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Abstract

In bacteria, OxyR is a peroxide sensor and transcription regulator, which can sense the presence of reactive oxygen species
and induce antioxidant system. When the cells are exposed to H2O2, OxyR protein is activated via the formation of a
disulfide bond between the two conserved cysteine residues (C199 and C208). In Deinococcus radiodurans, a previously
unreported special characteristic of DrOxyR (DR0615) is found with only one conserved cysteine. dr0615 gene mutant is
hypersensitive to H2O2, but only a little to ionizing radiation. Site-directed mutagenesis and subsequent in vivo functional
analyses revealed that the conserved cysteine (C210) is necessary for sensing H2O2, but its mutation did not alter the
binding characteristics of OxyR on DNA. Under oxidant stress, DrOxyR is oxidized to sulfenic acid form, which can be
reduced by reducing reagents. In addition, quantitative real-time PCR and global transcription profile results showed that
OxyR is not only a transcriptional activator (e.g., katE, drb0125), but also a transcriptional repressor (e.g., dps, mntH). Because
OxyR regulates Mn and Fe ion transporter genes, Mn/Fe ion ratio is changed in dr0615 mutant, suggesting that the genes
involved in Mn/Fe ion homeostasis, and the genes involved in antioxidant mechanism are highly cooperative under
extremely oxidant stress. In conclusion, these findings expand the OxyR family, which could be divided into two classes:
typical 2-Cys OxyR and 1-Cys OxyR.
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Introduction

Reactive oxygen species (ROS), including hydrogen peroxide

(H2O2), superoxide, and hydroxyl radical, are toxic to cells due to

their ability to damage DNA and especially proteins containing

iron-sulfur clusters or sulfur atoms [1]. In bacteria, many

transcription factors have been found to sense the presence of

ROS and induce antioxidant system. OxyR is such a peroxide

sensor and transcription regulator. It was originally identified in

Salmonella enterica serovar Typhimurium and Escherichia coli [2,3]. In

E. coli, OxyR is a positive regulator of dps (a DNA-binding ferritin-

like protein), groA (GSH), grxA (glutaredoxin), katG (catalase), ahpCF

(alkylhydroperoxide-NADPH oxido-reductase subunits F and C),

fur (Fe-homeostasis regulation), and oxyS (a regulatory RNA) [4].

However, OxyR acts as a repressor of catalase expression in

Neisseria gonorrhoeae [5].

As a redox-responsive protein of the LysR family, OxyR has

conserved regions consisting of a helix-turn-helix motif and a

LysR-substrate binding domain. When the cells are exposed to

H2O2, OxyR protein is thought to be activated via the formation

of a disulfide bond between the two cysteine residues (C199 and

C208) [2,6]. Detailed footprinting studies indicate that oxidized

OxyR binds to its target promoters as a tetramer, occupying four

adjacent major grooves upstream of the genes to be transcription-

ally activated [7]. However, Kim et al. argued that OxyR

activation does not involve disulfide bond formation at all, and

that only one thiol in OxyR is critical for protecting against H2O2

[8]. Their work disclosed that OxyR is not involved in disulfide

bond formation when it was activated by S-nitrosylation, and that

mutation of C208 (which was reported to form a disulfide bond

with C199) would not result in the cell hypersensitivity to H2O2,

whereas the mutation of C199 did [8].

The gram-positive bacterium Deinococcus radiodurans is well

known for its extreme resistance to ionizing radiation [9,10],

ultraviolet radiation [11,12], oxidizing agent [13], and desiccation

[14]. It has been suggested that protective mechanisms against

oxidative damage is also involved in this extreme radiation

resistance [13,15]. D. radiodurans possesses a powerful enzymatic

antioxidant system, including three catalases, three superoxide

dismutases, two Dps, etc. However, the mechanism of its response

to oxidant stress has not been well clarified. Here, we demonstrate

an OxyR in D. radiodurans, which is different from all reported
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homologs in containing only one cysteine residue. Based on

quantitative real-time PCR (QRT-PCR), we found that DrOxyR

is both an activator, and a repressor. The binding of purified His-

tagged OxyR protein to the upstream region of the respective

genes was verified in vitro by DNA band shift assays. Furthermore,

we investigated the global trancriptome variation due to disruption

of droxyR, and the comparative analysis reveals pathways

significantly impacted either directly or indirectly by droxyR.

Results

Identification of oxyR in D. radiodurans
In D. radiodurans genome database (TIGRE), there is a potential

oxyR homolog (DR0615, designated as droxyR) [15], which encodes

a protein of 317 amino acids. BLASTP analysis showed that

DR0615 exhibited 31% identity to E. coli OxyR and 29% identity

to N. gonorrhoeae OxyR, respectively [16]. Five conserved residues

in its helix-turn-helix region (between amino acids 3 to 62)

involved in DNA binding are identical (Figure 1) [17]. Other

functional domains are conserved at its LysR-substrate binding

domain (between amino acids 86 to 297), including a hydrophobic

core, a tetramerization domain, and a RNA polymerase binding

domain [17,18]. Interestingly, DR0615 has a single sensing

cysteine residue (C210), compared with other organisms. This

difference in the primary structure of oxyR raised the possibility

that droxyR need not, indeed can not form an intramolecular

disulfide bond, and that DrOxyR activation can be caused by the

modification of just one cysteine residue (C210) (Figure 1).

Phenotypic characterization of MOxyR
To test its role in the antioxidant mechanism of D. radiodurans, a

droxyR disruptant strain (MOxyR) was constructed (Table 1). The

coding region of the dr0615 was replaced with a kanamycin

resistance cassette under a constitutively expressed D. radiodurans

groEL promoter. The primers are used for mutation listed in Table 2.

Disruption of dr0615 did not show a growth defect (data not

shown). However, as shown in Figure 2A, the sensitivity of the

mutant after 20 mM H2O2 treatment was increased, compared to

the wild type strain. After complemention with wild type droxyR

gene (plasmid pRADoxyR) (Table 1), H2O2 resistance of the

MOxyR_wtC was significantly increased. In contrast, the

MOxyR_sdC strains, which is the oxyR disruption mutant

complemented with the droxyR C210A site-directed mutant

(plasmid pRADoxyRsdC), still showed sensitivity to H2O2. In

addition, a little difference was observed between the ionizing

radiation resistance of wild type strains and that of MOxyR

(Figure 2B).

Figure 1. Alignment of OxyR homologs from different organisms. Using CLUSTAL W software aligned amino acid sequences of the
Streptomyces coelicolor A3(2), Neisseria gonorrhoeae, E. coli, and D. radiodurans. Identical amino acids are highlighted in black, and conserved residues
are highlighted with grey. The DrOxyR helix-turn-helix region has four conserved residues (R4, L32, S33 and R50) [17]. At its LysR-substrate binding
domain, D142 and R273 possibly define an activating region on OxyR (contact with RNA polymerase)[18], A233 residue is involved in
tetramerization[17], V110, L124, and A233 form a hydrophobic core[58]. Numbering is based on the E. coli OxyR sequence.
doi:10.1371/journal.pone.0001602.g001
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Differences in catalase activities and ROS levels between
the MOxyR and wild type strains

In order to investigate the regulatory role of OxyR on

enzymatic antioxidants of D. radiodurans after treatment of H2O2,

we assayed the catalase activity in wild type, MOxyR, MOx-

yR_wtC, and MOxyR_sdC stains with H2O2 treatment or not

(Table 1). When log-phase cells were treated with 20 mM H2O2,

the wild type showed a 1.5-fold increase in catalase activity, whilst,

neither MOxyR nor MOxyR_sdC showed an increase (Figure 3A).

