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We have investigated how Wnt and vitamin D receptor signals regulate epidermal differentiation. Many epidermal genes
induced by b-catenin, including the stem cell marker keratin 15, contain vitamin D response elements (VDREs) and several are
induced independently of TCF/Lef. The VDR is required for b-catenin induced hair follicle formation in adult epidermis, and the
vitamin D analog EB1089 synergises with b-catenin to stimulate hair differentiation. Human trichofolliculomas (hair follicle
tumours) are characterized by high nuclear b-catenin and VDR, whereas infiltrative basal cell carcinomas (BCCs) have high b-
catenin and low VDR levels. In mice, EB1089 prevents b-catenin induced trichofolliculomas, while in the absence of VDR b-
catenin induces tumours resembling BCCs. We conclude that VDR is a TCF/Lef-independent transcriptional effector of the Wnt
pathway and that vitamin D analogues have therapeutic potential in tumors with inappropriate activation of Wnt signalling.
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INTRODUCTION
Adult mammalian epidermis is maintained by stem cells that self-

renew and produce progeny that differentiate along the lineages of

the hair follicle (HF), sebaceous gland (SG) and interfollicular

epidermis (IFE) [1,2]. The canonical Wnt pathway controls both

epidermal stem cell renewal and lineage selection [3,4,5]. By

constructing mice with a 4-hydroxy-Tamoxifen (4OHT) inducible

form of stabilized b-catenin under the control of the keratin 14

promoter (K14DNb-cateninER transgenics) it is possible to control

the timing, location and extent of b-catenin activation in adult

epidermal stem and progenitor cells [5,6]. Activation of b-catenin

induces growth (anagen) of existing HFs and induces ectopic

follicles that arise from pre-existing follicles, SGs and IFE. On

prolonged activation of b-catenin, hair follicle tumours are

induced, consistent with the finding that human pilomatricomas

have activating b-catenin mutations [6,7,8].

b-catenin interactions with Lef1 and Tcf3 in the epidermis have

been extensively characterised [4,9]. However, in addition, b-

catenin is known to bind and activate the vitamin D receptor (VDR)

[10,11]. The VDR, like b-catenin, is essential for adult epidermal

homeostasis [12,13]. Natural mutations in the VDR gene in humans

result in familial 1,25-dihydroxyvitamin D-resistant rickets

(HVDRR), which can be associated with alopecia [14]. VDR null

mice develop rickets and fail to undergo the first postnatal hair

growth phase (anagen), resulting in alopecia and conversion of

follicles into cysts with IFE differentiation [15], which is highly

reminiscent of the effects of impaired epidermal Wnt signalling [16].

There is evidence for both ligand dependent and independent

effects of VDR. In cultured cell lines b-catenin can bind to

unligated VDR, but complex formation is enhanced by vitamin D,

and b-catenin stimulates vitamin D dependent transcription [10].

In vivo, expression of a mutant VDR that can bind b-catenin but

not vitamin D (L233S) rescues alopecia in VDR null mice,

demonstrating ligand independent functions of the VDR in skin

[11,17]. However, some vitamin D analogues, including EB1089,

induce hair growth in nude mice [18]. Leucine 417 of the VDR is

essential for ligand dependent binding to the COOH-terminus of

b-catenin, but not to vitamin D [11]. Expression of a VDR-L417S

mutant in VDR null mouse skin delays, but does not completely

rescue, alopecia [17]. Taken together, these observations suggest

that the ligand dependent interaction between VDR and b-catenin

contributes to hair follicle maintenance.

It has recently been reported that VDR ablation leads to a gradual

decrease in epidermal stem cells, consistent with postnatal hair loss

[16]. Cooperative transcriptional effects of b-catenin and Lef1 are

abolished in VDR null keratinocytes, and in the absence of VDR b-

catenin activation does not induce the increase in proliferation

characteristic of anagen entry [16]. These observations prompted us

to examine the relative contributions of VDR and TCF/Lef to b-

catenin induced gene expression, and to explore the effects of VDR

on lineage reprogramming and tumour formation in adult epidermis.

We present evidence that the VDR is a TCF/Lef independent

transcriptional effector of the canonical Wnt pathway that promotes

HF differentiation and modulates Wnt-induced tumour formation.

