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Background. Individual based models have become a valuable tool for modeling the spatiotemporal dynamics of epidemics,
e.g. influenza pandemic, and for evaluating the effectiveness of intervention strategies. While specific contacts among
individuals into diverse environments (family, school/workplace) can be modeled in a standard way by employing available
socio-demographic data, all the other (unstructured) contacts can be dealt with by adopting very different approaches. This
can be achieved for instance by employing distance-based models or by choosing unstructured contacts in the local
communities or by employing commuting data. Methods/Results. Here we show how diverse choices can lead to different
model outputs and thus to a different evaluation of the effectiveness of the containment/mitigation strategies. Sensitivity
analysis has been conducted for different values of the first generation index G0 , which is the average number of secondary
infections generated by the first infectious individual in a completely susceptible population and by varying the seeding
municipality. Among the different considered models, attack rate ranges from 19.1% to 25.7% for G0 = 1.1, from 47.8% to
50.7% for G0 = 1.4 and from 62.4% to 67.8% for G0 = 1.7. Differences of about 15 to 20 days in the peak day have been
observed. As regards spatial diffusion, a difference of about 100 days to cover 200 km for different values of G0 has been
observed. Conclusion. To reduce uncertainty in the models it is thus important to employ data, which start being available, on
contacts on neglected but important activities (leisure time, sport mall, restaurants, etc.) and time-use data for improving the
characterization of the unstructured contacts. Moreover, all the possible effects of different assumptions should be considered
for taking public health decisions: not only sensitivity analysis to various model parameters should be performed, but
intervention options should be based on the analysis and comparison of different modeling choices.
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INTRODUCTION
Facing the potentially devastating impact of a new influenza

pandemic is a major priority of national and international public

health agencies. As a consequence, the need clearly arises to

develop suitable measures of containment/mitigation.

While the spatiotemporal epidemic dynamics and the assess-

ment of some containment or mitigation strategies, as mass

vaccination [1] or border restriction [2], can be predicted by

employing classical compartmental models (SIR o SEIR models,

possibly with age and/or geographic component), the evaluation

of realistic, individually targeted, public health intervention

strategies, as antiviral prophylaxis of household or school/

workplace contacts of index cases, in turn requires highly detailed

models. Spatially explicit models provide a plausible system in

which the precise spatial location of individuals and movement

patterns can be employed to evaluate intervention options [3].

Spatial models can be broadly divided into three major

categories: patch models, distance-based models, network models.

In patch models, the force of infection (FOI) received by an

individual living in a patch (e.g., a town) depends on the distance

between the patch of residence and the patches of the infectious

individuals. As a consequence, patch models are not explicitly

Individual Based Models (IBM) and all the members of a patch

receive the same FOI. Distance-based models are explicitly IBM

where individuals are assigned a precise location and the FOI is a

decreasing function of the distance between susceptible and

infectious individuals. To reduce the computational burden, it can

be set to 0 for distances greater than a given threshold. In network

models, which are explicitly IBM, individuals are connected to

other individuals by co-locating them into groups (e.g., households,

schools and workplaces, etc.). Additionally, the members of a

group can be not equally well connected. For instance, in large

schools or workplaces subgroups of individuals, representing

classmates or close colleagues, can be more strongly connected.

The FOI received by a susceptible individual is non zero when he/

she shares an arc with a infectious individual.

IBM are currently considered the best tools since they allow the

explicit representation of the actual locations where intervention

measures will be implemented to reduce transmission. In [4] and [5]

a network model (explicitly modeling households, schools and

workplaces) is coupled to a distance based model (describing the

random component of the transmission) for assessing the effective-

ness of containment strategies in South-East Asia [4] and of

mitigation strategies in US and UK [5]. In [6] a network model is

employed for assessing the effectiveness of containment strategies

based on antiviral prophylaxis in a typical American community. In

[7] a network model where individuals have occasional contacts (of

fixed average size 100) with individuals living in the commuting

patch (for work) is employed for assessing the effectiveness of

containment strategies in South-East Asia. In [8], a network model
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where individuals take occasional long distance trips is employed for

assessing the effectiveness of mitigation strategies in US.

As regards control, last generation models allow the evaluation

of intervention measures targeted at individual level, in locations

such as households, schools, workplaces, transportations and

hospitals which are among the most important routes of influenza

transmission. As regards transmission, these models allow the most

detailed representation of social contacts between individuals.

They are also suitable for modeling smallpox outbreaks and to

evaluate the impact of containment strategies [9], [10].

