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Abstract

The human genome encodes a limited number of genes yet contributes to individual differences in a vast array of heritable
traits. A possible explanation for the capacity our genome to generate this virtually unlimited range of phenotypic variation
in complex traits is to assume functional interactions between genes. Therefore we searched two mammalian genomes to
identify potential epistatic interactions by looking for co-adapted genes marked by excess two-locus genetic differentiation
between populations/lineages using publicly available SNP genotype data. The practical motivation for this effort is to
reduce the number of pair-wise tests that need to be performed in genome-wide association studies aimed at detecting
G6G interactions, by focusing on pairs predicted to be more likely to jointly affect variation in complex traits. Hence, this
approach generates a list of candidate interactions that can be empirically tested. In both the mouse and human data we
observed two-locus genetic differentiation in excess of what can be expected from chance alone based on simulations. In
an attempt to validate our hypothesis that pairs of genes showing excess genetic divergence represent potential functional
interactions, we selected a small set of gene combinations postulated to be interacting based on our analyses and looked
for a combined effect of the selected genes on variation in complex traits in both mice and man. In both cases the individual
effect of the genes were not significant, instead we observed marginally significant interaction effects. These results show
that genome wide searches for gene-gene interactions based on population genetic data are feasible and can generate
interesting candidate gene pairs to be further tested for their contribution to phenotypic variation in complex traits.
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Introduction

The presence of epistatic interactions between genes has

fundamental consequences for the course and outcome of

evolution by natural selection [1–4] and results in the emergence

of co-adapted gene complexes, i.e. combinations of variants at

different genes that give a selective advantage only when both are

present in the same individual. Consequently, it should be possible

to detect genes involved in epistatic interactions from a population

genetic approach, without prior knowledge of the specific

phenotypes that are affected. Following up on the original concept

introduced by Sewall Wright [1,2] we searched for co-adapted

gene complexes by looking for excess genetic divergence between

populations/lineages at two-locus genotypes. The basic rationale is

that if a specific combination of alleles at different genes

outperforms the alternative combination(s), than not all two-locus

genotypes will be observed in their expected frequencies. Within a

population selection for a trait underlined by epistatic gene effects

will maintain linkage disequilibrium between the loci involved [5],

because specific allelic combinations will be systematically

removed. Between (sub-) populations the same process will

generate genetic differentiation because different combinations of

alleles may perform equally well, resulting in phenotypically

equivalent but genetically different populations [2]. This theoret-

ical prediction of Wright’s Shifting Balance Theory of evolution

has empirical support [4]. In essence, by looking for deviations

from equilibrium two-locus genotype frequencies, we aim to detect

the signature of natural selection [6–9] on pairs of genes from

population genomic data.

We explored two mammalian genomes for functional gene-gene

interactions and followed up a selection of candidate gene pairs to

detect a possible joint effect on phenotypic variation in a complex

trait in both mice using a well characterized set of mouse lines

(BxD) and in humans using a Dutch twin cohort.

Recombinant inbred lines (RILs) are generated by inbreeding

the progeny of two parental lines that are themselves inbred. As a

result an individual line can have only one of a possible four two-

locus genotypes: aabb, aaBB, AAbb or AABB and all are expected

to occur in equal frequencies in a large collection of RILs.

However, if these four genotypes do not equally persist through
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the many generations of inbreeding, i.e. if there is a selective

advantage of a specific combination of alleles, than not all two-

locus genotypes will be observed in equal frequencies. In other

words, in a large set of RILs we might observe significant Linkage

Disequilibrium (LD) between physically unlinked genes if these

genes jointly affect an adaptive phenotype [5] and some

combinations are more likely than others to survive the process

of inbreeding. In fact, this idea has been pursued before in the

context of signatures of reproductive isolation and shown to reveal

patterns consistent with epistatic gene interactions that arise in the

shape of Dobzhansky-Muller incompatibilities [10,11].

