtype mice) and 486

(APP23 mice) protein spots were altered in cortex between 1 and 2

months of age, respectively. During the same time period, 373 spots

were altered in hippocampus of wildtype mice, but only 158 spots

were altered in APP23 mice. Between 2 and 7 months of age, 615

(wildtype mice, cortex), 783 (APP23 mice, cortex), 437 (wildtype mice,

hippocampus) and only 162 (APP23 mice, hippocampus) spots were

altered. In the later time points studied (7 to 15 months), fewer

proteins were altered in comparison to the younger stages. In cortex,

566 (wildtype mice) and 623 (APP23 mice) spots were altered and in

hippocampus, 571 (wildtype mice) and 672 spots (APP23 mice) were

altered, respectively.

Of the proteome alterations during development, 38% to 67%

of proteins that were altered in APP23 mice during aging were also

altered in wildtype mice (figure 4 C).

To exclude the possibility of systematic bias introduced by

differences in spot pattern quality, mean standard deviations of

spot volumes were compared between all groups. However, no

significant differences were detected (data not shown).

In summary, when comparing cortex spot patterns of APP23

versus wildtype mice, we found that a fraction of 3.2% to 4.5% of

investigated protein spots was significantly altered at all stages. In

Figure 2. Trangenic APP expression at ED16. Immunoblot of
human APP (antibody clone 6E10) with APP23 (Trans) and wildtype (WT)
cortex tissue of 16 days old mouse embryos. A strong signal of human
APP is seen on the left lane. This signal is absent in wildtype tissue
(middle lane). The right lane shows the human APP-signal of a positive
control sample (cortex tissue, 7 months, APP23-mouse).
doi:10.1371/journal.pone.0002759.g002

Figure 3. Alteration in protein number and concentration during disease progression in APP23 mice. Numbers (A and B) or volumes
(corresponding to relative protein amounts; C and D) of protein spots significantly altered in APP23 mice are shown for different ages (x-axis) and
brain regions (cortex: A and C; hippocampus: B and D) investigated. The values supplied represent the numbers of significantly changed spots (A and
B) or a percentage of the spotvolume for 1769 spots (C and D). Upregulated spots are shown in cross striated bars, downregulated spots are shown in
horizontally striated bars and the sum of both is shown by dotted bars. Many spots were altered at all stages but 2 months of age, where a peak in
alteration was observed in hippocampus tissue.
doi:10.1371/journal.pone.0002759.g003
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hippocampus patterns, 2.9% to 7.9% of investigated protein spots

were altered. Interestingly, in hippocampus of 2 months old mice, a

significant peak in variant proteins was observed. When investigating

proteome alterations related to development, we found that the

observed peak in hippocampus of 2 months old mice was mainly

caused by alterations in the proteome of wildtype mice during

adolescence. These alterations were largely absent in APP23 mice.

Functional analysis of altered proteins
65% of the protein spots altered significantly between transgenic

and wildtype mice were identified by mass spectrometry which

amounts to 293 non-redundant proteins as determined by their

different gene names (details in supplementary table S1).

About 90% of the identified proteins were subsequently grouped

into seven functional categories. The categories were then

hierarchically listed according to the percentage of altered proteins

they include. This was possible since the distribution of proteins over

categories was relatively similar among adult age stages. With the

exception of ED 16, the most abundant category was ‘‘metabolism’’,

followed by ‘‘cytoskeleton’’, ‘‘signal transduction’’, ‘‘transcription,

translation and nucleotide metabolism’’, ‘‘degradation’’ and ‘‘fold-

ing, sorting’’. The last category was ‘‘cell growth and death’’ (table 1).

Within proteins altered in ED16, the category ‘‘transcription,

translation and nucleotide metabolism’’ accounted for the most

pronounced protein group and no protein was included in the

categories ‘‘cytoskeleton’’ and ‘‘cell growth and death’’.