RESULTS

b-catenin is a co-activator of VDR in epidermal

keratinocytes
Given the uncertainty regarding the role of VDR ligands in hair

follicle maintenance, we began by examining the conditions under
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which VDR-b-catenin complexes formed in primary mouse

epidermal keratinocytes. In immunoprecipitation/Western blot

assays we could not detect complex formation in the absence of

Wnt3A and EB1089, or when cells were treated with a single

ligand. Complex formation was only detectable when cells were

stimulated with both Wnt3A and EB1089 (Figure 1A). EB1089

treatment increased the level of VDR, consistent with its ability to

inhibit VDR degradation [19].

We next examined how the canonical Wnt and vitamin D

pathways interacted to regulate transcription. We transfected

primary mouse keratinocytes with luciferase reporters of tran-

scriptional activity: a TOPFlash reporter containing 3 TCF/Lef

binding sites and a VDRE reporter consisting of 4 vitamin D

response elements (46VDRE) (Figure 1B–D). Wnt3A induced

TCF/Lef1 transcriptional activity 10 fold in wild type and VDR

null cells but not in cells that expressed an N-terminally truncated

form of Lef1 (DNLef1) unable to bind b-catenin (Figure 1B). There

was some repression of TOP-Flash activity upon EB1089

treatment alone, as reported previously [10,11]. We hypothesise

that this happens when nuclear b-catenin levels are limiting and

the VDR and Lef/TCF proteins compete for b-catenin binding; in

the presence of EB1089 more b-catenin would bind VDR and less

to Lef/TCF proteins.

Wnt3A strongly enhanced induction of the vitamin D response

construct by EB1089 in wild type and DNLef1 cells (Figure 1C).

Transient transfection of a stabilised b-catenin mutant (S37A)

stimulated vitamin D dependent transcription in a dose dependent

manner in wild type cells (Figure 1D). As expected, there was no

activation of the VDRE in VDR null cells treated with Wnt3A, b-

catenin (S37A) or EB1089, alone or in combination (Figure 1C).

Transfection of wild type VDR rescued the cooperative effects of

Wnt3A or S37Ab-catenin on vitamin D dependent transcription in

VDR null cells (data not shown). Taken together, the transcription

reporter assays and co-immunoprecipitation experiments establish

that b-catenin binds the VDR and is a transcriptional co-activator of

ligand-activated VDR in epidermal cells.

We next examined whether b-catenin acted as a transcriptional

co-activator of VDR on a natural promoter. Keratin 15 is

expressed by stem cells in the HF bulge and in b-catenin induced

ectopic HF [5]. EB1089, but not Wnt3A, induced a luciferase

reporter gene under the control of the mouse K15 promoter

(proximal 5 kb) (Figure 1E). The highest induction occurred on

combined treatment with EB1089 and Wnt3A. In VDR null cells

the keratin 15 promoter was unresponsive. Transfection of an

exogenous wild type VDR rescued the response to EB1089 and

Wnt3A. We also performed real time PCR to investigate whether

endogenous keratin 15 expression was modulated by vitamin D

(Figure 2A). Wnt3A alone was unable to increase Krt15 mRNA

levels in cultured wild type keratinocytes. However, EB1089

stimulated expression, and this effect was enhanced by Wnt3A

in wild type but not in VDR null or DNLef1 cells (Figure 2A).

We conclude that b-catenin acts as a transcriptional co-activator of

the VDR on both artificial (Figure 1C–E) and endogenous

promoters.

VDREs exist in the promoters of b-catenin regulated

genes
To investigate the significance of b-catenin/VDR interactions in

vivo, we performed a systematic analysis of the promoter regions of

genes previously reported to be upregulated by 4-hydroxy-

Tamoxifen (4OHT) treatment of the skin of K14DNb-cateninER

transgenic mice [5]. TCF/Lef and/or VDR binding sites were

significantly enriched in 91 of the 103 genes upregulated more

than 3 fold at 7 days of 4OHT treatment when compared with the

same number of random promoter regions in the mouse genome

(Table S1, S2). Of the 91 genes only two (p, Bdh) lacked VDREs.

Two thirds (61/91) had multiple VDRE and TCF/Lef sites. 15/

91 had multiple VDREs and a single TCF/Lef site. Strikingly, 13

Figure 1. b-catenin is a ligand dependent co-activator of VDR. Primary
mouse keratinocytes derived from wild type, VDR null (VDR-KO) or
K14DNLef1 transgenic (DN-Lef1) mice were treated with vehicle (-),
1027 M EB1089 or 100 ng/ml Wnt3A, alone or in combination. (A) Wild
type cells were treated for 4 h, then lysed and immunoprecipitated with
VDR or HA (unrelated; UR) antibodies. Immunoprecipitates (top two
panels) or total lysates (bottom four panels) were immunoblotted with
the indicated antibodies. (B) Cells were transiently transfected with
TOPFlash and FOPFlash. Values correspond to the ratio of TOP/FOP. (c–f)
Cells were transiently transfected with 46VDRE luciferase reporter (C–E) or
K15 promoter (F) constructs. All values were corrected for the Renilla
control and are represented as fold increase relative to wild type cells
treated with vehicle alone. Data are means6S.D. of triplicate samples.
doi:10.1371/journal.pone.0001483.g001
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genes contained VDREs but no TCF/Lef consensus binding sites,