IBM represent the more obvious way to relax assumptions that

were considered mandatory in traditional mathematical models of

diseases, such as the assumption of homogeneous mixing, which

most of mathematical models are based on. As a first step in the

construction of an IBM, contacts are progressively ‘‘structured’’’ by

co-locating individuals into the diverse environments where they are

expected to have contacts, namely households, school, workplaces,

commuting and public transportations and so on. However, one

readily realizes that most epidemics initiating from a single focus

would die out or would not travel, unless a degree of (pseudo)-

randomness in contacts, perhaps small, is allowed. Though largely

unknown, the impact of the unstructured component on the

epidemics dynamics is not necessarily small: for instance, many

current flu models are based on the explicit assumption that

unstructured contacts account for about 1/3 of the total risk of

infection per unit time [4],[5]. Moreover, unstructured contacts

prevent epidemics to die out and allow more structured contacts to

amplify the epidemics themselves, thus leading to potentially

devastating outbreaks. The currently available generation of

infectious diseases IBM have achieved a sophisticated descriptions

of the structured component of contacts, but the unstructured

component continues to be loose because of scarce information on

unstructured ones which are however the sustaining factor. What

concretely happens is that unstructured contacts are modeled in a

residual way, mainly reflecting the researcher feeling, and at best are

left as free simulation parameters.

The purpose of this work is to evaluate to what extent different

modeling strategies for unstructured contacts can affect pandemics

prediction and control. Motivated by the issue of modeling

interventions aimed at containing a national flu pandemic, we

provide a comparison of various alternatives to model the

unstructured component. These alternatives include the main

approaches proposed in the literature and comprehend some new

techniques. In particular, we keep the structured component fixed,

and we vary the unstructured one, looking at the implications in

terms of the major epidemic outputs, as fade-out and extinction

probabilities, spatial traveling, attack rates, and proportion of

infected individuals by age.

The modeling framework adopted for the comparison,

particularly for the structured component, is represented by the

recently developed IBM used for pandemic prediction and control

in Italy. Three main approaches are considered to model the

unstructured component: a spatially explicit model depending on a

parametric kernel function of the distance, with asymptotic power-

law form [4], [5]; a model where random contacts are chosen in

the local communities [8]; a model where random contacts are

defined on the basis of commuting data, as suggested in [3]. For

ease we term the three models as models S, L and M respectively.

Moreover, we also included occasional long-distance trips T (as in

[8]) in models L and M, called now L+T and M+T respectively.

RESULTS
More than 1,000,000 experiments were run to evaluate how the

different approaches to modeling unstructured contacts can affect the

spatiotemporal epidemic dynamics. For each considered model,

different model instances were realized by varying the first generation

index G0 defined as the average number of secondary infections

generated by the first infectious individual during the entire infectious

period in a completely susceptible population (more details are given

in Methods): G0 values of 1.1, 1.4 and 1.7 were considered to simulate

low to high transmission scenarios. We compared a variety of

summary measures such as the probability of having a large outbreak,

the epidemic evolution (attack rate, basic reproductive number, peak

day, proportion of infected by age) and the spatial diffusion, i.e., the

average distance from the seed area for individuals infected since the

start of the epidemic as a function of time. For comparison’s sake, all

the simulations were seeded with only one infected individual, even

though a pandemic influenza in a European country will be very

likely sustained by mechanisms of case importation, e.g., by

international travels [2], [11], [12], [13]. Different seeding

municipalities were chosen to take into account the role played by

the demographic size, density and geographic location of the seeding

zone; we considered large cities, small/medium size towns, isolated

villages, and, as an extreme case of isolated seeding region, islands.

The final attack rate of the considered models is significantly

different (see Table 1) and it ranges from 19.1% to 25.7% for

G0 = 1.1, from 47.8% to 50.7% for G0 = 1.4 and from 62.4% to

67.8% for G0 = 1.7. No substantial differences are observed by

varying the seeding municipality. The introduction of occasional

long-distance trips substantially decreases the final attack rate of

both the M and the L models. In fact, in our implementation,

transmission is not allowed within household and within school/

workplace during long-distance trips.

The basic reproductive number R0 of the simulated epidemics is

calculated as in [8], [14] (see Methods). The observed R0 values,

among all the considered models, do not vary more than 0.07,

0.11 and 0.08 for G0 = 1.1, 1.4 and 1.7 respectively (see Table 2).

Note that R0 is systematically larger than the average number of

secondary cases generated by the primary infection in a wholly

susceptible population, as observed in [8].