Although the functional distribution was similar in different age

stages and brain regions, most proteins (126 proteins) were altered

only at a single stage and brain region, that is, they were stage

specific. Only 80 proteins were altered in two conditions (stages

and/or brain regions), 46 proteins were altered in three and 28

proteins were altered in four conditions. Only thirteen proteins

were found to be altered in five or more conditions (table 2).

To test the impact of our results on human AD, we compared

our data to three 2-DE-based proteomic studies of human AD. All

three studies yielded a total of 30 disease-related proteins in

human brain tissue of AD patients. We found 22 of the 30 proteins

in our study (table 3).

Furthermore, since APP is thought to be involved in neuronal

plasticity, we determined all proteins which were altered in APP23

mice and might indicate changes in neuronal plasticity. Proteins

were selected if they are structural components of synapses or if they

are implicated in the dynamics of neurogenesis and synaptogenesis

(table 4). Those proteins were termed neuron-specific because they

have neuron-specific functions in the brain and may thus help to

identify the role of mutated APP towards neuronal plasticity.

Within neuron-specific proteins, twelve proteins were altered in

hippocampus of two-month old APP23 mice. In cortex of two-

month old APP23 mice, eight neuron-specific proteins were altered.

In the cortex and hippocampus of the other age-stages, always four

or five neuron-specific proteins were altered, respectively. In brain

regions of all age-stages, down-regulation of neuron-specific proteins

was predominant. In hippocampus of two-month old APP23 mice

for example, nine proteins were down-regulated and only two

proteins were up-regulated. One protein, Synapsin Ib, which occurred

as more than one spot on the 2-DE pattern was up- and down-

regulated depending on the protein isoform.

We analyzed the expression profiles of the two very important

neuron-specific proteins Neuromodulin (Gap43) and Post-synaptic

density protein 95 (PSD95, Dlg4) in more detail. As shown in

figure 5, the expression of Gap43 was significantly down-regulated

during aging in hippocampus and cortex of wildtype mice from 2 to

Figure 4. Developmental changes in APP23 and wildtype mice. Numbers of (y-axis) protein spot alterations associated to development are
shown for wildtype (light grey bars) and transgenic (dark grey bars) cortex (A) and hippocampus (B) 2-D spot patterns. In (C), the fraction of proteins
altered in transgenic mice that were also found in wildtype mice is shown. The x-axis indicated the age stages which were compared.
doi:10.1371/journal.pone.0002759.g004
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7 (pHip = 0.04) as well as from 7 to 15 months of age (pHip = 0.002;

pCor = 0.005). In APP23 mice, Gap43-expression was also down-

regulated during aging (7 to 15 months) in both brain regions

(pHip = 0.001; pCor = 0.008). It was also down-regulated between 1

and 2 months of age in cortex (p = 0.025) but not hippocampus.

Moreover, Gap43 was down-regulated in hippocampus of one

(p = 0.03) and two (p = 0.004) months old APP23 when compared

to wildtype mice. Figure 5B shows the expression profile of PSD95

during disease progression. This protein was significantly down-

regulated in the cortex of APP23 mice when comparing 1 and 2

months old mice (p = 0,007) and in the cortex of APP23 as well as

wildtype mice when comparing 7 and 15 months old mice

(pAPP23 = 0.032; pwt = 0.017). Furthermore, expression of PSD95

was significantly down-regulated in APP23 mice as compared to

wildtype mice at 1 month in cortex (p = 0.049) and at 2 months of

age in hippocampus (p = 0,019) and cortex (p = 0.043).

Discussion

In this study, the APP23 mouse model for AD was investigated

using a 2-DE proteomics approach. We analyzed the neocortex

and hippocampus of 1, 2, 7 and 15 months old mice. In addition,

the neocortex of 16 days old mouse embryos was investigated.

When comparing the 2-DE protein patterns of APP23 mice

against those of wildtype mice, we detected that about 4% (70

protein spots) of all protein spots were altered in abundance. This

large number of protein expression changes was observed at all

age stages and brain regions except for hippocampus of two-

month old mice. Here, twice as many (8%) protein spots were

altered. To elucidate this unexpected observation we compared

protein patterns of APP23 or wildtype mice longitudinally between

all ages investigated. Interestingly, we found a large number of

proteome alterations related to development including the two-

Table 1. Percentages of proteins altered in hippocampus (H) and cortex (C) of ED16 or 1, 2, 7 and 15 months old transgenic mice,
grouped into functional categories.