On the other hand, complement strain MOxyR_wtC showed a

higher catalase activity than the wild-type under normal

conditions. It is well accepted that oxyR expression is auto-

regulated via negative feedback in E.coli [19], so we presume that

the droxyR gene is under the control of the stronger groEL promoter

in pRADoxyR, the transcription of which destroys the negative

feedback. As a result, catalase production may have been activated

Table 1. Bacterial strains and plasmids used in this study

Stains and
plasmids Relevant genotype

Reference
or source

D. radiodurans

R1 ATCC 13939 [59]

MOxyR D. radiodurans DR0615 gene knockout
mutant

This work

MOxyR_wtC MOxyR complement with pRADoxyR This work

MOxyR_sdC MOxyR complement with pRADoxyRsdC This work

E. coli

DH5a Host for cloning vectors Laboratory
stock

E12 The parent strain of GS09, wild type strain [7]

GS09 DH5a oxyR gene knockout mutant [7]

GS09C GS09 complement with pRADoxyR This work

BL21 (DE3) E. coli B F2 dcm ompT hsdS (rB
2mB

2) gal l
(DE3)

Novagen

BLOxyR BL21 containing expression plasmid
pET28OxyR

This work

BLOxyRsd BL21 containing expression plasmid
pET28OxyRsd

This work

Plasmids

pMD18 Cloning vector (Apr) Takara

pET28a Expression vector (Kmr) Novagen

PMD18oxyR oxyR gene is cloned to pMD18 (Apr) This work

pMD18oxyRsd Site-directed mutant gene is cloned to
pMD18 (Apr)

This work

pRADK pRADZ3 derivative in which lacZ is replaced
by the kanamycin gene (Apr Kmr Cmr)

[43]

pRADoxyR pRADK derivative in which kanamycin
gene is replaced by the oxyR gene from
pMD18oxyR (Apr Cmr)

This work

pRADoxyRsdC pRADK derivative in which kanamycin gene is
replaced by the oxyR site-directed mutant
gene from pMD18oxyRsd (Apr Cmr)

This work

pET28oxyR pET28a expression plasmid containing
BamHI-NdeI fragment of oxyR from
pMD18oxyR (Kmr)

This work

pET28oxyRsd pET28a expression plasmid containing BamHI-
NdeI fragment of the site-directed mutant oxyR
from pMD18oxyRsd (Kmr)

This work

doi:10.1371/journal.pone.0001602.t001

Table 2. Primers used in this study.

Primer Sequence

Construction of oxyR mutants

OxyR1 59 TTGGCGAGATTGGGGTTGA 39

OxyR2 59 CACACAGGATCCGTACAGCTCCCGAAAGCG 39

OxyR3 59 AGAGTTAAGCTTCAGGAGGACTTCGTGTTTT 39

OxyR4 59 CCTCCCAAACGACAAATCCC 39

OxyR5 59 CCAGCGTGTCGTTGATGCG 39

KanamycinF 59 CACACAGGAAACAGCTATGACCATGATTA 39

KanamycinR 59 ACAGACGGATCCTAGAAAAACTCATCGAGCATC 39

Complementation of oxyR mutants

OxyRcomF 59 TTTCATATGGAACTGCGACACCTGC 39

OxyRcomR 59 TTTGGATCCATGGTCATGGGAAAGCTCCTT 39

Site-direct mutagenesis primer

C210AF 59 TTCGACCAGGTCATGCACTGGGCCGCCGACGCGGGCTTTACG 39

C210AR 59 CGTAAAGCCCGCGTCGGCGGCCCAGTGCATGACCTGGTCGAA 39

Real-time quantitative PCR

DR0089 F: 59 GAAACAGGAGCGCAGGGTGT 39

R: 59 AGGTTGCGTTGCAGGGTTTC 39

DR0865 F: 59 CCGGGGACATCATCACCATT 39

R: 59 CCGGACACTGCCCATAAAGC 39

DR1219 F: 59 TACCTCGCCATGAGCTTTCT 39

R: 59 CCCAGAATCAGCGGAATAAA 39

DR1709 F: 59 GCGATGGTGATTCAGAACCT 39

R: 59 GTTCGGCCTGAATCCAGTAA 39

DR1982 F: 59 CACCAGCAGGCCGAGAAGTT 39

R: 59 GTTGTCCTCACCGGGAATGC 39

DR1998 F: 59 GGGCGTGGACAAGCGTATTC 39

R: 59 GTAGACGGGGGCTTCCTGCT 39

DR2263 F: 59 GAAACAGGAGCGCAGGGTGT 39

R: 59 AGGTTGCGTTGCAGGGTTTC 39

DRB0092 F: 59 GCGACGTGGAAAAGGTGGAC 39

R: 59 GCTTGCCGTTGTTGATGTCG 39

DRB0125 F: 59 GCACTGCCACTGTCAAGAAA 39

R: 59 GTCCTGCGGCTCAAAGTAAG 39

Gel mobility shift assays

DR1709 F: 59 GAGCCTCTAGCAAATATGTGACAGCAC 39

R: 59 AGGCTGGGAGAACGGGAATC 39

DR1998 F: 59 GCGCAGGATAGCGGATGC 39

R: 59 CCGACGCCCTTGTTGTTTTC 39

DR2263 F: 59 CTGGGCGCAGCTTGAAGTTA 39

R: 59 CACGCCGCTCTTTTTGGTCT 39

DRB0036 F: 59 GAACACGATGTCCGCTGCAC 39

R: 59 TTGAGGCCGTGCTGTCAGTC 39

DRB0125 F: 59 GCTGCTGGCTTTCCCTTCAG 39

R: 59 GGGCGAGGGTCAGAAAAAGG 39

DR0207 F: 59 GGCTTGCAAGTGGAACCC 39

R: 59 CAGCAGGGTCTTGGTCAT 39

RV-M 59 GAGCGGATAACAATTTCACACAGG 39

doi:10.1371/journal.pone.0001602.t002
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by an abundance of OxyR, which is likely oxidized by H2O2 from

normal metabolism. This might be the reason why MOxyRC is

more resistant to hydrogen peroxide than the wild type strain.

These results indicate the droxyR gene is responsible for the

regulation of catalase activity.

To determine whether the droxyR disruption has effect on the

total ROS scavenging ability of the cell, we also measured the

intracellular ROS level. Figure 3B shows that ROS level in all the

strains increased after the H2O2 treatment, and that MOxyR and

MOxyR_sdC accumulated more ROS than wild type and

MOxyR_wtC.

Combined with the survival phenotypic data, it could be

inferred that the sensitivity of mutant to H2O2 is due to the loss of

induction effect of oxyR on antioxidant enzymes (e.g. catalase), and

that oxyR acts as a positive regulator of catalase. Moreover, the

C210A mutant showed the same phenotype as MOxyR, indicating

that C210 is a site key to OxyR gene regulation.

C210 is a sensing cysteine
The site-directed mutagenesis of droxyR revealed that residue

C210 plays essential roles in the function of the protein. This

finding poses an intriguing question that whether C210 is a sensing

cysteine. To verify this hypothesis, experiments were carried out to

obtain C210-SOH formation by either CHP or air oxidation,

followed by the use of an electrophile (NBD-Cl) to trap the C-

SOH [20]. As expected, OxyR treated with CHP (Cys-210SO-

NBD) exhibited a maximal absorbance at 347 nm (Figure 4), on

the hand, the reducing form Cys-210S-NBD showed its maximal

Figure 2. Survival curves of D. radiodurans strains exposed to (A) H2O2 and (B) ionizing irradiation. (A) Wild-type D. radiodurans R1 (#)
compared to MOxyR (&), MOxyR_wtC (N), and MOxyR_sdC (%) under 20 mM H2O2 treatment at the five recovery time points (0, 20, 40, 60, and
80 min). (B) Wild-type D. radiodurans R1 (#) compared to MOxyR (&) after ionizing irradiation. Error bars represent standard deviations from four
replicate experiments.
doi:10.1371/journal.pone.0001602.g002

Figure 3. Effect of oxyR disruption on the antioxidant ability of D. radiodurans. (A) Catalase activities of R1, MOxyR, MOxyR_wtC, and
MOxyR_sdC after H2O2 treatment (grey bar) or not (white bar). (B) ROS accumulate in four strains after H2O2 treatment (grey bar) or not (white bar).
Data reported represent the average and standard deviations of three independent experiments.
doi:10.1371/journal.pone.0001602.g003
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absorbance at 420 nm. This data identified that C210 is the

peroxidatic center of the molecular.