Significant differences can be detected in the spatial diffusion of

the epidemic (see Figure 1). For G0 = 1.1, L models are spread

systematically more slowly than the respective M models (with

difference of about 100 days to cover 200 km). In fact, the set of

unstructured contacts as considered in M models includes

individuals living in or traveling to the same municipality where

the individuals travel to, thus inducing a higher probability of

exporting the epidemic. Due to the specific choice of kernel

function and parameters, S models are spread systematically more

quickly (with difference of about 100 days to cover 200 km with

respect to M models). However, alternative choices of kernel

function and parameters can lead to different model outputs. The

behavior of L and M models tends to be similar when increasing

the first generation index, while the S models are systematically

Table 1. Final attack rates
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Model/G0 1.1 1.4 1.7

M 25.7 (0.029) 50.7 (0.014) 64.6 (0.011)

M+T 21.4 (0.040) 47.7 (0.016) 62.4 (0.011)

L 26.9 (0.031) 50.7 (0.016) 67.6 (0.011)

L+T 22.9 (0.035) 47.8 (0.018) 65.7 (0.011)

S 19.6 (0.077) 48.6 (0.039) 64.8 (0.017)

Final attack rates (with standard deviation) of the different models considered
for different G0 values.
doi:10.1371/journal.pone.0001519.t001..
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the fastest. Not surprisingly, models including long-distance trips

M+T and L+T spread quite faster than the respective M and L
models (even though their attack rate is systematically lower),

independently from the first generation index and the seeding

municipality. Furthermore, the observed pattern of spatial spread

strongly depends on the seeding region. For instance, when the

epidemic is seeded in a small, isolated village, no clear pattern of

diffusion is observable (especially for S models) since the epidemic

is more likely to spread towards far, large cities than towards close,

small size municipalities (see Figure 1, third row). At a given

distance, the variability observed in the time of epidemic arrival is

basically determined by the variability in the population size of the

arrival municipalities. Trivially, on average, the epidemic is very

likely to spread first towards large population municipalities than

Table 2. Basic reproductive numbers
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Model/G0 1.1 1.4 1.7

M 1.34 (0.018) 1.78 (0.010) 2.18 (0.011)

M+T 1.29 (0.022) 1.71 (0.010) 2.11 (0.013)

L 1.34 (0.022) 1.73 (0.011) 2.16 (0.016)

L+T 1.29 (0.025) 1.67 (0.011) 2.10 (0.011)

S 1.27 (0.029) 1.72 (0.013) 2.14 (0.008)

Basic reproductive numbers R0 (with standard deviation) of the different models
considered for different G0 values.
doi:10.1371/journal.pone.0001519.t002..
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Figure 1. Spreading time from the seeding municipality as a function of the distance for different values of G0 and different seeding
municipalities: Rome (first row), Cagliari (second row), a small isolated village (third row). Model M in orange, M+T in red, L in cyan, L+T in blue,
and S in green.
doi:10.1371/journal.pone.0001519.g001
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towards small, isolated municipalities. When infection is seeded in

very isolated regions, as Sardinia island, the models behave quite

differently (see Figure 1, second row). Basically, in M and L
models the epidemic is spread on the entire island before being

spread out to the rest of Italy. A similar behavior is observed in

M+T and L+T models, even though it is not so pronounced, while

in S model the epidemic is spread out in the first phase (see also

Figure 2 and Movie S1). In fact, only a very small fraction of

workers and students commutes to or from the island, greatly

reducing the set of contacts outside the island in M and L models,

while this is not the case for S models. However, note that the

kernel parameters of the spatially explicit model were chosen on

the basis of commuting data (see Text S1). While this is a

reasonable choice for assigning commuting destination, it is

unclear whether this is the best choice for modeling the spatial

spread of an epidemic through unstructured contacts. Completely

different behaviors are to be expected when adopting different

kernel shapes. Although the spatially explicit model is flexible, it

Figure 2. Spatiotemporal dynamics at 40 (left), 50 (center) and 60 (right) days. Infection is seeded in Cagliari (Sardinia island) and G0 = 1.7. Coloured
areas (model M in orange, M+T in red, L in cyan, L+T in blue, and S in green) indicate presence of at least one infected, infectious or removed
individual.
doi:10.1371/journal.pone.0001519.g002
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requires detailed data, both demographic and epidemiological, for

choosing the optimal kernel and kernel parameters.

Significant differences are observed in the peak day (see

Table 3). In particular, for large values of G0 (G0$1.4) the

epidemic peak of S models occurs systematically earlier than M
and L models (with differences of about 15 to 20 days for different

values of the first generation index). Since in S models the

epidemic is spread much more quickly, new infection foci occur

simultaneously in many different regions, thus inducing a spatial

synchronization of the epidemic (see Figure 3 and Movie S2). No

substantial differences are observed by varying the seeding region

(see Table 4). For G0 = 1.1, no significant differences are observed

between M and S models, while, on average, the peak day of L
models occurs later than M and S models. This is due to the

several simulations behaving very differently from all the others

(and independently from the seeding region), characterized by a

very long initial phase and giving rise to a high standard deviation.