Functional category 1H 2H 7H 15H ED16 1C 2C 7C 15C

1. Metabolism 34 25 33 35 16 34 23 30 40

1.1 CH Metabolism 13 9 15 19 10 16 7 10 13

1.2 Energy Metabolism 10 4 5 2 3 9 3 7 6

1.3 AA Metabolism 5 2 7 6 3 5 5 9 4

1.4 Lipid Metabolism 7 9 5 8 0 5 8 5 17

2. Cytoskeleton 10 10 14 19 0 8 13 10 13

3. Signal Transduction 7 9 13 15 13 6 8 13 2

4. Folding, Sorting 7 11 7 8 3 9 12 9 8

5. Transcription, Translation, Nucleotide Metabolism 3 8 10 2 39 14 13 9 4

6. Degradation 5 8 8 6 19 8 0 10 10

7. Cell Growth and Death 2 2 3 4 0 6 2 2 6

doi:10.1371/journal.pone.0002759.t001

Table 2. Proteins altered in five or more conditions (time points and tissues): cortex (C) or hippocampus (H) of ED16, 1, 2, 7 and 15
months old APP23 mice.

Protein name Gene name 1H 2H 7H 15H ED16 1C 2C 7C 15C

Apolipoprotein E precursor (Apo-E) Apoe m m m m m m

ATP synthase subunit beta, mitochondrial [Precursor] Atp5b . & . & .

ATP synthase D chain, mitochondrial Atp5h m m m m m

diazepam binding inhibitor isoform 2 Dbi m . . . m

Dihydropyrimidinase-related protein 2 Dpysl2 m m m m .

enolase 2, gamma neuronal Eno2 . m & m m m m

Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta 1 Gnb1 . . . . . .

L-lactate dehydrogenase B chain Ldhb . . . . .

Phosphoglycerate kinase 1 Pgk1 . . . . .

protein (peptidyl-prolyl cis/trans isomerase) NIMA-interacting 1 Pin1 m m . . m

Transcriptional activator protein Pur-alpha Pura m m m m m m

Septin-7 . . . m . m

triosephosphate isomerase Tpi1 m & m m . .

mupregulated.
.downregulated.
&up- and downregulated.
doi:10.1371/journal.pone.0002759.t002
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month age stage in the wildtype hippocampus but not in the

hippocampus of APP23 mice. This may indicate that impairment

of brain maturation precedes the intrinsic disease process.

Beta-amyloid deposits first appear when APP23 mice are six

months old. Deposits occupy a substantial area of the cerebral

cortex and hippocampus at 21 months of age. In those old-aged

animals, a very large number of protein expression differences can

be observed (data not shown) but they might rather be the

consequence of secondary alterations due to inflammatory

reactions as well as neuritic and synaptic degeneration [22].

According to our results, brain maturation might be impaired at

much younger age stages preceding beta-amyloid deposition. This

is in line with findings that synaptic dysfunction, synaptic loss and

learning deficits in transgenic mouse models of AD appear prior to

amyloid plaque deposition [23–26].

The developmental period around two months of age represents

adolescence in mice. During that age, mesocorticolimbic brain

regions are exceedingly plastic in terms of synaptic reorganization

and adult neurogenesis [27–29]. With the transition to adulthood

and during subsequent aging, brain plasticity is gradually reduced.

APP was assumed to be a neuron morphoregulatory protein and is

therefore involved in plasticity associated dynamics [5,30]. This

would imply that when APP function is disturbed, this might

predominantly affect the brain during adolescence - the age phase

of enhanced plasticity. Accordingly we observed a significant

reduction in proteome alterations related to development which

resulted in a large difference between the proteomes of APP23 and

wildtype mice. Importantly, this was observed in adolescent but not

in adult mice.