supporting the concept that nuclear b-catenin can activate vitamin

D/VDR target genes in the absence of TCF/Lef.

Many of the genes upregulated by b-catenin (Table S1) encode

proteins that are specifically expressed in hair follicles (Figure S1).

Using real time PCR to examine their expression in cultured

Figure 2. Ligand activated VDR-b-catenin complexes regulate transcription of hair follicle genes. (A–D) Cells were treated for 4 h (B–D) or 8 h (a)
with (+) or without (2) Wnt3A or EB1089. (A) mRNA levels of the genes indicated were measured by real-time PCR. All values are represented as fold
increase relative to wild type cells treated with vehicle alone. Data are means6S.D. of triplicate samples. (B–D) Wild type cells were lysed and
immunoprecipitated with VDR, b-catenin, Lef1 or unrelated antibody (HA tag; UR). Immunoprecipitated genomic DNA fragments or input controls
were amplified by real-time PCR using specific primers for three regions of the mouse promoters indicated or unrelated genomic primers (UR). Data
are means6S.D. of triplicate samples. Scaled diagrams summarize location of VDREs and TCF/Lef binding sites and the proteins bound to each region
in cells treated with Wnt3A and EB1089.
doi:10.1371/journal.pone.0001483.g002
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mouse keratinocytes we could distinguish two categories of genes.

One group, represented by PADI3, Gli1 and Tubb3, was induced

by EB1089 alone or in combination with Wnt3A, in wild type and

DNLef1 cells but not in VDR null cells (Figure 2A). We conclude

that these genes are VDR dependent, TCF/Lef independent Wnt

targets. The second group, comprising S1003A, Dlx3, PADI1 and

Krt31, were also maximally induced in wild type keratinocytes by

combined treatment with EB1089 and Wnt3A, but differed from

the other category in being unresponsive in both VDR null and

DNLef1 keratinocytes (Figure 2A). Thus these genes, like Krt15,

were VDR dependent, TCF/Lef dependent Wnt targets.

In order to characterise the transcription factor complexes

binding to the promoters of these genes, we performed ChIP on

three of them (Figure 2B–D). We designed primers to amplify

three regions in each promoter analysed, corresponding to one

region with both VDREs and TCF/Lef sites, one region with

VDREs alone, and one region with neither (Table S3). We used

Q-PCR to determine the abundance of each region in the ChIP

relative to a control, unrelated genomic region (UR). In the keratin

15 promoter b-catenin was present both in the region that

contained exclusively VDREs (region 3) and in the site containing

clustered VDREs and TCF/Lef sites (region 1), but only highly

enriched when cells were stimulated with both EB1089 and

Wnt3A (Figure 2C). Lef1 accumulated in region 1 only; VDR was

most abundant in region 1 but was also detectable in region 3. In

the S1003A promoter Lef, VDR and b-catenin accumulated in

region 1, containing clustered VDREs and TCF/Lef sites,

recruitment of b-catenin being dependent on the combination of

EB1089 and Wnt3A (Figure 2D). We conclude that Krt15 and

S1003A depend on b-catenin binding to ligand activated VDR

and Lef1 for Wnt induction.

The PADI3 promoter differed from the S100A and K15

promoters because it had no TCF/Lef binding sites (Table S1;

Figure 2B). Nevertheless, b-catenin accumulated in region 3 of the

promoter, which contains three VDREs, in cells treated with

EB1089 and Wnt3A. In contrast, region 1, which also has putative

VDREs, was not precipitated with any antibody.

As further confirmation that b-catenin is recruited through the

VDR to region 3 of the PADI3 and K15 promoters, we performed

ChIP in VDR null primary mouse keratinocytes (Figure S2).

Whereas b-catenin was recruited to these regions in wild type cells

(Figure 2B, C; Figure S2A, B), it was absent in VDR null cells

(Figure S2A, B).

We conclude that b-catenin bound and enhanced ligand

activated VDR in Wnt target genes, both in presence of Lef1

(K15 and S1003A) and independently of Lef1 (PADI3).