In fact, for low values of the first generation index, L models are

less likely to spread out the epidemic because of the reduced set of

unstructured contacts. Not surprisingly, the introduction of

occasional long-distance trips significantly anticipates the epidemic

peak in both the M and L models (5 to 10 days earlier than the

respective M and L models). See also Figure 4 where the number

of cases in time of the different models are reported for different

seeding municipalities and different first generation indices.

Differences are also observed in the proportion of infected by age

(see Figure 5). In order to compare the different models, the curves

are normalized, and we consider the indicator a�i ~
aiP
j aj

, where ai

is the proportion of infected of age i. Independently from the first

generation index, the proportion of infected generated by M models

in individuals older than 65 years is lower than for other models,

while the opposite behavior is observed for individuals younger than

65 years. In terms of unnormalized proportion of infected,

differences of 5% to 10% are observed in the older individuals for

G0 = 1.7. In fact, in M models the set of unstructured contacts of

infectious individuals proportionally includes a larger number of

traveling individuals (i.e., with age between 3 and 65 years).

Consequently, this latter class of individuals is proportionally more

exposed to contacts with infectious ones. This is not the case for age

independent unstructured contacts models, as S and L models. In

[4], [5], [8], the authors introduce additional parameters to make the

unstructured contacts dependent on age, while for M models this is

obtained in a natural way. The slightly larger proportion of infected

observed in individuals aged 35–45 is due to the structured

component of the contacts: in fact, they have a higher probability

of living with individuals aged 3–18, the most infected class.

Finally, no substantial differences are detected in the probability

of observing a large outbreak for G0 = 1.1 and G0 = 1.4 (see

Table 5). For G0 = 1.7, the probability of a large outbreak in S
models is larger than that observed for the other models.

In Text S1, sensitivity analysis on the effect of varying the

number of travel days in models M+T and L+T and on the effect

of varying the spatial kernel in models S is carried on (see Table

S1, Table S2 and Table S3).

Figure 3. Spatiotemporal dynamics at 40 (on the left) and 60 (on the
right) days, roughly corresponding to the begin and the end of the
exponential growth phase. Infection is seeded in Rome and G0 = 1.7.
Colored areas (model M in orange, M+T in red, L in cyan, L+T in blue,
and S in green) indicate presence of at least one infected, infectious or
removed individual.
doi:10.1371/journal.pone.0001519.g003

Table 3. Peak day
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Model/G0 1.1 1.4 1.7

M 287.1 (22.0) 143.7 (11.3) 104.5 (6.7)

M+T 294.9 (29.0) 137.9 (10.2) 98.9 (7.2)

L 439.3 (127.4) 153.6 (11.5) 107.3 (7.1)

L+T 407.6 (163.7) 142.9 (10.7) 99.3 (7.7)

S 302.0 (33.8) 127.4 (10.6) 90.3 (7.7)

Peak day (with standard deviation) of the different models considered for
different G0 values.
doi:10.1371/journal.pone.0001519.t003..
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DISCUSSION
In principle, it would be possible to improve the characterization

of structured contacts, for instance by employing data on contacts

on neglected but important activities, such as leisure time, sport

mall, restaurants, etc. and time-use data to provide useful

information for parameterizing IBM. Such information starts

being available (see the EU project Polymod) and it will be

mandatory to integrate it in the next generation of IBM. However,

it is not possible to take into account all the possible sources of

infections. In fact, this would mean tracing all the possible contacts

(which in turn requires to model all the places where these contacts

occur, how much time is spent in each place, etc.), to establish the

‘‘type’’ of contacts (e.g., skin to skin or indirect) of each individual,

which is unfeasible. It is thus required to consider in the models a

source of infection accounting for pseudorandom contacts.

The scenarios emerging from the conducted experiments in

terms of final attack rate, spatial spread, epidemic peak day and

proportion of infected by age are quite heterogeneous. In

particular, epidemics generated by the spatially explicit model

spread much more quickly than those simulated by all the other

models, regardless of first generation index and seeding region.

Also, the epidemic peak occurs systematically earlier, probably

because of spatial synchronization effects. Defining unstructured

contacts on the basis of commuting data rather than randomly

choosing them in the local communities results in a faster

epidemic, especially for lower values of the first generation index,

in terms of both spatial diffusion and peak day. The effects of

occasional long-distance trips are the speeding up of the spatial

diffusion and the decreasing of the cumulative attack rate. The

proportion of infected by age is also significantly different.