Processes that contribute to brain plasticity are the formation

and degradation of synapses, modulation of synaptic strength as

well as neurogenesis. Of all proteins changed in APP23 mice, those

which are most likely involved in neuronal plasticity due to their

selective expression at synapses or their up-regulation during

neurogenesis were analyzed in more detail. Interestingly, the

majority of these proteins were altered in hippocampus of two-

month old APP23 mice. Furthermore, those proteins were

predominantly down-regulated in APP23 mice. For example,

neuromodulin (gene name Gap43), which is widely used as marker

protein for neurogenesis and synaptic plasticity [31], was down-

regulated in hippocampus of one and two-month old APP23

versus wildtype mice. During aging (7 to 15 months of age),

neuromodulin expression was down-regulated to the same

expression level in both, APP23 and wildtype mice. Another

synaptic protein, PSD95 was down-regulated in hippocampus and

cortex of APP23 mice during adolescence. In addition, this protein

was later down-regulated after 7 months in cortex of both, APP23

and wildtype mice and was expressed on the same level in both

mice. Therefore differential expression of PSD95 and Gap43

between APP23 and wildtype mice was specific to adolescence.

Taken together, the absence of developmental proteome

alterations as well as the predominant down-regulation of

neuron-specific proteins in APP23 mice indicate an interference

of transgenic APP with mechanisms that generate the naturally

Table 3. Proteins altered in APP23 mice (cortex (C) or hippocampus (H) of 1, 2, 7 or 15 months old mice) and human post mortem
AD brains.

Reference Protein name Gene name 1H 2H 7H 15H 1C 2C 7C 15C

[35] Gamma-actin Actg1 . & . m

[34] Adenylate kinase 1 Ak1 .

[34] Aldolase 1, A isoform Aldoa m m m m

[34] Aldolase 3, C isoform Aldoc .

[33] ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit, isoform 1 Atp5a1 &

[33] ATP synthase subunit beta, mitochondrial Atp5b . & . & .

[35] NG,NG-dimethylarginine dimethylaminohydrolase 1 Ddah1 . . .

[34] Dihydropyrimidinase-related protein 2 Dpysl2 m m m m .

[34] Enolase 1, alpha non-neuron Eno1 m m m m m

[35] Enolase 2, gamma neuronal Eno2 . m & m m m m

[33] Fatty acid-binding protein, heart Fabp3 . . m

[34] Glyceraldehyde-3-phosphate dehydrogenase Gapdh m . . .

[33] Glial fibrillary acidic protein Gfap . m . m

[33] Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta 1 Gnb1 . . . . . .

[34] Heat shock protein 8 Hspa8 m m m

[33] Heat shock protein 65 Hspd1 m m m m

[33] Alpha-Internexin Ina .

[34] Pgam1 protein Pgam1 .

[34] Protein (peptidyl-prolyl cis/trans isomerase) NIMA-interacting 1 Pin1 m m m . m

[34] Peroxiredoxin-2 Prdx2 . m

[34] Triosephosphate isomerase Tpi1 m & . m . .

[34,35] Ubiquitin carboxy-terminal hydrolase L1 Uchl1 & . .

mup-regulated.
.down-regulated.
&up- and down-regulated.
doi:10.1371/journal.pone.0002759.t003
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occurring peak in hippocampal plasticity during adolescence in

wildtype mice.

Recently, it was reported that low concentrations of natural,

soluble Aß (which is enhanced in many mouse models for AD,

such as APP23) can alter dendritic spine number, morphology and

dynamics in hippocampal neurons [32,33]. Accordingly Lanz et al.

made an interesting observation when counting dendritic spines of

hippocampal CA1-neurons in two different mouse models for AD.

They observed the greatest loss of dendritic spines in adolescent

transgenic mice. Differences in the number of dendritic spines

then disappeared in older, plaque-bearing transgenic mice [25].

When the behavior of APP23 mice was investigated, major

learning and memory deficits were found as early as 3 months

[17]. Those results are quite compatible with our observations on

the proteome level.