In contrast to the mouse data, the available human genotypes

were derived from outbred, ethnically distinct populations. In this

case pairs of functionally interacting genes can be detected

following a slightly different approach. Considering only bi-allelic

loci such as SNPs, two-locus genotypes are transmitted from one

generation to another in one out of four possible combinations: for

the AaBb genotype the gamets can be Ab, AB, ab, aB. If selection

favors one of these configurations (i.e. virtual ‘‘haplotypes’’ or

‘‘trans-haplotypes’’ when the loci are unlinked) above the others,

than excess genetic differentiation between three major human

populations at the level of trans-haplotype frequencies may

indicate epistatic interaction between genes for the reasons

outlined above. In contrast to the recombinant inbred lines,

where phase is evident, in outbred human populations trans-

haplotype frequencies had to be estimated. From these frequencies

Fst was calculated which is a measure of genetic distance between

populations originally introduced by Sewall Wright. When

considering natural populations a known complication of this

approach is the confounding effects of selection and demography

[12], i.e. a large genetic distance alone need not be sufficient

evidence for natural selection. To allow for straightforward

interpretation of our results and in addition to conducting

coalescent simulations we restricted ourselves to a comparison of

non-synonymous coding SNPs (NSCS) vs. neutral SNPs (NS).

NSCS change the amino acid sequence of proteins and are

therefore natural candidates to be involved in functional

interactions, in contrast to combinations of NS that will provide

an estimate of the background levels of genetic differences between

populations. Because neutral, demographic processes have the

same effect on all SNPs, any difference we might observe between

the two classes, after correcting for the difference in their allele

frequency spectra, should reflect the functional properties of

NSCS.

Results

LD between unlinked loci in the mouse genome
Based on publicly available genotype data on 89 BxD mouse

RILs (http://www.genenetwork.org/dbdoc/BXDGeno.html) we

calculated LD and corresponding p-values for 6,659,288 pairs of

physically unlinked, autosomal SNPs (Table S1 and S2). Unlinked

polymorphisms are not expected to be in LD, yet we observe very

strong correlations between SNPs on different chromosomes. The

lowest p-value in this dataset was 1.5610212, in fact 707

combinations of unlinked SNPs were in significant LD even after

Bonferroni correction for 6,659,288 tests. As RILs are derived

from a known breeding scheme, any significant result should not

be caused by demography. Nevertheless it is straightforward to

simulate RIL genotypes and determine empirically the expected

distribution of LD between unlinked loci. We generated 1000

replicates of 89 RILs with 3800 SNPs equally distributed across

the genome. The simulations showed that very high levels of LD

may be present in RILs just by chance, however, starting from

r2.0.04, the real data consistently exhibits a significant excess of

non-independent combinations (Figure 1), when compared to the

average and standard deviation observed in the 1000 replicate

simulations. These results clearly show that a large number of

unlinked polymorphisms are co-occurring non-independently in

the mouse genome. We propose that the most likely explanation of

the data is that the specific combinations of SNPs that appear to be

in strong LD in fact identify functionally interacting genes that

have conveyed a selectively advantage during the process of

inbreeding. The genome-wide prevalence of such epistatic

interactions can be roughly estimated by quantifying the excess

frequency of ‘‘real’’ interactions at those (higher) levels of LD

where observed data is consistently in the majority. Several

percent of all pairs (Figure 1) are implicated suggesting that the

total number of functional interactions is at least a couple of times

larger than the number of genes in the mouse genome.

Figure 1. Frequency distribution of LD between unlinked SNPs in the BxD mouse recombinant inbred lines. A Black bars represent the
observed frequency of pairs of unlinked SNPs at increasing levels of LD (measured as r2). White bars show the distribution of LD in 1000 simulated
sets of RILs. The errors bars are standard deviations. As expected the distribution of the observed data is shifted to the right. B In the right tail of the
distribution, the excess of unlinked SNPs that exhibit very strong LD relative to the neutral expectation remains consistently significant. It should be
noted that very high levels of LD were observed in the simulated dataset but these are clearly outnumbered by the real data.
doi:10.1371/journal.pone.0001593.g001

Gene-Gene Interactions
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Gene-gene interactions in phase II detoxification
determine alcohol preference in mice

Given our interpretation that pairs of unlinked polymorphisms

in strong LD represent functional interactions, we aimed to

establish the extent to which the interaction between genes rather

than their individual effect influences phenotypic variation in

complex traits. For this purpose we selected a small subset of SNP

pairs in strong LD. To enhance our chances to observe a real and

sizeable gene-gene interaction effect we focused on the set of 707

combinations of SNPs that were in significant LD even after

Bonferroni correction. In addition, we considered only gene

related SNPs, for our purposes defined as either in coding

sequence, splice site or mRNA 59 and 39 UTRs, because these

directly implicate a specific gene. From the 707 SNP pairs we

selected those 12 combinations where both SNPs marked a specific

gene (Table 1). The purpose of this selection was to facilitate the

interpretation of any association we might find.