Ligand activated VDR cooperates with nuclear b-

catenin to induce hair differentiation
To examine whether b-catenin and the VDR also cooperated to

promote hair follicle differentiation in vivo in adult epidermis, we

tested the effect of EB1089 on 4OHT treated K14DNb-cateninER

transgenic mice from two founder lines, D2 and D4. Activation of

b-catenin stimulates proliferation and anagen entry in both high

(D4) and low (D2) transgenic copy number mouse lines [5,6].

Proliferation is stimulated to a greater extent in the D4 line,

whereas ectopic HF morphogenesis is more advanced in the D2

line. The doses of EB1089 and 4OHT used did not induce

epidermal changes in wild type mice (Figure 3A).

When D4 transgenic mice were treated with 4OHT for 14 days,

existing HFs enlarged and entered anagen and K17, which is

normally confined to the ORS (Figure 3A), was expressed in the

IFE and SGs (Figure 3B). Small K17 positive outgrowths appeared

in the interfollicular epidermis, representing rudimentary ectopic

follicles (Figure 3B and insert). When mice were treated with

4OHT and EB1089, enlargement and anagen entry of existing

follicles was delayed and SG morphology was preserved

(Figure 3C). The K17 positive outgrowths in the IFE were longer

and resembled HFs more closely than in mice treated with 4OHT

alone (Figure 3C and insert). This conclusion was based on

analysis of tail skin from 16 mice treated with 4OHT alone and 16

mice treated with 4OHT+EB1089. When treatment of D4 mice

with 4OHT and EB1089 was extended to 21 days, most pre-

existing follicles entered normal anagen, and the major site of

ectopic follicle formation switched from IFE to SGs (Figure 3D).

We quantified the number of ectopic follicles in the IFE of each of

50 tail epidermal units [5] (Figure 3C). There was no significant

difference in the number of ectopic follicles induced by 4OHT

alone or in combination with EB1089.

Many of the genes identified as transcriptional targets of b-

catenin/VDR complexes encode hair follicle proteins (Figure 2;

Table S1; Figure S1), leading us to predict that ectopic follicles

induced in the presence of EB1089 would be more highly

differentiated than those induced by b-catenin activation alone. In

support of this prediction, several proteins that were undetectable

in ectopic follicles induced by 4OHT alone were strongly induced

by the combination of EB1089 and 4OHT.. These included K15

(Figure 3E, F), PADI3 (Figure 3G, H), S1003A (Figure 3I, J), K35

(Figure 3M, N), K71 (Figure 3O, P), K34 (Figure 3Q, R), and Gli1

(Figure 3S, T). In addition, combined EB1089 and 4OHT

treatment resulted in an increased proportion of cells in ectopic

follicles that expressed K31 (Figure 3K, L), Dlx3 (Figure 3U, V)

and CCAAT displacement protein (CDP) (Figure 3W, X), than

treatment with 4OHT alone. Cells expressing each of the induced

proteins were correctly positioned in the ectopic follicles according

to whether the proteins are markers of the HF outer root sheath,

inner root sheath or cortex (Figure S1). In addition, dermal papilla

formation, visualised as alkaline phosphatase positive mesenchy-

mal cells encircled by a ‘cup’ of keratinocytes, was stimulated by

treatment with EB1089 (Figure S3E, F; Figure 3F, L, N, X). The

VDR was expressed at the base of wild type anagen follicles

(Figure S1C) and in ectopic follicles induced by 4OHT alone or in

combination with EB1089 (Figure S3A, B), expression being more

widespread than nuclear b-catenin (Figure S3C, D).

The effects of EB1089 were not accompanied by significant

changes in proliferation in either the D2 or the D4 line, whether

visualised by Ki67 labelling of epidermal whole mounts (Figure

S3G–I) or by flow cytometric determination of the proportion of

epidermal cells in S, G2+M of the cell cycle (Figure S3J, K). Thus

EB1089 differs from cyclopamine treatment, which has previously

been shown to improve ectopic HF morphogenesis in the D4

transgenic line by inhibiting Hedgehog-induced proliferation [5]

(Figure S3J, K). We conclude that EB1089 promotes b-catenin

induced hair follicle differentiation without affecting proliferation,

and that the effect is due to induction of a set of b-catenin/VDR

target genes that characterise the HF lineages.