In the neocortex, we did not detect a general decrease in

proteome alterations related to development in APP23 mice. In

this brain region, progression of brain maturation during

adolescence appears to be very region-specific. Moreover, differing

types of neurons and synapses show differences in vulnerability to

Aß-induced degeneration [34]. In line with this, a decrease in the

total neocortical synapse number has not been detected in APP23

mice [35]. In contrast, only in neocortical pyramidal neurons has a

decrease in spine density been demonstrated in mice carrying

human APP bearing the Swedish mutation [36]. We therefore

speculate, that since the neocortex is a very heterogenous brain

region, observations concerning a disturbed plasticity might be

hard to detect when the entire cortex is analyzed.

We identified 293 proteins altered in the APP23 mouse model

for AD. Comparing our data to proteomic studies performed with

post mortem human brain tissue of AD patients [37–39] we found

that 22 out of 30 published proteins were altered in both, human

AD patients and in our study of APP23 mice. In addition, we

identified many proteins such as Apolipoprotein E (gene name Apoe)

[40], Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (gene name

Pin1) [41], and numerous other proteins that have already been

implicated in AD. Although the distribution of altered proteins

over functional categories was similar among all postnatal stages,

most protein alterations were stage and/or brain region specific.

The latter fact also demonstrates that the effect of a mutation on

the proteome is highly age- and tissue- dependent.

In conclusion, we found a large number of protein expression

differences throughout the entire lifespan of APP23 mice,

beginning at ED16, a phase where neurogenesis is predominant

in the developing mouse brain suggesting an early impact of

transgenic APP. This finding correlates with the observation that

APP has an important role during embryonic neurogenesis [30].

Interestingly, during adolescence, rather specific proteome alter-

Table 4. Neuron-specific proteins altered in cortex (C) or hippocampus (H) of 1, 2, 7 or 15 months old APP23 mice.

Protein name Gene name Protein function in neurons 1H 2H 7H 15H 1C 2C 7C 15C

Brain abundant, membrane attached
signal protein 1

Basp1 Regulation of the synaptic cytosceleton [42] . .

Complexin-1 Cplx1 Modulation of neurotransmitter release, more
abundant in inhibitory synapses [43,44,45,46,47]

. .

Complexin-2 Cplx2 Modulation of neurotransmitter release, more
abundant in excitatory synapses [43,44,45,46,47]

m m

Diazepam binding inhibitor isoform 2 Dbi Modulation of the GABA(A) receptor,
overexpression in mice is associated to deficits
in hippocampal learning [48,49]

m . m . m

Postsynaptic density protein 95 Dlg4 Structural component of the postsynaptic
compartment [50]

. . .

Dihydropyrimidinase-related protein 2 Dpysl2 Regulation of microtubule assembly in neurons
[51]

m m m m .

Neuromodulin Gap43 Regulation of the cytosceleton, marker for
neurogenesis and synaptic plasticity [27]

. . . .

Beta-soluble NSF attachment protein Napb Component of the SNARE complex[52] .

Gamma-soluble NSF attachment protein Napg Component of the SNARE complex[53] . . .

Neuron derived neurotrophic factor Nenf Role in cell proliferation and differentiation
during neurogenesis [54]

.

Protein kinase C and casein kinase
substrate in neurons 1

Pacsin1 Role in endocytosis of synaptic vesicles [55] . . .

Septin-7 Sept7 Structural component of dendritic spines [56,57] . . . . . m

Synaptosomal-associated protein 25 Snap25 Component of the SNARE complex [58] .

Syntaxin-binding protein 1 Stxbp1 Regulation of the SNARE complex [59] m . .

Synapsin I Syn1 Synaptic protein, involved in synaptogenesis
and neurotransmitter release [60]

m

Synapsin-2 Syn2 m . m

Synapsin Ib SynI & & .

mup-regulated.
.down-regulated.
&up- and down-regulated.
doi:10.1371/journal.pone.0002759.t004
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ations were observed in the hippocampus. Based on the cellular

localization of the proteins altered we conclude that a naturally

occurring peak in hippocampal plasticity was absent in APP23

mice. This might be a transient effect of mutated APP on

adolescent plasticity. Still, the deficiency may cause a longterm

perturbance of the neuronal network finally resulting in memory

impairment in aging APP23 mice.