We used these 12 combinations of 15 gene based SNPs as

predicting variables on the 626 phenotypes publicly available for a

subset of the BxD RILs. To avoid fitting an over-parameterized

model, in the initial screen only the interaction terms were

included. The significance of the full model was evaluated

compared to a model including only the intercept. We found

one phenotype to be significantly associated with the genotype

data, corrected for the number of tests performed. Following up

this one phenotype and after excluding those variables that were

not contributing to the prediction we found that 2 combinations of

4 different gene-based SNPs explained 66 % (adjusted r2) of the

phenotypic variation (p = 6.561025) in the amount of 3% ethanol

consumed per 24 hours when given ad libitum access (Figure 2).

When introduced to the model none of the four main effects were

significant, in agreement with our expectation that the interaction

terms would be of relevance, although admittedly the significance

level of the two interaction terms were reduced to p = 0.04 and a

marginally non-significant p = 0.06.

The four genes implicated in ethanol preference in mice are:

Nrf2 (rs13459064) interacting with Paraoxonase 2 (rs13478608)

and LOC665113 (similar to Traf2 and NCK-interacting kinase)

(rs13459183) interacting with Ptpre (rs13479546). The biological

functions of the latter two are not yet known. In contrast,

paraoxonase 2 is an antioxidant protein and Nrf2 is a known

regulator of gene expression of antioxidant proteins and phase II

detoxification enzymes [13]. Although the interaction between

paraoxonase 2 and Nrf2 is marginally non-significant, the possible

involvement of Nrf2 alcohol preference in mice is remarkable, as it

has been recently shown that a promoter polymorphism in the

phase II detoxification enzyme NQO2 plays an important role in

the pathogenesis of alcoholism and alcohol withdrawal symptoms

in humans [14]. Nrf2 is known to directly regulate the expression

of NQO2 [15] meaning that our tentative finding is plausible

based on the known biological function of the genes involved.

Clearly, more experimental studies would be necessary to establish

the link between paraoxonase 2 and Nrf2 and ethanol

consumption, but the present results are consistent with the

prediction that unlinked loci in strong LD might be functionally

interacting.

Genetic differentiation of two-locus genotypes between
three human populations

Based on publicly available genotype data from Perlegen/

HapMap we estimated trans-haplotype frequencies for 12,875,275

combinations of 5075 autosomal NSCS and compared the

distribution of the genetic distances (Wright’s Fst) (Table S3 and

S4) to the distribution derived from 5075 randomly selected NS.

Ascertainment bias of the SNPs present in this dataset is a known

limitation for using the data for population genetic studies[16],

however we aim to compare two subsets of SNPs based on a

property (NSCS vs. NS) not primarily involved in the SNP

discovery process. In other words, we expect that the bias is similar

for both NSCS and NS, although this assumption need not be

correct. However, the distribution of LD (measured as r2) within

populations among the NSCS and NS were identical indicating

that the two samples are well matched with respect to potential

sources of bias due to genomic localization, allele frequency

spectrum and also ascertainment (Figure S1). NSCS trans-

haplotypes differ significantly from those obtained from NS

(Kolmogorov –Smirnof Z test, p,10213) (Figure 3). The analysis

was also performed with the minor haplotype frequency (MHF) as

a covariate to effectively compare Fst values at the same level of

total genetic variance. The effect of the MHF was indeed

significant (p,10213), but the difference between NS and NSCS

based haplotypes remained highly significant as well (p,10213).

Table 1. 15 unlinked gene based SNPs involved 12 pair-wise combinations that exhibit significant LD after Bonferroni correction.