Because sulfenic acid is highly unstable, and reacts further to

produce a disulfide, we used nonreducing SDS-PAGE to identity

whether C210 is involved in intermolecular disulfide bond

formation. As typical OxyR protein, DrOxyR protein did not

form intermolecular disulfide linkages after CHP (organic

hydroperoxide) or H2O2 (inorganic hydroperoxide) treatment

(data not shown).

QRT-PCR analysis disclose two classes of OxyR-
dependent genes

As in the oxyR knockout of E. coli., disruption of oxyR makes D.

radiodurans much more sensitive to H2O2. As we have known, this

sensitivity is attributed to the inhibition of normal transcription of

OxyR-dependent genes [16,21–23]. Therefore, eight homolog

transcripts which were reported as OxyR-dependent genes in

other bacteria [21,23–25] were selected and compared in wild

type and MOxyR using QRT-PCR. QRT-PCR was also used to

analyze the expression patterns of these genes in wild type and

MOxyR after treatment with H2O2. Of these genes, dr1998 codes

a major catalase KatE in D. radiodurans, and it has been shown to

play a role in protection of D. radiodurans from oxidative stress and

ionizing radiation [13]. dr2263 and drB0092 are two dps genes,

with functions of protection against oxidative stress and iron

uptake and storage [26,27], but their expression patterns are

different under ionizing radiation [28], indicating that their

regulator may be different. Furthermore, D. radiodurans accumu-

lates high intracellular manganese and low iron levels compared

with radiation-sensitive bacteria and this is regarded as an

important contribution to its resistance [29]. Three ion transport

genes were selected to test whether they are regulated by OxyR,

including dr1219 (feoB, coding ferrous iron transport protein B),

drB0125 (coding Iron(III) dicitrate-binding periplasmic protein),

and dr1709 (mntH). In addition, DR1982 is an alkylhydroperoxide

reductase subunits F, which could transfers electrons from NADH

to AhpC. DR0865 is a Fur or PerR homolog, and Fur proteins

control iron uptake in many Gram-negative bacteria, while PerR

is postulated to be the peroxide regulon repressor [30].

Consistent with catalase activity assay, the katE (dr1998)

transcript was repressed approximately 1.74-fold in the MOxyR

relative to that of wild type, and induction of katE expression by

H2O2 was eliminated in strain MOxyR (Figure 5A), suggesting

that OxyR is a positive regulator of katE. In addition, both iron

transporter genes (dr1219 and drB0125) showed the same

expression pattern as katE, indicating that expression of these

genes were also mediated by OxyR, a finding similar to the OxyR

regulon in Haemophilus influenzae [23].

When the wild type cells were exposed to H2O2, the transcripts

of dps (dr2263) and mntH (dr1709) decreased, whereas, transcripts of

these genes in the MOxyR cell were identified either under normal

growth conditions or after H2O2 challenge (Figure 5B). These data

informed us that oxidized DrOxyR might act as a transcription

repressor of dr2263 and dr1709. Since the expression levels of

dr2263 and dr1709 are higher in MOxyR than those of in wild type

strains under normal condition, we deduce that reduced DrOxyR

could also be a repressor of both of them. To verify this hypothesis,

we measured the expression patterns of DR1709 and DR2263 in

MOxyR_sdC, which contained a reduced OxyR protein due to its

C210 mutation. Opposite to their expression patterns in MOxyR,

both of them did not show a significant increase under normal

condition (Figure 5C). Although they were activated under H2O2

treatment in MOxyR_sdC, the change fold is less than that of in

MOxyR. The data confirmed that reduced OxyR could still

negatively regulate these genes expression. DrOxyR action pattern

is opposite to its homologs in E. coli [21], Bacteroides fragilis [31], and

Shigella flexneri [32]. In D. radiodurans, two types of Mn(II) import

systems have been identified, DR1709 belongs to the Nramp

family of transporters [29]. Another type of predicted Mn

transporter is an ATP-dependent ABC-type transporter

(DR2283-DR2284, DR2523) [29]. However, QRT-PCR results

showed that the second Mn ion transporter system was not

regulated by DrOxyR protein (Data not shown).

Additionally, dr1982 (ahpF) and drB0092 (dps) did not show

significant changes at oxidant stress (Figure 5D). We deduced that

OxyR did not regulate both of them, and the transcription

patterns of the two dps genes (dr2263 and drB0092) are different.

Furthermore, we also measured the expression of dr0865, which is

a putative perR homolog. We found that katE was significantly

activated after deletion of dr0865, and that the mutant strain

exhibited greater resistance to H2O2 than wild type strain

(unpublished data). Interestingly, the expression level of perR was

repressed in MOxyR, as well as in the wild type strain after H2O2

challenge. Given the expression pattern of perR, the oxidant stress

occurred after disruption of oxyR, which was consistent with

intracellular ROS accumulation assay results.

Since the Mn(II) transporter gene (dr1709) is induced, and the

iron transporter genes (dr1219, drB0125) are repressed in oxyR

mutant, we assayed the intracellular Fe ion and Mn ion levels in

MOxyR. As expected, compared to that Fe ion levels are three

times higher than Mn ion in wild type strain, Fe ion levels are only

two times higher than Mn ion in MOxyR (Table 3).

Transcriptome changes in response to disruption of
droxyR

The results of intracellular ROS accumulation assay showed

that MOxyR accumulates higher levels of ROS than the wild type

strain. It is well known that ROS is a signaling molecule, and has

an important role in the regulation of a variety of biological

processes [33,34]. Therefore, in order to identify other OxyR-

dependent genes, and to measure the consequences of higher levels

of ROS, we carried out a microarray comparison of the wild type

and the OxyR mutants grown under normal conditions. Table S1

Figure 4. Absorbance of NBD chloride-treated purified OxyR.
Air-oxidized OxyR (&), along with the CHP (10 mM) treated
OxyR (%), shows maximal absorption at 347 nm. The shoulder at
420 nm is reduced OxyR (m) reacted with NBD chloride. The
absorbance spectrum is from 285 to 600 nm.
doi:10.1371/journal.pone.0001602.g004

A Novel 1Cys-OxyR Regulator
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and Table S2 exhibits that a total of 280 genes showed at least a 2-

fold change (p,0.05). A higher percentage of genes were repressed

(150 genes, Table S1), whereas, 130 genes were induced (Table

S2). Table 4 and Table 5 showed the 36 most highly repressed and

induced genes, many with known roles in oxidative stress response,

including catalase, oxidoreductase, N-acetyltransferase. Further-

more, functional classification of these genes revealed that signal

transduction mechanisms, inorganic ion transport and metabo-

lism, lipid metabolism, energy production and conversion, and

amino acid transport and metabolism showed altered expression

patterns in the oxyR mutant (Table S3).

Table 6 and Table 7 show genes with the same expression

pattern in wild type strain after 20 mM H2O2 treatment (our

unpublished data) and these in MOxyR. This confirmed that

oxidative stress occurs in MOxyR.