Specifically, the proportion of infected in the younger and adult

age groups is larger in the models where random contacts are

defined on the basis of commuting data while the proportion of

infected in the older age groups is lower. No significant differences

are observed in the probability of having a large outbreak,

especially for small first generation indices.

Wide differences in the models’ outputs can result in different

evaluations of the effectiveness of the containment/mitigation

strategies and they would seriously undermine the usefulness of

our models, thus urgently calling for field work aimed at filling this

data-gap. In fact, even though the containment strategies are in

general based on the structured part of the contacts (social distancing

measures, e.g. school and workplaces closure, antiviral prophylaxis

on a contact tracing basis), the way we choose to model the

unstructured part of the contacts can lead to very different scenarios.

A detailed analysis of the implications in terms of containment

strategies evaluation is beyond the aim of this work. A few

considerations can be drawn, anyway. Trivially, the cumulative

attack rates are quite different, even though the models are

initialized in the same way, thus leading to different evaluations of

the effectiveness of the same containment measure. More

specifically, the difference observed in the peak day can result in

different evaluations on the effectiveness of vaccination campaigns.

For instance, in a mass vaccination campaign against a pandemic

with G0 = 1.4, by fixing target population at 60%, vaccine efficacy

at 70% and vaccine availability at 4 months after the first national

case, the number of avoided cases is, on average, 24.4 millions for

the M model, 20.2 millions for the M+T model, 26.8 millions for

the L model, 22.7 millions for the L model and 13.4 millions for the

S model. Moreover, ignoring the variations in the proportion of

infected by age can result in wrong decisions when optimizing the

choice of the target population for a vaccination campaign.

Furthermore, the variability of the spatial spread can influence the

evaluation of strategies based on geographical targeting. We can

mention the choice of the dimension of quarantine areas, the

effectiveness of antiviral prophylaxis on a geographical basis and

the timing for closing schools and workplaces: for instance, close

them all simultaneously or wait for a few cases to arise? While the

observed differences could not drastically undermine the results in

terms of feasibility of the considered interventions (the principal

objective of many independent studies), nevertheless they could be

relevant in terms of optimality.

Table 4. Peak day for different seeding municipality
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

G0 Municipality M M+T L L+T S

1.1 Rome 287.2 (20.6) 289.3 (25.8) 429.5 (129.7) 396.3 (153.6) 299.0 (33.6)

Cagliari 288.4 (27.3) 286.2 (26.2) 448.2 (126.5) 448.2 (174.1) 300.9 (33.7)

Luserna 286.4 (13.8) 294.6 (26.4) 421.5 (143.7) 380.8 (144.9) 298.3 (38.0)

Turin 286.2 (20.5) 288.9 (25.4) 427.9 (130.3) 388.3 (148.2) 298.8 (31.3)

Vieste 287.1 (22.1) 294.9 (29.0) 439.4 (127.5) 407.7 (163.8) 302.1 (33.8)

1.4 Rome 144.9 (12.4) 136.7 (10.2) 154.4 (10.5) 142.1 (10.7) 127.9 (11.8)

Cagliari 142.5 (9.6) 136.0 (10.2) 153.5 (9.4) 142.0 (11.0) 126.1 (12.3)

Luserna 145.9 (12.7) 134.2 (8.4) 158.0 (10.3) 141.1 (9.9) 129.2 (11.5)

Turin 143.6 (11.9) 136.6 (10.2) 155.0 (12.0) 142.8 (11.5) 127.6 (11.3)

Vieste 143.8 (11.4) 138.0 (10.3) 153.6 (11.6) 143.0 (10.8) 127.4 (10.6)

1.7 Rome 106.1 (6.6) 97.8 (6.2) 108.7 (6.5) 98.5 (7.5) 89.7 (6.4)

Cagliari 105.5 (5.6) 98.0 (6.2) 109.7 (6.3) 99.7 (7.5) 87.9 (6.1)

Luserna 106.0 (6.3) 97.3 (5.9) 109.5 (6.0) 98.3 (7.3) 88.6 (6.8)

Turin 104.9 (6.9) 98.0 (6.8) 107.9 (7.3) 98.9 (7.7) 89.6 (6.2)

Vieste 104.5 (6.7) 99.0 (7.3) 107.4 (7.1) 99.4 (7.8) 90.4 (7.7)

Peak day (with standard deviation) for different seeding municipality and different values of the first generation index G0. Roma is the largest city of Italy (2,546,804
inhabitants), located in the central Italy; Cagliari is a city (164,249 inhabitants) in the Sardinia island; Luserna is a small isolated village (297 inhabitants) in the northern of
Italy; Turin is a big city (865,263 inhabitants), located in the northern Italy; Vieste is a small town (13,430 inhabitants) in the southern Italy.
doi:10.1371/journal.pone.0001519.t004..
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Wide differences in the models’ outputs can result in different

evaluations of the effectiveness of the containment/mitigation

strategies. Consequently, all the possible effects of different

assumptions should be considered for taking public health decisions:

not only sensitivity analysis to various model parameters should be

performed, but intervention options should be based on the analysis

and comparison of different modeling choices, as it happens in

different fields, e.g. global climate change, where uncertainty in the

models themselves and in input parameters is a critical factor.