Our findings illuminate the process during the clinically silent

period of several years or decades in AD. Synaptic degeneration,

which is the major structural correlate to cognitive dysfunction is a

slow process initiated by a failure of local regulatory mechanisms

of synaptic plasticity [42] which we demonstrated in adolescent

APP23 mice. Nevertheless, we need more information to elucidate

how exactly the changes found on the proteome level translate to

alterations in cellular morphology and phenotype which finally

lead to AD.

Materials and Methods

Mouse models and tissues
We investigated the APP23 mouse model for AD with a 7 fold

over-expression of hAPP751 carrying the Swedish double-

mutation [12]. These mice have been backcrossed to the

C57Bl/6 strain for over 20 generations. We investigated cortices

of mouse embryos (E16) as well as cortices and hippocampi of 1, 2,

7 and 15 months old male APP23 mice as well as wildtype

littermates. Sample size was n = 6 (biological replicates) for all

groups within the study.

Protein Extraction and Separation Procedure
Each protein extract was prepared from individual brain regions

of single mice according to our updated protein extraction

protocol [10]. Briefly, frozen tissue samples together with sample

Figure 5. Expression levels of Neuromodulin (Gap43) and Post-synaptic density protein 95 (PSD95) during disease progression.
Expression for APP23 (solid squares) and wildtype mice (open circles) is shown. A: Two Gap43 spots (Spots SID15193 and SID873) in hippocampus
(left) and cortex (right) are shown. Significant differences (p#0.05; Student’s t-test) in spot abundance were observed in the hippocampus and cortex
between 2 and 7 months of age (only wildtype mice) and between 7 and 15 months of age (wildtype and APP23 mice) as well as in the cortex
between 1 and 2 months of age (only APP23 mice). Between wildtype and APP23 mice, significant differences in Gap43-expression were observed at 1
and 2 months of age in both brain regions. In general, expression of Gap43 was higher in younger wildtype as compared to APP23 mice. During
aging, expression of Gap43 decreased in both, APP23 and wildtype mice and differences disappeared. B: Expression of PSD95 in hippocampus (left)
and cortex (right). Significant differences in spot abundance were observed in the cortex between 1 and 2 (only APP23 mice) as well as between 7
and 15 months of age (wildtype and APP23 mice). Between wildtype and APP23 mice, significant differences in PSD95-expression were observed at 1
(only cortex) and 2 months (hippocampus and cortex) of age.
doi:10.1371/journal.pone.0002759.g005
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buffer (50 mM TRIZMA Base (Sigma-Aldrich, Steinheim,

Germany), 50 mM KCl and 20% w/v glycerol at pH 7.5) as well

as a proteinase inhibitor cocktail (Complete, Roche Diagnostics)

were ground to fine powder in liquid nitrogen and subsequently

sonicated on ice (0uC). Afterwards, DNAse and urea were added

to the samples. Individual transgenic and wildtype tissue samples

were then labeled by Cy3 minimal dye (GE Healthcare, Munich,

Germany). A pooled wildtype tissue sample of the relevant age and

tissue was used as internal standard and labeled by Cy5 minimal

dye (GE Healthcare). Labeling was carried out according to

manufacturer’s instructions (400 pmol fluorescent dye per 50 mg

of protein). Each Cy3-labeled sample was mixed with the same

amount of internal standard. The protein extracts were then

supplied with 70 mM dithiothreitol (Biorad, Munich, Germany),

2% v/w of ampholyte mixture Servalyte pH 2–4 (Serva,

Heidelberg, Germany) and stored at 280uC.

Two-Dimensional Gel Electrophoresis (2-DE)
Protein samples were separated by the large-gel 2-DE technique

developed in our laboratory as described previously [43]. The gel

format was 40 cm (isoelectric focusing)630 cm (SDS-PA-

GE)61.0 mm (gel width). Two dimensional fluorescent protein

patterns were obtained by fluorescent image acquisition at a

resolution of 100 mm (laser scanner Typhoon 9400, GE Healthcare).