Gel mobility shift assays to confirm OxyR-regulated
genes

Our global transcriptome analysis results suggested that the

expression patterns of many genes were altered as a consequence

of oxyR deletion. However, microarray data could not distinguish

those genes directly controlled by OxyR form those controlled by

indirect mechanisms. To support the reliability of both QRT-PCR

and microarray data, we used a DNA mobility shift assay to

determine whether purified OxyR protein could bind in vitro to the

two potentially positively regulated gene (dr1998 and drB0125) and

two potentially negatively regulated genes (dr1709 and dr2263). In

addition, microarray data showed that many oxidoreductase genes

were repressed, so we cloned the promoter sequence of drB0036

which is induced after ionizing radiation [28] to identify whether

oxyR is a regulator of oxidoreductase. dr0207 was used as a

negative control, which is up-regulated after ionizing radia-

tion[35]. As shown in Figure 6, both oxidized and reduced forms

of the protein could bind these promoters. Given that OxyR was

not completely reduced with DTT and the DTT was probably

quickly electrophoresed away from the protein in the mobility shift

assays [7], we also examined the binding of the C210A mutant

protein to these genes and observed a same binding pattern (data

not shown). This data indicate that OxyR protein is bound to its

recognition sequences even in the absence of oxidative stress, and

the binding ability supports the result that reduced OxyR could

regulate dr1709 and dr2263 expression.

Figure 5. Q-RT PCR of the expression of potential OxyR-dependent genes in D. radiodurans R1 wild-type compared to wild type after
H2O2 treatment (white bar), MOxyR (grey bar), and MOxyR H2O2 treatment (black bar). (A) genes positively regulated by DrOxyR; (B) genes
negatively regulated by DrOxyR; (C) the expression patterns of DR1709 and DR2263 were measured in MOxyR_sdC; (D) genes not regulated by DrOxyR.
doi:10.1371/journal.pone.0001602.g005

Table 3. Intracelluar Mn and Fe levels in wild type and
MOxyR.

Strains
Total Mn (nmol
Mn/mg cell)

Total Fe (nmol
Fe/mg cell)

Intracelluar Mn/Fe
concentration ratio

Wild type 1.01760.24 3.16660.54 0.321

MOxyR 1.51760.31 3.04660.48 0.498

doi:10.1371/journal.pone.0001602.t003

A Novel 1Cys-OxyR Regulator
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Discussion

D. radiodurans exhibits extreme radiation resistance. In addition

to its powerful DNA repair systems which include some novel

components [36], free radical scavengers are regarded as

important contributors to this resistant mechanism [15,37].

Recently, Daly et al. reported that accumulation of Mn (II) in D.

radiodurans facilitates its radiation resistance through high levels of

protein protection from oxidation [29,38]. However, despite these

efforts, the molecular regulatory mechanism underlying its

oxidative resistance remains poorly understood. Therefore, in this

work, we demonstrate that DR0615 is an OxyR homologue with

Table 4. The 36 most highly repressed genes in MOxyR.

Locus Annotation
Repression
fold P value

DR0096 ABC Transporter with ATPase domain 34.94564 2.68E-05

DR1440 Cation-transporting ATPase, authentic
frameshift

26.7681 0.000119

DRA0157 Periplasmic phosphate-binding protein
PSTS

22.29369 0.000648

DR2209 Rio1 family Protein kinase 21.49044 5.80E-05

DR1263 YBIA_ECOLI in E coli 20.82255 0.001641

DRB0067 Extracellular nuclease with Fibronectin III
domains

12.38872 4.75E-06

DR0095 ABC Transporter with ATPase domain 11.56158 7.25E-05

DRA0019 N-acetyltransferase 9.147487 0.002963

DRA0159 Phosphate transport permease PSTA 8.3616 2.35E-05

DR1624 RNA helicase, authentic frameshift 8.004592 2.01E-05

DR2409 McrA family nuclease 6.317552 0.00069

DR0548 Pilin IV like secreted protein 6.205551 1.20E-06

DR0353 VacB, S1 domain nuclease 6.171572 5.28E-05

DR1978 N-acetyltransferase family 6.035044 0.003969

DR1998 Catalase, CATX 6.024595 0.000272

DRA0020 COBU cobinamide kinase/cobinamide
phosphate guanylyltransferase

5.547864 0.00179

DRA0017 Thioesterase 5.391183 0.00152

DR2449 Small conserved bacterial proteins,
YOHL_ECOLI

5.184686 0.00625

DR2339 LigT, 29-59 RNA LIGASE 5.172343 0.001245

DR0352 Predicted protein 4.952399 0.000498

DR2441 N-acetyltransferase 4.836622 0.000183

DR0396 Predicted protein 4.642973 0.000548

DR2453 P-type ATPase metal efflux 4.543941 0.00816

DR0533 Predicted protein 4.380241 0.001366

DR1630 Conserved transport protein 4.305581 0.012968

DR1583 Conserved membrane protein 4.254401 0.000343

DR1200 Predicted protein 4.061794 0.003261

DR2385 Phenylacetic acid degradation protein
PaaB

4.044868 0.000759

DR0746 Predicted protein 4.032291 0.00016

DR2208 Glyoxalase/Dioxygenase family protein 3.964627 0.01098

DR1976 MutS- Mismatch repair, ABC superfamily
ATPase

3.93664 0.00046

DR1419 P-loop containing protein, tunicamycin
resistance protein ortholog

3.903037 0.011378

DR2384 Phenylacetic acid degradation protein
PaaC

3.882149 3.92E-05

DR1582 Conserved membrane protein 3.770361 0.000821

DR0203 Membrane protein, similar to gi|1653436
of Synechocystis

3.729993 0.022306

DR1907 Fe-S subunit of glycolate oxidase, YKGE 3.728085 0.007343

doi:10.1371/journal.pone.0001602.t004

Table 5. The 36 most highly induced genes in MOxyR.

Locus Annotation
Induction
fold p value

DRA0211 HTH transcriptional regulator, GntR
family

12.78088 0.001481483

DR0959 ABC transporter permease dipeptide
transporter

12.25984 6.45E-05

DRA0154 Glutamine-fructose-6-phosphate
transaminase, GLMS

11.46216 0.001714972

DR1930 Membrane protein 8.843763 0.002494076

DR1317 Predicted protein 7.865743 0.000207444

DR1312 Nuclease McrA superfamily 7.19721 0.003461522

DRA0343 Succinic semialdehyde dehydrogenase 7.002605 0.001362937

DR2576 DHH family phosphohydrolase 6.333434 0.004310024

DR1790 Yellow/royal jelly protein of insects 6.152674 0.000235587

DR1901 Predicted protein 6.112743 0.00459121

DR1225 Glycosyltransferase 5.776983 0.005089054

DR2006 Predicted protein 5.489444 0.005599313

DRB0017 Vibriobactin utilization protein viub 5.484233 0.005609405

DR1385 Predicted protein 5.327047 0.001640339

DR1809 Glycine dehydrogenase, glycine
cleavage system P protein

5.307754 6.59E-05

DR2181 RAB/RAS like small bacterial GTPase 5.306127 0.000119887

DR1231 Predicted protein 5.285835 0.001626178

DR1811 Glycine cleavage system H protein 5.047402 0.001147252

DR2179 Predicted protein 4.948525 3.11E-05

DRA0064 Thermostable? alkaline proteinase 4.907261 0.006968747

DRA0245 Predicted protein 4.604159 0.007938807

DR0645 Molybdopterin-guanine dinucleotide
biosynthesis protein A

4.529622 0.008214151

DRA0192 Predicted protein 4.416647 0.008664458

DRA0333 Zn-finger+FHA domain containing
protein

4.284262 0.000166068

DRB0036 Oxidoreductase, authentic point
mutation

4.163247 0.015962058

DRA0230 Predicted protein 4.049166 0.000261909

DRA0331 VWFA Mg-binding domain protein 3.974087 0.000165997

DR0995 Protein of uncharacterized conserved
family

3.861446 0.008895311

DR2182 Predicted protein 3.851292 0.003993378

DR2180 Uncharacterized small family of
predominantly archaeal proteins

3.786965 0.00011024

DR2249 Protein phosphatase, calcineurin like
phosphoesterase

3.756406 0.012430329

DRA0334 PP2C phosphoprotein phosphatase 3.671103 0.000141014

DR1623 Predicted protein 3.655162 0.016431343

DR1620 Oxidoreductase 3.649256 0.00096162

DR0751 Cell division topological specificity
factor, MinE

3.571127 0.000262718

doi:10.1371/journal.pone.0001602.t005
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an important role in oxidative stress sensing and regulation

mechanism.