Chr SNP1 Chr SNP2 SNP1 SNP2 Gene 1 Gene 2 LD p-value

2 6 rs13459064 rs13478608 Nrf2 Pon2 4.21610209

2 6 rs13459064 rs6343757 Nrf2 Dync1i1 4.21610209

2 6 rs13459064 rs13478618 Nrf2 Glcci1 1.20610211

3 7 rs13459183 rs13479546 LOC665113 Ptpre 5.3610211

3 7 rs6260196 rs13479546 Slc2a2 Ptpre 7.59610210

5 10 rs6263715 rs13480653 1810013D10Rik Rtdr1 3.44610209

7 14 rs13479126 rs13482205 V1rg3 Rcbtb1 6.22610210

7 14 rs13479126 rs3710549 V1rg4 Sacs 2.86610209

6 6 rs13478608 rs3682699 Pon2 Lmo3 4.66610209

6 6 rs6343757 rs3682699 Dync1i1 Lmo3 4.66610209

6 6 rs13478618 rs3682699 Glcci1 Lmo3 7.11610209

8 8 rs13459102 rs13479838 Tm2d2 9130012O13Rik 1.51610212

The SNPs present on the same chromosome are more than 50 cM apart.
doi:10.1371/journal.pone.0001593.t001

Gene-Gene Interactions
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This result is underlined by simple visual inspection of the

distributions, which reveals a much ‘‘thicker’’ right tail of the

NSCS distribution. Although high levels of genetic differentiation

were also observed among the NS, starting from approximately

Fst.0.35, two third of the data were NSCS. Hence, in this dataset

the prediction that a SNP pair is NSCS rather than NS based on

high levels of Fst alone yields a False Discovery Rate of ,0.33. In

other words, the potentially functional NSCS pairs are 2 fold

overrepresented at high levels of genetic differentiation.

Coalescent simulation of three major human populations
Because both the NSCS and NS have been included randomly

with respect to chromosomal position and are scattered across the

entire genome, any demographic event is expected to have had the

same impact on both classes of polymorphisms. Therefore, it is not

likely that the clear overrepresentation of NSCS trans-haplotypes

among the most strongly diverged combinations is the result of

historic events. However, to estimate the variability in the amount

of genetic divergence between populations due to historic

processes we conducted coalescent simulations implementing

parameters from a recent calibration of the method shown to

accurately recreate the patterns of genetic variability between the

three major world populations used here [12]. 100 replicates have

been simulated resulting in a grand total of more than 2.5 billion

haplotype based Fst values. The observed variability between

replicates is very low and the combinations randomly declared

NSCS vs. NS show no significant difference in the pattern of

genetic differentiation (Figure 4).

Figure 3. Frequency distribution of genetic distance between three major human populations at pairwise combinations of non-
synonymous coding vs. neutral SNPs. A Black bars represent the observed frequency of Fst calculated for combinations of NSCS at different
genes. A higher value represents a larger genetic distance between populations considering two genes at a time. White bars represent the observed
frequency calculated from randomly selected NS. The distribution based on NSCS is shifted to the right. B Starting from relatively low levels of genetic
differentiation the NSCS derived trans-haplotypes are significantly in excess compared to the random variability in Fst observerd in the NS.
doi:10.1371/journal.pone.0001593.g003

Figure 2. Consumption of 3% ethanol explained by the interaction between genes involved in oxidative stress and detoxification.
A Correspondence between the observed amount of ethanol consumed by BxD mice and the predicted values based on the genotype at four genes.
The correlation between the observed and predicted values is 81% and the pattern is significant after Bonferroni correction for testing 626
phenotypes at p = 6.561025. B Ethanol consumption of the four two-locus genotype classes based on Paraoxonase 2 and Nrf2. The error bars are
standard error of the mean. The interaction between the two genes is apparent as the effect size of the increaser genotype at either gene depends on
the genotype at the other locus. This pattern is very likely to be biologically relevant as Nrf2 is a known regulator of the expression of antioxidant
proteins and Paraoxonase 2 is an antioxidant protein.
doi:10.1371/journal.pone.0001593.g002

Gene-Gene Interactions
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Interaction between two GABA related genes explain
phenotypic differences in depression/anxiety between
children

Given our interpretation that NSCS trans-haplotypes that show

excess genetic differentiation between populations represent

functional interactions between genes again we scrutinized our

results to see whether genes known to have functional interactions

from molecular studies had been identified. We prioritized the

NSCS based on the number of pairs each individual SNP was

involved in at Fst.0.35. This rather arbitrary cutoff was chosen

because at this level of genetic differentiation the NSCS were 2

fold overrepresented compared to the NS in this dataset. Indeed,

one of the NSCS (rs902790) with the highest number of

reasonably strong interactions (r2.0.35), identified GPR156, a

GABA(B) related G-protein coupled receptor. We examined all

interactors of GPR156 detected here and found GABRR3

(represented by rs832032), neuregulin 3 (rs17101193), DNAI2

(rs1979370) and DEF6 (rs2395617) all of which are related to

GABA receptor functioning. GABRR3 is a GABA receptor.