Spot evaluation procedure
Protein spot patterns were evaluated by Delta2D imaging software

(version 3.4 Decodon, Greifswald, Germany). Briefly, protein

patterns of internal standards were matched to each other using

‘‘exact’’ mode of Delta2D. Subsequently, a fusion image was

generated employing ‘‘union’’ mode, creating a protein pattern

containing all spots from all 2D gels (cortex as well as hippocampus

at all age stages except ED16, internal standard gels were not

included) within the project. Digital spot detection was carried out on

the fusion image, followed by manual spot editing. The spot pattern

containing 1769 protein spots was then transferred from the fusion

image to all other 2-DE images. In this way, each spot on every gel of

the project had the same spot identification number.

Percent volume of spot pixel intensities was used for quantitative

analysis of protein expression. Normalized values (after background

extraction and normalization to internal standard) were exported

from Delta2D in spreadsheet format for statistical analysis. Data sets

were analyzed applying paired students t-test (wildtype and transgenic

samples were handled in pairs from protein extraction to 2-D gel

runs) when transgenic groups were compared to wildtype groups

(n = 6). Unpaired students t-test was performed when wildtype or

transgenic groups of different age stages were compared (n = 6). Only

fold changes over 10% were considered for graphs shown but results

were similar when all significantly altered spots were included. All

significantly altered proteins that were identified by mass spectrom-

etry are listed in supplementary table S1.

Protein Identification
For protein identification by mass spectrometry, 640 mg protein

extract was separated on 2-D gels and stained with a mass

spectrometry-compatible silver staining protocol [44]. In order to

assign corresponding protein spots between analytical fluorescent

and quantitative silver stained 2-D gels reliably, spot patterns of

silver stained gels were matched to CyDye stained gels using

Delta2D. Protein spots of interest were excised from 2-D gels and

subjected to in-gel tryptic digestion. Peptides were analyzed by a

Reflex 4 MALDI-TOF mass spectrometer (Bruker Daltonics,

Bremen Germany) as described previously [44]. Alternatively,

ESI-tandem -MS/MS on a LCQ Deca XP ion trap instrument

(Thermo Finnigan, Waltham, MA, USA) was applied. Mass

spectra were analyzed using our in-house MASCOT software

package (version 2.1) automatically searching NCBI databases.

MALDIM-MS ion search was performed with this set of

parameters: (I) taxonomy: Mus musculus, (II) proteolytic enzyme:

trypsin, (III) maximum of accepted missed cleavages: 1, (IV) mass

value: monoisotopic, (V) peptide mass tolerance 0.8 Da, (VI)

fragment mass tolerance: 0.8 Da, and (VII) variable modifications:

oxidation of methionine and acrylamide adducts (propionamide)

on cysteine. Only proteins with scores corresponding to p,0.05,

with at least two peptides identified by two independent

identifications each were considered. Furthermore, the molecular

weight and pI of each protein identified by database search was

compared to values obtained from our 2-D patterns.

Analysis of biological functions
Gene symbols and SwissProt accession numbers were used to

investigate proteins with altered expression profile in this study.

Furthermore, proteins were grouped according to functional

categories using parameters like GO and KEGG terms (retrieved

by WEBGESTALT [45]) and by literature search.

Immunoblotting
Protein concentration was determined using a Roti-Nanoquant

assay (Carl Roth, Karlsruhe, Germany). Brain protein extracts were

separated using 12% SDS-PAGE gels, blotted to PVDF membranes

and probed with human Aß-antibody (clone 6E10) (Abcam,

Cambridge, UK) according to standard immunoblotting procedures.

Supporting Information

Table S1 Proteins significantly altered in transgenic mouse brain

regions hippocampus (H) and cortex (C) of different ages (1, 2, 7

and 15 months) as well as in cortex of 16 days old APP23 mouse

embryos (ED16).

Found at: doi:10.1371/journal.pone.0002759.s001 (2.33 MB

DOC)
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