Unlike many other OxyR homologs, the sequence analyses

showed that DrOxyR contains only one cysteine, which is

absolutely conserved in other OxyR homologs (Figure 1). Further

comparisons of the amino acid sequences of DrOxyR with those

from other bacteria indicated that the other activating regions are

well conserved in the DrOxyR protein, except the T238 residue

which is involved in C199–C208 disulfide bond formation is

absent (Figure 1) [18]. This sequence characteristic informed that

DrOxyR could not form intramolecular disulfide bond under

oxidative stress. However, disulfide bonds are not the only cysteine

oxidation product important for redox sensing. As Bacillus subtilis’s

OhrR protein [39], our NBD chloride assay in vitro showed that

the sole cysteine could be oxidized into sulfenic acid and did not

generate an intermolecular disulfide bond. The in vivo functional

analyses of the cysteine mutant and wild type OxyR showed that the

single C210 is sufficient for DrOxyR to act as a sensor of and a

regulator responding to oxidant stress. But the protein may react with

low molecular weight thiols (e.g. Cysteine) to make a mixed disulfide

in vivo, such as that of BsOhrR [40]. This is a major mechanistic

difference from the sensing mechanism of the 2-Cys OxyR, for which

sulfenic acid is an intermediate in the pathway to intramolecular

disulfide bond formation [2]. Nevertheless, this activating pathway

was challenged by the report of Stamler’s group, whose research

showed that sulfenic acid is stable in per monomer [8].

Furthermore, the droxyR could not complement the defect in the

E. coli oxyR mutant strain (GS09) (Figure S1), even when GS09 was

complemented with droxyR::T201C, which is put the missing

cysteine back in DrOxyR (data not shown). One explanation for

the inability of DrOxyR to complement to GS09 is an inability to

properly contact or communicate with E. coli RNA polymerase.

Another explanation is that these two families (based on the

number of cysteine residues present) use different mechanisms to

activate downstream process.

Based on QRT-PCR results, eight potential OxyR-regulated

genes were classified into three classes due to their different

expression pattern in wild type and mutant strains before or after

H2O2 stress. Particularly interesting is, excepting as a regulator of

katE, DrOxyR also acts as an activator of iron transport genes and

as a repressor of manganese transport gene. As seen in recent

studies, the high intracellular Mn/Fe ratio in D. radiodurans plays

an important role in resistance ability by protecting cells from

ROS generation during recovery [15,29,38]. In addition, our

findings do not preclude the existence of other regulators of Mn/

Fe transport genes, or katE. Indeed, dr0865 (fur or perR) and dr2519

(mntR or dtxR) also showed the abilities to regulate these genes (our

unpublished data), indicating that the oxidative stress response

network is much more complex than we initial prediction.

From the microarray data, we found a total of 280 genes (about

9% of genome) that showed at least 2-fold change, suggesting that

these genes were regulated by droxyR through either direct or

indirect mechanisms. Several genes annotated as N-acetyltransfer-

ase (dr0763, dr1057, dr1978, dr2441, and drA0019) were repressed.

In Saccharomyces cerevisiae, N-acetyltransferase could reduce intra-

cellular oxidant levels and protect cells from oxidative stress [41].

Furthermore, genes involved in electron transport were also

repressed, including dr0343, dr1493, dr1502, dr1505, and dr2618.

This may result in a decrease of the production of ROS generated

from the electron transport process [1,15]. In addition, an iron-

sulfur protein (DR1907) was also significantly inhibited to avoid

the attack by ROS. Conversely, many oxidoreductases were

overexpressed, some of which are involved in regulating the

oxidation state and activities of several proteins [34]. Thioredoxin

(DRA0164) is such an oxidoreductase whose expression level was

highly elevated in MOxyR. It directly regulates the activation of

specific signal transduction proteins through hydrogen peroxide-

sensitive noncovalent interactions [34]. Moreover, gel mobility

shift assays showed that DRB0036 (oxidoreductase) is under the

control of OxyR, suggesting that OxyR may be directly involved

in the oxidoreductase processes of D. radiodurans.

As a signalling molecule, hydrogen peroxide has an important

roles in the regulation of a variety of biological processes, such as

stimulate cell proliferation [33,34]. In this work, some genes

Table 6. Genes with a decreased level of expression both in wild-type strains treated with H2O2 (20 mM) and in MOxyR.

Locus Annotation MOxyR H2O2 a

Decrease fold p value Decrease fold p value

DR0019 FTSZ fragment 3.15 0.004408 2.92 0.062473

DR1198 TYPA like GTPase 2.02 0.022671 3.87 0.011932

DR1200 Predicted protein 4.06 0.003261 3.67 0.02233

DR1263 YBIA_ECOLI in E coli 20.82 0.001641 7.19 0.001764

DR1799 Initiation factor IF-2 2.53 0.002127 2.36 0.069017

DR1907 Fe-S subunit of glycolate oxidase, YKGE 3.73 0.007343 5.66 0.003095

DR2470 Related to biothin biosysnthesis protein BioY 2.51 0.027048 2.62 0.029802

DR2524 Ribosomal protein L28 2.47 0.005166 2.11 0.01617

DRA0157 Periplasmic phosphate-binding protein PSTS 22.29 0.000648 15.00 0.004186

DRA0158 Phosphate transport system permease PSTA 3.53 0.006286 2.74 0.041144

DRA0159 Phosphate transport permease PSTA 8.36 2.35E-05 2.72 0.031496

DRB0067 Extracellular nuclease with Fibronectin III domains 12.39 4.75E-06 72.34 5.90E-05

DRB0106 Acyl-CoA Thioesterase superfamily protein 3.20 0.000486 11.17 0.000729

DRB0107 NRDI ribonucleoprotein 2.34 0.002171 4.49 0.012634

DRB0111 Glycerophosphodiester phosphodiesterase 2.30 0.009128 2.95 0.017399

aThese data are our unpublished data.
doi:10.1371/journal.pone.0001602.t006
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involved in transcriptional regulation, transport and cell prolifer-

ation also showed an altered expression pattern. Thus, it was

deduced that these genes were not regulated by oxyR, but were

affected as a consequence of ROS accumulation. For example, we

have shown the expression levels of two genes, minE (dr0751) and

minD (dr2383), were changed. The MinE protein, which is known

to prevent the division inhibitor from acting at internal division

sites, was activated, whereas the minD gene, which is a cell division

inhibitor, was repressed. Based on these expression patterns, it

could be assumed that the cell was stimulated due to ROS

accumulation. Other interesting genes that were down-regulated

in MOxyR were some DNA damage response genes, including

recA, cinA, ligT, dinB, ddrB, ddrC, ddrH, ddrJ, ddrK, ddrM, and ddrO

[14], whereas they were up-regulated in MOxyR after 20 mM

H2O2 treatment (data not shown), indicating that they were not

regulated by oxyR only.