Family members of neuregulin 3, are known to affect GABA

receptor expression[17,18]. DNAI2 is a dynein polypeptide and

dynein light chains have been found to interact with Gephyrin,

which in turn is a mediator of the clustering of major subtypes of

the GABA(A) receptor [19]. DEF6 is an upstream activator of the

Rho GTPase Rac1, a regulator of GABA(A) receptor channels in

rat hippocampal neurons [20].

Because the GABA receptor pathway is known to be involved in

depression in humans [21] we explored the possibility that

individual differences in a mood related phenotype might be

explained by the four combinations of the GABA related genes

claimed here to be functional. The SNP rs90279 and the four

NSCS ascertained for potentially functional pair-wise interactions

with it were genotyped in a Dutch twin cohort that was previously

phenotyped for a measure of depression/anxiety as extensively

described elsewhere [22]. Following appropriate (quality) checks

three pairs of protein variants were subjected to a population

based association test that allows for detecting statistical interac-

tion between the variants. No individual effect of the four NSCS

analysed was significant, however the interaction between

GPR156 and DNAI2 was significantly associated (p = 0.04) with

childhood depression/anxiety in this cohort (Figure 5). As three

tests have been performed the above finding would not be

significant if Bonferroni correction would be applied, however

these test are not independent as they all include rs90279.

Although only marginally significant, this result is in line with the

prediction that these genes are members of a co-adapted gene

complex and illustrates that searching for main effects alone will

could miss relevant determinants of complex phenotypes, although

a replication of this association in an independent cohort would be

needed before any conclusions can be drawn.

Discussion

More than 75 years ago Sewall Wright proposed that functional

interactions between genes would allow the genome to code for a

virtually unlimited range of phenotypes and in fact he had produced

one of the first empirical studies to show that epistastic interactions

indeed are involved in determining a complex trait [23]. The

existence of gene-gene interactions and their relevance for the

genetics of complex traits has been generally accepted as shown by

ample examples [24–28], but an estimate of the genome wide

Figure 4. Distribution of two-locus Fst from a coalescent simulation of three major human populations. Simulated SNPs randomly called
NSCS vs. NS exhibit no difference in pair-wise genetic distance between populations. Simulated SNPs were ascertained for being polymorphic in all
three populations. Results from 100 replicates and a total of 2.5 billion combinations are summarized, with the error bars representing standard
deviations.
doi:10.1371/journal.pone.0001593.g004

Gene-Gene Interactions
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prevalence of epistasis and a feasible approach to ascertain

functionally interacting genes from genotype data has been lacking.

A profound difficulty in a phenotype based assessment of

epistasis on a genome wide scale is the need to correct for a huge

number of tests with obvious consequences for statistical power.

Recently strategies have been proposed to tackle this problem

[29,30], but these are yet to be put in practice. In the present

approach we refrain from trying to assess the probability that an

individual combination is indeed functional, instead we demon-

strate an excess two-locus genetic differentiation between popu-

lations in two mammalian species. In agreement with previous

results on single markers [6,7], we observe that high levels of

genetic differentiation alone is not sufficient to prove function, as

both in the mouse and human analyses very high values of LD and

Fst were indeed observed in the simulations (mice) or among the

NS (humans). However, the aim of the present approach is rather

to first ascertain candidate ‘‘co-adapted’’ genes to be tested for

association with complex traits, thus strongly reducing the number

of tests in the analysis of specific phenotypes. Indeed, in both the

mouse and the human analysis we selected a limited subset of

combinations that were likely to be involved in epistatic

interactions. In both cases no main effects of these candidate

‘‘co-adapted’’ genes were found on the complex traits analysed.