We conclude remarking that unlike what shown in most of the

literature [3], [4], [5], [8], no supercomputing techniques have to

be employed to perform this kind of simulations on a national scale

(57,000,000 of individuals), making them feasible for a standard

workstation; our implementation of the five model takes less than

3Gb RAM and a single simulation takes just a few minutes.

METHODS
IBM allow a highly detailed treatment of the majorly problematic

issues in modeling the transmission dynamics and the control of

human-to-human infectious diseases. They are specifically suitable

for modeling influenza pandemic since they allow the modeling of

Figure 4. Number of daily cases for different values of the first generation index and different seeding municipalities: Rome (first row), Cagliari
(second row), a small isolated village in the north of Italy (third row). Simulation are initialized with 30 infected individuals, to reduce the stochastic
variability observed in first days of the epidemic. Models are: M in orange, M+T in red, L in cyan, L+T in blue, and S in green.
doi:10.1371/journal.pone.0001519.g004
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the contacts of the specific places where groups of individuals

spend much of their time together, i.e. households, schools and

workplaces. Namely, it is crucial to develop models accounting for

these transmission sources and allowing the evaluation of specific,

place-related intervention strategies. Of course, while this

modeling effort is required for analyzing human-to-human

airborne transmitted diseases, it is not required when dealing

with diseases transmitted by other routes, as sexually transmitted

diseases (e.g., AIDS) or orofecal transmitted infections (e.g.,

Hepatitis A). To date, national scale, spatially explicit IBM do

not account for dynamic contact networks, where individuals are

born, grow up, mate, produce offspring, and die. Thus, they are

currently less suitable for modeling endemic diseases, as measles or

seasonal flu. Moreover, they do not account for spontaneous

behavioral changes in response to a pandemic and do not take into

account the social acceptance of eventual restriction measures, as

quarantine, school and workplace closure and travel restrictions.

Specific work should be devoted to bridge these gaps.

The models considered in this work are stochastic, individual

based, discrete-time, SEIR simulations. Infection can be spread by

three main contact routes: within households, within schools and

workplaces, which are the channels we call structured, and by

random contacts in the population, termed unstructured. The

main ingredients are (A) a socio-demographic model (kept fixed in

all the considered models), in which individuals are co-located in

households, schools and workplaces on the basis of census and

commuting data and (B) a transmission model describing the

temporal evolution of the flu epidemic in the considered study area

(Italy). Transmission within households, schools and workplaces is

the same throughout all the considered models, while we adopt

different approaches for the transmission by unstructured contacts.

Individual based models can be analyzed by employing analytical

tools (e.g., by eliminating spatial heterogeneity or by eliminating

individual variability) [15] or by performing intensive simulation

studies to evaluate sensitivity to various model parameters, as in [4–

8]. The latter is the approach followed in this work.

Figure 5. Proportion of the infected population by age for G0 = 1.4
(top) and G0 = 1.7 (bottom). Models M in orange, L in cyan and S in
green.
doi:10.1371/journal.pone.0001519.g005

Table 5. Probability of a large outbreak
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Model/G0 1.1 1.4 1.7

M 0.184 (0.050 0.449 (0.027) 0.572 (0.060)

M+T 0.184 (0.096) 0.446 (0.072) 0.598 (0.055)

L 0.192 (0.047) 0.460 (0.079 0.628 (0.023)

L+T 0.154 (0.040) 0.464 (0.086) 0.661 (0.013)

S 0.201 (0.047) 0.474 (0.007) 0.662 (0.021)

Probability (with standard deviation) of a large outbreak for the different
models considered and for different G0 values.
doi:10.1371/journal.pone.0001519.t005..
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Table 6. Transmission rates
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