Based on the gene expression patterns, two classes of OxyR-

dependent genes were identified and DrOxyR can function not

only as a transcriptional activator but also as a transcriptional

repressor. Our DNA band shift assay showed that either reduced

OxyR protein or oxidized protein can bind both classes of genes.

As transcriptional activator, reduced OxyR binds to two pairs of

adjacent major grooves separated by one helical turn of the DNA

duplex and acts to repress its own synthesis. When oxidized, the

OxyR tetramer binds four adjacent major grooves upstream of

those genes that are transcriptionally activated by OxyR [4,7]

(Figure 7). Whereas a repressor, the reduced form of OxyR

produces a basal expression level in the absence of exogenous

H2O2 and the oxidized form of OxyR significantly repressed the

genes’ expression level. Moreover, after deletion of OxyR, the

expression of these genes was significantly induced in MOxyR

(Figure 7). This agrees with published data showing that oxidized

OxyR also acts as a repressor [5,42]. Nonetheless, no obvious

binding sites, such as those identified in E. coli, were observed in

these genes. This is consistent with the results of OxyR-binding

sites of genes in other bacteria [5,22].

In summary, our work presents a biochemical mechanism for

hydrogen peroxide sensing of D. radiodurans OxyR, which contains

Table 7. Genes with an increased level of expression both in wild-type strains treated with H2O2 (20 mM) an in MOxyR.

Locus Annotation MOxyR H2O2 a

Increase fold p value Increase fold p value

DR0201 Predicted protein 2.92 0.00141 2.56 0.006516

DR0371 Predicted protein 2.57 0.007263 3.19 0.090488

DR0407 Membrane protein 2.65 0.030893 2.05 0.105049

DR0685 Uncharacterized secreted protein 2.15 0.000489 4.17 0.01594

DR0781 CHEY family+HTH domain 2.18 0.000696 2.05 0.010041

DR0894 Predicted protein 3.41 0.002955 3.33 0.007428

DR0959 ABC transporter 12.26 6.45E-05 2.37 0.015601

DR1179 HKD superfamily hydrolase 3.21 0.000231 2.95 0.005812

DR1306 Predicted protein 2.27 0.007313 2.75 0.045296

DR1314 Uncharacterized proteins, ysnf-like repeats 2.68 0.000105 2.20 0.06613

DR1331 Predicted protein 2.31 0.002401 2.69 0.03801

DR1385 Predicted protein 5.33 0.00164 2.50 0.029004

DR1697 Predicted protein 2.81 0.006795 4.11 0.006687

DR1708 Predicted protein 2.86 3.49E-05 2.58 0.025686

DR1803 Predicted protein 2.49 0.048071 23.78 0.000232

DR1804 Solo Double stranded beta helix protein 2.63 0.000896 2.59 0.017027

DR1811 Glycine cleavage system H protein 5.05 0.001147 2.18 0.326216

DR1879 Conserved membrane protein 2.35 0.005824 2.18 0.087706

DR1901 Predicted protein 6.11 0.004591 2.01 0.111755

DR1980 Rossman fold oxidoreductase 2.14 0.00147 2.17 0.033191

DR1987 Predicted protein 2.62 0.000202 2.51 0.019178

DR2179 Predicted protein 4.95 3.11E-05 2.32 0.064013

DR2235 PHP family phosphoesterase 2.01 0.033357 2.04 0.092577

DR2240 Predicted protein 2.82 0.001259 2.89 0.031108

DR2438 Endonuclease III 2.10 0.002349 3.69 0.01421

DR2527 Predicted protein 2.19 0.002913 2.08 0.038997

DRA0005 NAD alcohol dehydrogenase 2.45 0.039132 9.12 0.004303

DRA0334 PP2C phosphoprotein 3.67 0.000141 2.20 0.059918

DRA0343 Succinic semialdehyde dehydrogenase 7.00 0.001363 2.24 0.230105

DRA0364 ADG Oxidoreductase 2.48 0.001306 4.51 0.008529

aThese data are our unpublished data.
doi:10.1371/journal.pone.0001602.t007
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only one conserved cysteine. The gene transcription induction by

hydrogen peroxide requires only one cysteine that can be

reversibly oxidized by peroxides to a sulfenic acid form. Moreover,

based on QRT-PCR and globe transcriptome analysis, we provide

evidence that DrOxyR functions as not only a positive regulator

but also as a negative regulator of different classes of genes. These

results show that genes participating in the Mn/Fe homeostatic

and antioxidant system are highly cooperative under extreme

conditions, and that cooperation contributes to resistance. More

research is needed to establish the detailed mechanism of OxyR

regulation of these important genes, and whether communication

between OxyR and other regulators such as PerR (DR0865)

existed and is required for the intricate coordination of oxygen

radical detoxification.

Figure 6. Binding of reduced and oxidized OxyR to the upstream region of (A) negative control (dr0207 and coding sequence for
dr1709); (B) positivly regulated genes (dr1998 and drB0125); (C) negativly regulated genes (dr1709, dr2263, and drB0036). To generate
reduced protein, 200 mM DTT was added to the binding reactions. Column 1, 2, and 3 indicate non-added protein, reduced OxyR added, and
oxidized OxyR added, respectively.
doi:10.1371/journal.pone.0001602.g006

Figure 7. Model for reduced and oxidized OxyR binding to and activation at the two classes genes. For Class I (katE): OxyR activates
gene in the presence of H2O2, whereas under non-stressed conditions, reduced OxyR is bound to two pairs of adjacent major grooves separated by
one helical turn of the DNA duplex and acts to repress its own synthesis. For Class II (mntH): mutation of OxyR can greatly enhance gene expression,
reduced OxyR binds to DNA and minimally induced genes, whereas oxidized OxyR significantly decreases the gene expression levels.
doi:10.1371/journal.pone.0001602.g007
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Materials and Methods

Strains and growth conditions
Bacterial strains and plasmids are listed in Table 1. All D.

radiodurans strains used in this work were grown at 30uC in TGY

(0.5%Tryptone, 0.3% yeast extract, 0.1% glucose) broth or on

TGY plates supplemented with 1.5% Bacto-agar. Overnight

cultures were incubated into fresh TGY medium and exponential-

phase cells were used in all experiments. E. coli strains were grown

in Luria-Bertani (LB) broth or on LB agar plates at 37uC.

Disruption of the dr0615 locus in D. radiodurans
A three-step gene splicing by overlap extension was used to

generate the DR0615 mutant strain (designed MOxyR) [43].

Primers OxyR1 and OxyR2 were used to amplify a BamHI

fragment upstream of targeted genes, and primers OxyR3 and

OxyR4 were used to obtain a HindIII fragment downstream of

targeted genes respectively (Table 2). The kanamycin resistance

cassette containing the groEL promoter was obtained from a shuttle

plasmid, pRADK [43]. After these three DNA fragments were

digested and ligated, the ligation products were used as template

for PCR to amplify the resulting PCR fragment (OxyR1 and

OxyR5 used as primer), which was then transformed into

exponential phase cells by CaCl2 treatment. The mutant strains

were selected on TGY agar plates supplemented with 20 mg/mL

kanamycin were confirmed by PCR product sizes, enzyme-

digested electrophoresis (Figure S2), and DNA sequencing.

Complementation of oxyR mutant
Complementation plasmid construction was constructed as

previously described by Hua et al [44]. Briefly, chromosomal DNA

was isolated from wild type strains. A 1000-bp region containing

the oxyR gene was amplified by OxyRcomF and OxyRcomR

(Table 2), and ligated to pMD18 T-Easy vector (Takara, JP),

designed as pMDoxyR. After digested by NdeI and BamHI, the

target gene oxyR was ligated to NdeI and BamHI-pre-digested

pRADK [43], which named as pRADoxyR. The complementation

plasmids were confirmed by PCR and DNA sequence analysis,

and transformed into MOxyR and GS09 (K12 oxyR::Kan of E. coli,

a gift from Dr Gisela Storz) [7], resulting in two functional

complementation strains: MOxyR_wtC (D. radiodurans oxyR

mutant strain complemented with pRADoxyR) and GS09C

(GS09 complemented with pRADoxyR) (Table 1).