However, we observed marginally significant interaction effects of

these ‘‘co-adapted’’ genes on ethanol consumption in mice and on

anxiety/depression in humans. Replication of these associations

are necessary to ascertain that they are not false positives, but the

results are consistent with the prediction that the interaction

between these genes rather than their individual effects should be

associated with phenotypic variation.

Estimating the genome wide preference of functional interactions

from these results remains difficult because divergence taking two

genes into account does not necessarily have to be caused by the

interaction among the genes. A strong individual effect of either of

them might explain the observed pattern. While we can not exclude

that strong main effects contribute to the observed patters we would

argue that this can not explain the majority of the cases. If that were

the case we should expect all combinations involving the gene/SNP

with the strong main effect to yield a high signal. Clearly this is not

the case demonstrated by the fact that the 707 Bonferroni significant

combinations in the mouse data involved 315 SNPs. The SNP

involved in the highest number of interactions was only present in 15

pairs and 40% of the 315 SNPs was involved in not more than 2

combinations. Real interactions rather than strong individual effects

must clearly be involved in the majority of the cases. An obvious

inference from these results is that standard genetic analyses of

complex traits are bound to miss the vast majority of relevant genes.

In contrast, here we show that first ascertaining candidate co-

adapted genes from population genomic data followed up by an

association study is a feasible way to simultaneously detect multiple

susceptibility genes for complex (disease) phenotypes even if these

lack any individual effect on their own.

Materials and Methods

LD in and simulation of mouse RILs
The genotype data on the BXD mouse recombinant inbred lines

were downloaded from The GeneNetwork (http://www.genenet

work.org/dbdoc/BXDGeno.html). Linkage disequilibrium was

calculated as the square of the correlation coefficient between two

loci across the 89 lines and corresponding p-values were derived

from a chi-squared test. Heterozygous RIL genotypes were treated as

missing data. SNPs were considered unlinked if they were on

different chromosomes or were more than 50 cM apart. Extreme

values of allele frequencies may bias LD estimates but in RILs, allele

frequencies at all loci should be by definition 0.5. In this dataset the

average allele frequency was 0.4996+/20.079 (SD). QTLCarto-

grapher was used to simulate genotyes for 89 recombinant inbred

lines with 200 neutral loci per chromosome. Pairwise r2 values were

calculated for unlinked SNPs from 1000 replicates.

Genetic association with interactions between SNPs in
mouse RILs

The phenotype data on the BXD mouse recombinant inbred

lines were downloaded from Nervenet (http://www.nervenet.org/

main/databases.html). For the association analysis a multiple

Figure 5. The interaction between two genes related to GABA receptor signaling is associated with anxiety/depression in a Dutch,
family based cohort. A The individual effects of both GPR156 (rs902790) and DNAI2 (rs1979370) do not predict the levels of anxiety/depression in
children. Instead the phenotype depends on the specific combination of protein variants present at the two genes. B Given the small number of
individuals homozygous for the minor alleles at either gene (15 out of 766 individuals), only the four common genotype classes are depicted here. A
significant interaction between the genes can be observed as both the double heterozygous individuals and the individuals homozygous for both
major alleles exhibit increased levels of anxiety/depression. The effect size of any given protein variant is dependent on the variant present at the
other locus in the same individual.
doi:10.1371/journal.pone.0001593.g005

Gene-Gene Interactions
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linear regression model was implemented in R with the RIL

phenotypes as dependent variables and the interaction terms of the

SNP pairs as predictors. The number of BxD lines with phenotype

data is much lower than the number of lines that have been

genotyped, around the 20 depending on the phenotype. Because

of this, in the initial screen of the 626 phenotypes only the

interaction terms were considered to avoid fitting an over-

parameterized model. However, the main effects were included

in the analysis of the best fitting model to assess the significance of

the interaction terms per se. None of the four main effects were

significant in the full model which explained 66% of the

phenotypic variation between the RILs. Bonferroni correction

was applied to correct for the number of phenotypes tested for

determining the significance of the best fitting model.

Estimation of trans-haplotype frequencies, calculation of
Fst between three human populations and correction for
trans-haplotype frequencies and LD between markers

Genotype data for a large number of SNPs is available based on

24, 23 and 24 individuals from respectively an Asian, African-

American and Caucasian population from Perlegen/HapMap.