G0 Model bh bs bw bu

1.1 M 0.4 1.4 0.7 0.2

M+T 0.4 1.4 0.7 0.2

L 0.4 1.4 0.7 0.32

L+T 0.4 1.4 0.7 0.32

S 0.4 1.4 0.7 0.22

1.4 M 0.5 2.0 1.0 0.25

M+T 0.5 2.0 1.0 0.25

L 0.5 2.0 1.0 0.37

L+T 0.5 2.0 1.0 0.37

S 0.5 2.0 1.0 0.29

1.7 M 0.6 2.6 1.3 0.3

M+T 0.6 2.6 1.3 0.3

L 0.6 2.6 1.3 0.48

L+T 0.6 2.6 1.3 0.48

S 0.6 2.6 1.3 0.36

Transmission rates estimated for the five models considered and for three
different values of the first generation index. bh, bs. and bw are the transmission
rates in households, schools and workplaces respectively. bu is the transmission
rate for unstructured contacts (details are given in Text S1).
doi:10.1371/journal.pone.0001519.t006..
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Structured contacts
Population data of Italy (56,995,744 individuals) are obtained from

census data (382,534 census sections) as of 2001 and they are

hierarchically grouped by municipalities (8,101), provinces (103) and

regions (20), according to the administrative borders of the study

area. This choice is determined by the availability of nationwide

commuting data organized at the same level of detail (see Figure S1).

Census data on age structure and household type and size are

jointly used with survey data to randomly assign age and to co-locate

individuals in households. Nine different types of households are

considered, e.g. single with or without children and couple with or

without children. For each household type, data on size and age of

the household head are taken into account to generate households

(see Table S4, Table S5, Figure S2, Figure S3b and Figure S3c).

Demographic, school and industry census data are used for

randomly assigning an employment category to each individual on

the basis of age. The Italian population is stratified as follows:

20,559,595 workers (for transmission’s purposes, the 862,552

teachers are included in the school channel), 11,360,556 students

and 25,084,274 unemployed or retired. Students are determinis-

tically assigned to a specific school type (6 types, from nursery

school to university) on an age basis. Workers are assigned to a

random workplace type (7 types, depending on the number of

employees) or to a school (see Figure S3d).

Commuting destination are assigned so to fit available

commuting data. In particular, for each municipality the

proportions are available of individuals older than 15 years old

working or attending school a) in the municipality of residence or

traveling b) within the province they live in, c) outside the province

but within the region, d) outside the region. We allow younger

students to travel only within the province they live in. More

details on the structured component of the contacts are given in

Text S1 (see also Figure S3e and Figure S3f).

Unstructured contacts
Here we define unstructured any contact which is not a household

or workplace contact and we consider the following five different

models of transmission by unstructured contacts (details on these

models are given in Text S1).

Model S: unstructured contacts through the whole space by a

distance-based model. Each individual is in contacts with every other

individual in the population, with probability (decreasing with the

distance) given by a specific kernel function (see Figure S4).

Model L: unstructured contacts within the municipality the

individual lives in.

Model M: unstructured contacts within the ‘‘commuting

community’’’ the individual belongs to. In particular, for

individuals who study or work in the same municipality they live

in, the social network consists of other inhabitants of the same

municipality and those who commute to this municipality. For

individuals traveling outside the municipality of residence, the

social network consists of the inhabitants and commuters of both

depart and arrival municipality (see Text S1).

Moreover, we consider two additional models including occa-

sional long-distance trips [8] in models L and M, called L+T and

M+T respectively. In particular, all individuals are assumed to spend

in average 10 days (randomly chosen) per year in a community other

than that of residence and school/work. In these periods, within

household, school and workplace transmission is not allowed.

Transmission model
Any susceptible individual i, at any time of the simulation has a

probability pi~1{e{liT of becoming infected, where

T = 0.5 days is the time-step of the simulation and li is the

instantaneous risk of infection. The latter is the sum of the risks

coming from the three source of infections: contacts with infectious

members of the household, contacts with infectious individuals

working in the same workplace or attending the same school,

random contacts with infectious individuals in the population.

Details on the Transmission model are given in Text S1.

Transmission rates
Comparison (in terms of spatiotemporal dynamics, attack rate,

proportion of infected per age other relevant features) among

models is meaningful only for simulations sharing the same first

generation index G0. We recall that this is the average number of

secondary infections generated by the first infected individual,

during his entire infectious period, in a completely susceptible

population.

In traditional models the simplest choice would be to fix the basic

reproduction number R0 (see [1], [16]), which can be estimated by

approximating the slope of the cumulative number of cases during

the exponential growth phase of the epidemic. The difference

between first generation index and basic reproduction number lies

on the fact that the former is determined only by the first generation

of infection while the latter emerges after the underlying next

generation operator is applied for a sufficiently large number of

generations. Our choice is motivated by the simplicity of the G0

computation, in opposition to the difficulty in appropriately

calculating R0 for individual based models (see [8], [17]). Moreover,

by adopting the first generation index as comparison indicator, all

the models are initialized in the same way.