PCR mutagenesis C210 of OxyR
The first PCR fragment was obtained using primer OxyRcomF

and a mutagenic antisense primer C210AR (Table 2, the mutated

bases are underlined). The second PCR fragment was obtained

using primer OxyRcomR and the mutagenic sense primer C210AF,

which is complementary to the C210AR. The mutagenesis PCR

was generated by using OxyRcomF and OxyRcomR [39], and

ligated to pMD18 T-Easy vector (Takara), designed as pMD18ox-

yRsd. Then, pMD18oxyRsd was digested with NdeI and BamHI,

and cloned into pRADK. The resulted pRADoxyRsdC plasmid

was transformed into DrOxyR. The oxyR site-directed mutation

sequence was verified by sequencing.

Measurement of cell survival rate
The sensitivity of D. radiodurans cells to hydrogen peroxide was

assayed following the method as previously described with some

modifications [45]. Cells were harvested in early stationary phase,

washed twice with and re-suspended in phosphate buffer (20mM,

pH 7.4). An aliquot was removed as control and the remaining

aliquot was treated with hydrogen peroxide to a final concentra-

tion of 20 mM. The mixture was incubated at 30uC in an orbital

shaker. At the indicated recovery time points (20, 40, 60, and

80 min), an aliquot was removed and catalase (Sigma, St. Louis,

MO) was added in excess (100 g/mL) to stop the H2O2 treatment.

The cells were diluted and spread on solid TGY media for

determining the numbers of colonies forming units (cfu). Survival

rates are defined as a percentage of the number of colonies

obtained comparing with the control. Hydrogen peroxide disk

assay was used to assay the survival rate of E. coli [46].

Cell survival rate after ionizing radiation was determined by the

method described previously [47]. In short, after the cells were

harvested, 200 mL of various MOxyR strains and wild type strains

were irradiated at room temperature for 1h with 60Co c-rays at

various distances from the source, which correspond to doses from

0 to 24 kGy. After irradiation, the various MOxyR and wild type

strains were plated on TGY plates and incubated at 30uC for

3 days prior to colony enumeration.

All the data provided here represent the mean and standard

deviation of at least three independent experiments.

Catalase activity assay
Whole-cell protein extracts were obtained from D. radiodurans cells

in exponential phase growth according to the method of Tian et al

[48]. Catalase activity was determined as in [49]: 2 mL of 0.2 mg/

mL protein was diluted with 38 mL of PBS buffer, 10 mL of 250 mM

H2O2 was then added followed by incubation at 25uC for 2 min.

The reaction was quenched with 450 mL of 1% sodium azide. 10 mL

of this mixture was diluted with 200 mL of an appropriate

chromogenic reagent miture (Beyotime, CHN), in a 1-cm path-

length polystyrene cuvette. The quantity of H2O2 remaining in the

mixture can be determined by the oxidative coupling of 4-

aminophenazone (4-aminoantipyrene, AAP) and 3,5-dichloro-2-

hydroxybenzenesulfonic acid (DHBS) in the presence of H2O2 when

catalyzed by horseradish peroxidase (HRP) contained in the

chromogenic reagent mixture. After 15 min of incubation at 25uC,

the resultant quinoneimine dye (N-(4-antipyrl)-3-chloro-5-sulfonate-

p-benzoquinonemonoimine) was quantitated at 520 nm. H2O2

concentrations were determined by reference to a calibration curve

generated from H2O2 solutions in the range 0–0.5 mM. The activity

of catalase (expressed in micromoles of H2O2 decomposed per

minute per milligram of total protein) was calculated as follows:

½H(2)O(2)� decomposed (micromole s)|250

T (reaction min)|Vol (mL)|½protein� (mg=mL)

Intracellular ROS accumulation assay
ROS generation in cells was assayed as reported [50]. In short,

107 cells (100 mL, OD600 = 1.0, washed three times with PBS) were

resuspended in 1 mL DCFH-DA (10 mM) and incubated at 37uC
for 20 minutes. After incubation, the cells were washed twice with

PBS and re-suspended in 1 mL PBS. Then, the sample was

divided in two parts, half (0.5 mL) was exposed to 1 mL of 10M

H2O2 for 20 minutes at room temperature, the other half served

as the nonexposed control culture. The fluorescence intensities

were measured using a fluorescence spectrophotometer with an

excitation wavelength of 485 nm and an emission wavelength of

525 nm.

Expression and purification of OxyR wild-type and
mutant proteins

Wild-type oxyR was produced from pMDoxyR, which was

digested with NdeI and BamHI. Mutant oxyR was obtained from
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pMD18oxyRsd digested with NdeI and BamHI. The products were

ligated into pET28a (Novagen, San Diego, CA), and the resulting

plasmids were transformed into E. coli BL21 for overexpression of

His-tagged proteins, respectively. Protein expression and purifica-

tion as previously described [22]. Briefly, an overnight culture was

diluted 1: 50 in fresh media to an OD600 of 0.3 at 37uC and

followed by a shift to 4uC. After 0.5 hours incubation at 4uC, cells

were induced with 0.1 mM isopropyl-b-D-thiogalactoside (IPTG)

for 15 hours at 20uC. The harvested cells were resuspended in lysis

buffer (20 mM NaH2PO4; 20 mM Na2HPO4; 400 mM NaCl;

15 mM imidazole; 1 mM DTT) and disrupted at 4uC in a

sonicator. After centrifugation at 12, 000 rpm for 20 min at 4uC,

the supernatant was loaded onto Ni-NTA agarose columns

(Qiagen, Valencia, CA). The purified OxyR protein was applied

to a Superdex 300 HR 16/70. The purity of protein samples was

determined using 12% SDS-PAGE, and only fractions with pure

OxyR protein were used for further experiments.

Reversible formation of cysteine-sulfenic acid trapping
with NBD chloride

Modification of OxyR protein by NBD chloride (Sigma) at

C210 was detected as previously described [8,20,39,51]. Briefly,

reduced or oxidized proteins were mixed with 1 mM NBD-Cl in

dimethyl sulfoxide and incubated for 60 min at 25uC in the dark.

Then the NBD-Cl was removed by ultrafiltration with YM-10

(Millipore, Bedford, MA) dialysed three times in 50 mM pH 7.0

potassium phosphate buffer containing 150 mM NaCl and 1 mM

EDTA. The absorbance spectra (300 to 600 nm) of the modified

proteins were measured on a ND-1000 spcetrophotometer

(NanoDrop, Wilmingon, De. US).

RNA isolation, quantitative real-time PCR (QRT-PCR)
experiments

The wild-type strain and MOxyR strain were grown in TGY to

mid-exponential phase. For H2O2 treatment, the cultures were

divided in two; one half of the culture was treated with H2O2 at a

final concentration of 20 mM, while the other half was used as

non-treatment control. RNA isolation, and QRT-PCR were

carried out as previously described [28]. Total RNA was extracted

from cells using TRI Reagent (Invitrogen, Carlsbad, CA), after

liquid nitrogen grinding. Then the RNA samples were treated with

Rnase free Dnase I (Promega, Madison, WI) and purified using

phenol chloroform extraction. RNA quality and quantity were

evaluated by UV absorbance at 260 and 280 nm.