Out of the approximately 1.5 million SNPs with available

genotypes, 5075 were found to be non-synonymous coding

variants, polymorphic in all three populations. Unlike in mouse

RILs, phase is not evident in outbred genotype data, thus trans-

haplotype frequencies were estimated in each population sepa-

rately with the Expectation-Maximization algorithm implemented

in the LDmax software [31]. Fst among three populations was

calculated according to the method of Weir [32,33] that takes into

account small sample estimation bias, using custom made shell

scripts. Measures of genetic distance are known to be a function of

the allele frequency of the loci involved. Therefore, the

comparison of NS vs. NSCS distributions was repeated based on

the residuals after modeling Fst in a linear model with all 12 trans-

haplotype frequencies and 3 measures of LD (r2, one for each

population) as predicting variables. Although all included

predictors had a significant effect, the total amount of variance

explained was small and the difference between NS and NSCS

remained highly significant (Kolmogorov–Smirnof Z test,

p,10213).

Coalescent simulation of three human populations
Using the cosi software for coalescent simulations we generated

genotype data for 48, 46 and 48 chromosomes respectively from

the three human populations. We implemented parameters as

described in a recent calibration of the method [12], shown to very

well approximate the real data available from the HapMap

project. 22 independent autosomal chromosomes were simulated

by joining the output of separate cosi runs. This way the different

‘‘chromosomes’’ will have different coalescent trajectories but will

be subject of the same demographic history. A total of 10150 loci

have been randomly generated, conditioning on all loci being

polymorphic in all three populations. These 10150 loci were

randomly assigned in two groups of 5075 NS and 5075 NSCS.

Computational restrictions limit the size of the chromosomal

fragments that can be simulated to 1.5 MB. Due to this limitation

the density of the simulated polymorphisms is higher that in the

real data, but the distribution of pairwise LD (r2) from the

simulations was very similar to the real data. This could be

expected as 1.5 Mb is a large enough distance for most

polymorphisms to be in low LD in the general populations

simulated here. Once the average distance between loci is large

enough not to be in strong LD a further decrease in marker

spacing is not necessary for the simulation results to be

representative. The distribution of ‘‘NS’’ vs. ‘‘NSCS’’ Fst values

were compared from this data, using 100 replicates and a total of

approximately 2.5 billion genetic distances.

Genetic association with interactions between NSCS in
human family based data

Details of the Dutch twin cohort and the phenotypic measures

used have been described by previously [22]. A total of 758

individuals contributed both genotype and phenotype information

for this study. The cohort contained 238 monozygous and 250

dizygous twin families. For this analysis, measures of depression/

anxiety obtained from children at three different ages (7, 10 and 12

years) were averaged to yield a robust estimate of the individual

phenotype. Because the distribution of this measure is right skewed

the data were log transformed before analysis. Genotypes for the

five NSCS were determined using the ABI SNPlex Genotyping

system following the manufacturer’s recommendations (Applied

Biosystems, Foster city, CA, USA). All pre-PCR steps were

performed on a cooled block. Reactions were carried out in Gene

Amp 9700 Thermocycler (Applied Biosystems, Foster city, CA,

USA). PCR products were analyzed with ABI3730 Sequencer

(Applied Biosystems, Foster city, CA, USA). Alleles were called

using Genemapper v3.7 (Applied Biosystems, Foster city, CA,

USA). Initial data analyses were performed using the pedstats and

QTDT software including gender as a covariate. All NSCS were

in Hardy & Weinberg equilibrium and four showed no evidence of

population stratification but rs17101193 (neuregulin 3) could not

be tested for population stratification due to a lack of informative

families and was excluded from the population based association

test. Given that no evidence for population stratification was found

for the remaining four NSCS we chose to use the population based

association test implemented in QTDT as it is known to have

more statistical power. This is a linear model that includes

variance components to model the phenotypic similarities within a

family, i.e. between the twins. Standard software for family based

genetic association with quantitative traits (such as QTDT) do not

readily allow for testing the significance of gene-gene interactions,

but QTDT does allow for testing interactions between covariates.

We created dummy variables coding the three genotypes per locus

21,0 and 1 and compared the likelihood of the model including

the interaction term between two loci with the likelihood of the

model with only the two main effects present. The significance of

the interaction term can be determined by considering minus

twice the difference between the loglikelihoods of the models. This

quantity has a chi squared distribution with one degree of

freedom.
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