Three different scenarios are investigated, corresponding to

G0 = 1.1;1.4;1.7. All the simulations are initialized with only one

infected individual, yielding a completely susceptible population.

Estimate of the transmission rates in the different transmission places

(household, school/workplace and community) leading to the chosen

G0 value is done by keeping trace of number and place of the

secondary infections. A reference model (the M model for instance) is

chosen and transmission coefficients are determined by an additional

constraint on the proportions of cases generated by the different

sources of infection considered in the model. In particular, the

contribution of each of the three sources of infection is set to 1/3. For

S and L models, the transmission rates within households and

schools/workplaces are kept fixed, while a specific rate is selected for

the transmission in the communities, satisfying the above constraint

on the proportions of cases generated by the different sources.

Models including long-distance trips M+T and L+T) inherit

transmission coefficients from the corresponding basic models.

This choice leads to within households and schools/workplaces

transmission slightly smaller than in the respective basic models,

because transmission during trips occurs only by random contacts in

the population. In Table 6 the estimated transmission rates used for

the simulations are reported (model details are given in Text S1). For

our choices of the transmission rates, the final proportion of cases

generated by the three sources differs no more than 0.018 from 1/3.

For each model and choice of the first generation index, an average

of at least 20,000 runs were considered, to guarantee a sufficiently

accurate estimate of the relative transmission parameters.

SUPPORTING INFORMATION

Text S1 Supporting text

Found at: doi:10.1371/journal.pone.0001519.s001 (0.11 MB PDF)

Figure S1 a Hierarchical structure of municipalities (dashed

lines, M), provinces (solid thin lines, P) and regions (solid thick
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lines, R). b Models M and M+T: the social network of contacts of

an individual living in municipality M123 and traveling to

municipality M241 consists of all the individuals living in the

two municipalities and the individuals traveling to one of the two

municipalities (small filled circles).

Found at: doi:10.1371/journal.pone.0001519.s002 (0.16 MB TIF)

Figure S2 Pseudocode of the algorithm employed for generating

individuals, assigning age an co-locating individuals in households.

Found at: doi:10.1371/journal.pone.0001519.s003 (0.26 MB TIF)

Figure S3 a Population data by municipality: colors ranging from

dark brown (municipalities with less than 1,000 inhabitants) to light

brown (more than 1,000,000 inhabitants, Rome and Milan)

represent number of individuals on a log10 scale. b Age distribution

from census data (blue) and simulated (red). c As in b but showing

household size. d Proportion of workers for class of workplace from

industry census (blue) and simulated (red). e Commuting destinations

of workers from census data (blue) and simulated (red). Symbols are

defined in Sec. Sec. 1.4 in Text S1. f As in e but showing commuting

destinations of students. Census data are available only for

individuals of age . = 15 while simulated data refers to all students.

Found at: doi:10.1371/journal.pone.0001519.s004 (0.64 MB TIF)

Figure S4 Blue curve: cumulative probability of commuting at a

certain distance for the population simulated in the model (as

obtained from census data). Red curve: cumulative probability of

commuting at a certain distance as obtained by employing the

kernel function in Eq. 3 in Text S1 with a = 3.6 and b = 1.9.

Found at: doi:10.1371/journal.pone.0001519.s005 (0.12 MB TIF)

Table S1 Final attack rates

Found at: doi:10.1371/journal.pone.0001519.s006 (0.02 MB PDF)

Table S2 Basic reproductive numbers

Found at: doi:10.1371/journal.pone.0001519.s007 (0.02 MB PDF)

Table S3 Peak day

Found at: doi:10.1371/journal.pone.0001519.s008 (0.02 MB PDF)

Table S4 Household types

Found at: doi:10.1371/journal.pone.0001519.s009 (0.01 MB PDF)

Table S5 Household size by type

Found at: doi:10.1371/journal.pone.0001519.s010 (0.02 MB PDF)

Movie S1 Spatiotemporal dynamics: infection is seeded in

Cagliari (Sardinia island) and G0 = 1.7. Colored areas (model M

in orange, M+T in red, L in cyan, L+T in blue, and S in green)

indicate presence of at least one infected, infectious or removed

individual.

Found at: doi:10.1371/journal.pone.0001519.s011 (0.16 MB AVI)

Movie S2 Spatiotemporal dynamics: infection is seeded in Rome

and G0 = 1.7. Colored areas (model M in orange, M+T in red, L

in cyan, L+T in blue, and S in green) indicate presence of at least

one infected, infectious or removed individual.

Found at: doi:10.1371/journal.pone.0001519.s012 (0.16 MB AVI)
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