QRT-PCR assay utilized RNA samples obtained from different

conditions and first-strand cDNA synthesis was carried out in 20 mL

of reaction containing 1 mg of RNA sample combined with 3 mg of

random hexamers using SuperScript III Reverse Transcriptase kit

(Invitrogen). Then Quant SYBR Green PCR kit (TIANGEN, BJ)

was used to amplification following the manufacturer’s instructions.

As an internal control, a house-keeping gene encoding glycosyl

transferase, dr0089, was used as a house-keeping gene, encoding the

glycosyl transferase [28]. In our hands, DR0089 was unaffected by

any of our treatments. cDNA probes for microarray hybridization

were prepared from four biological replicate total RNA samples each

of wild type and MOxyR cultures. All primers used in QRT-PCR

are shown in Table 2.

Microarray hybridization and data analysis
Microarray design and constructions were carried out as our

previous work [28]. Total RNA for microarray hybridization were

obtained from four biological replicate samples of each of wild

type and MOxyR under normal condition. First, RNA (4 mg) was

annealed to 9 mg of random hexamer primers (Takara) in total

volume of 20 mL at 70uC for 10 min and subsequent keep on ice

for 2 min. cDNA was synthesized at 42uC overnight in total 31 mL

using SuperScript III Reverse Transcriptase kit (Invitrogen) with

0.5 mM dNTP mix containing amino allyl-dUTP (GE, Piscat-

away, NJ). The reaction was terminated by adding 20 mL EDTA

(0.5 M), and RNA was hydrolysed by adding 20 mL NaOH (1 M),

then incubating at 65uC for 20 min. After neutralized with 50 mL

Hepes (1M, pH 7.0), unincorporated free amino allyl-dUTPs were

removed by ultrafiltration with YM 30 (Millipore), and resultant

cDNA samples were coupled to 1 pmol Cy3 or Cy5 dyes (GE) in

0.1 M sodium carbonate buffer for 2 h at room temperature in the

dark. Unincorporated free Cy3 or Cy5 were removed by

ultrafiltration with YM 30. Two labeled cDNA pool (wild type

and MOxyR) to be compared were mixed and hybridized

simultaneously to the array in a solution containing 36saline

sodium citrate (SSC), 0.3 % SDS, and 24 mg of unlabeled herring

sperm DNA (Gibco BRL, Gaithersburg, MD) [52]. Following

hybridization, slides were washed as published paper [52].

Measurement of spot intensity and normalization were carried

out as our paper [28]. In short, slides were scanned with a

GenePix 4000B imager (Axon, Union City, CA), and spot

intensities were obtained by software GenePix pro 5.1. Normal-

ization and statistical analysis were carried out in the R computing

environment (2.11, Raqua on the Windows) using the linear

models for microarray data package (Limma) [53]. Within Limma,

prior to channel normalization, microarray outputs were filtered to

remove spots of poor signal quality by excluding those data points

with mean intensity less than two standard deviations above

background in both channels. Then, global LOESS normalization

was used to normalize all data, and the 2-replicate spots per gene

in each array were used to maximize the robustness of differential

expression measurement of each gene via the ‘‘lmFit’’ function

[54]. The microarray data have been deposited in the Gene

Expression Omnibus database under accession no. GSE9636.

Assay of intracellular Fe and Mn ion concentration
Total iron and Mn concentration were detected as described

previously with some modification [55]. Bacteria were grown

aerobically to OD600 0.8 in 600 ml of TGY broth. After

centrifugation at 10,000 g for 10 min at 4uC, cells were washed

twice in 200 ml of phosphate-buffered saline (PBS) with 1 mM

EDTA (pH 7.4) and resuspended in 200 ml of PBS without EDTA.

After centrifugation, the pellet was resuspended in 10 ml of PBS,

8 ml of which was used for iron and manganese analysis. Cell dry

weight was estimated with the remaining 2ml suspension. For iron

and manganese analysis, pelleted bacteria were resuspended in 1 ml

of Ultrex II nitric acid (Fluka AG., Buchs, Switzerland) and incubated

at 80uC for 1 hour. After centrifugation at 20,000 g for 20 minutes,

the supernatant was filtered against 0.45 mM membrane. The

concentration of samples was analyzed for iron and Mn content by

inductively coupled plasma-optical emission spectroscopy (ICP-MS,

Model Agilent 7500a, Hewlett-Packard, Yokogawa Analytical

Systems, Tokyo, Japan). All buffers and nitric acid solutions were

analyzed as described above to correct for background.

Gel mobility shift assays
Gel mobility shift assays were performed with FITC-labeled

DNA fragments (0.05 pmol) mixed with purified OxyR protein

(oxidized protein or reduced protein, 200 nmol) in a total volume

of 20 mL. The binding buffer contained 10 mM Tris-Cl (pH 8.0),

50 mM NaCl, 1 mM EDTA, 5% Glycerol, 50 mg/mL BSA and

5 mg/mL calf thymus DNA [22,39]. The reaction mixture was

incubated at room temperature for 30 min and loaded onto a
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1.5% agarose gel in 0.56TBE. Electrophoresis was performed at

80 V for 1 h at 4uC and followed by photographed [56,57]. For

generation of the labeled DNA, the appropriate operator fragment

of target genes (dr1709, dr1998, dr2263, drB0036, and drB0125) was

amplified by PCR with genomic DNA and cloned into pMD18,

followed by FITC-labeled RV-M and reverse priming of target

genes. In addition, dr0207 was used as negative control. All

primers are listed in Table 2.

Supporting Information

Figure S1 H2O2 disk assay. Photos showing the zones of

inhibition by H2O2 in E. coli K-12 (wild type) (A), GS09

(oxyR::kan mutant) (B), and E. coli K-12 strain GS09 comple-

mented with the droxyR gene (C). (D) Histogram showing the

results of H2O2 disk assay in E. coli. In the assay, E. coli cells were

grown in Luria-Bertani (LB) broth at 37 uC with overnight

shaking. 200 ml of the overnight cultures were added to LB top

agar and spread onto LB agar. Then, 10 ml of 3% H2O2 was

pipetted onto 3MM Whatman paper disks (0.7-cm diameter), and

these disks were placed on top of the agar and incubated at 37 uC
overnight. The zone of inhibition, in mm, was taken as a measure

of H2O2 sensitivity. The zone of inhibition was measured in three

dimensions, and the mean values and standard deviations were

calculated.

Found at: doi:10.1371/journal.pone.0001602.s001 (4.13 MB TIF)

Figure S2 Disruption of D. radiodurans droxyR gene. Verifica-

tion of droxyR gene disruption by PCR analysis. Purified PCR

fragments were amplified from the genomic DNA of strain R1 and

MOxyR using primers (OxyR1 and OxyR5) that flank the coding

sequences for droxyR. The PCR products of R1 revealed a band

of ,2550 bp length (band 1), whereas those of MOxyR resulted in

a ,3500 bp fragment (band 2). Bands 3 and 4 denote PCR

products of R1 and MOxyR were digested with BamHI,

respectively. Bands 5 and 6 denote PCR products of R1 and

MOxyR were digested with HindIII, respectively. M denotes

molecular weight standards.

Found at: doi:10.1371/journal.pone.0001602.s002 (2.63 MB TIF)

Table S1 The repressed genes showed in MOxyR. All genes are

sorted by fold induction or repression.

Found at: doi:10.1371/journal.pone.0001602.s003 (0.08 MB

DOC)

Table S2 The induced genes showed in MOxyR. All genes are

sorted by fold induction or repression.

Found at: doi:10.1371/journal.pone.0001602.s004 (0.09 MB

DOC)

Table S3 Functional classification of genes with statistically

significantly induction or repression in untreated wild-type strains

compared to untreated oxyR mutant.

Found at: doi:10.1371/journal.pone.0001602.s005 (0.03 MB

DOC)
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