VDR is essential for b-catenin induction of adult hair

differentiation
It has previously been reported that in VDR2/2 epidermis there

is a gradual decrease in the size of the stem cell compartment and

that this correlates with a failure of b-catenin to induce

proliferation required for anagen entry [16]. Our data suggest

the alternative hypothesis that the primary role of VDR/b-catenin

interactions is to promote transcription of genes associated with

differentiation of the hair follicle lineages. To investigate this, we

VDR, Wnt, Epidermis
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examined the consequences of VDR ablation by crossing VDR

null mice with the D2 line of K14DNb-cateninER transgenics.

VDR heterozygous mice were indistinguishable from wild type

(Figure 4A). Although in some VDR2/2 mice alopecia develops

as early as 3 weeks after birth [20], alopecia was not yet evident in

our 8 week old VDR 2/2 mice (Figure 4C and data not shown).

Nevertheless, the HFs were thin and elongated. Although K17 was

expressed (Figure 4G) K15 was undetectable (Figure 4K),

Figure 3. EB1089 stimulates differentiation of ectopic hair follicles formation in the D4 line of K14DNb-cateninER transgenic mice. Epidermal
whole mounts (A–D) or sections (E–X) of wild type (WT) or transgenic (b-cat-D4) tail skin treated with 4OHT and/or EB1089. (A–D) Immunolabelling
for keratin 17 (green) with Hoechst (blue) and phalloidin-TRITC (red) counterstaining. Arrows indicate ectopic hair follicles in the IFE (B, C) or SG (D).
Inserts in (B, C) show higher magnification views of ectopic follicles. (E–X) Immunolabelling with the antibodies shown (green) in combination with
Hoechst (blue; E–X), phalloidin-TRICT (red; E, F) or anti-keratin 14 (red; g-v). (C) Dashed square indicates an epidermal unit as previously described [5].
(F) Arrow indicates keratin 15 expression in ORS of ectopic HF. Insert shows base of an ectopic follicle. (K) Cells expressing K31 are indicated by an
arrow and shown at higher magnification in insert. Asterisks indicate base of ectopic HFs encircling dermal papilla (F, S, N, X). Scale bars: 100 mm (A–
D), 50 mm (E–X).
doi:10.1371/journal.pone.0001483.g003
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providing confirmation of our finding that both b-catenin and

VDR must be activated in order for the K15 gene to be

transcribed (Figure 2). The absence of VDR was confirmed by

antibody staining (Figure S4A, B).

K14DNb-cateninER mice that were heterozygous for VDR

were indistinguishable from D2 mice on a wild type background:

4OHT induced existing follicles to enter anagen, resulting in

lengthening of the hairs on the tail (Figure 4B), and ectopic follicles

formed, primarily from the SGs (Figure 4F). In keeping with the

more extensive ectopic HF morphogenesis in D2 than D4

transgenics, ectopic follicles in D2 mice that were heterozygous

for the VDR contained cells expressing many transcriptional

target genes of b-catenin/VDR complexes that are HF lineage

markers, including K15, PADI3, S1003A, K31, K35, K71, K34,

Gli1, and Dlx3 (Figure 4J, M, O, Q, S, U, W, Y, A’). In contrast,

D2 K14DNb-cateninER mice that were null for VDR did not

enter anagen. The HFs and SGs became thickened, but instead of

forming ectopic follicles the enlarged cell masses lacked the

expression of all the hair specific target genes analyzed, except for

Dlx3 which was detectable in a small number of cells (Figure 4D,

H, L, N, P, R, T, V, X, Z, B’). Further evidence that ectopic

follicle formation was inhibited came from the reduction in

alkaline phosphatase positive dermal papilla cells (Figure S4C, D).

The inhibition of b-catenin induced hair follicle differentiation

did not correlate with a failure of VDR 2/2 epidermis to

proliferate in response to b-catenin. The proportion of prolifer-

ative cells, detected by Ki67 labelling or flow cytometry, was

higher in VDR null than wild type epidermis, and the increase in

proliferation on b-catenin activation was very similar in both

VDR+/2 and VDR2/2 backgrounds (Figure S4E–I). Induction

of cyclin D1, a direct Lef1/b-catenin target gene, was not

significantly altered in K14DNb-cateninER;VDR2/2 versus

K14DNb-cateninER;VDR+/2 mice, suggesting that the absence

of VDR did not influence the general activity of TCF/Lef

dependent transcription (Figure S4J, K).

Ligand activated VDR is essential to prevent b-

catenin induced tumorigenesis
If VDR/b-catenin interactions stimulate HF differentiation, then

EB1089 may inhibit b-catenin induced tumour formation.

Prolonged activation of b-catenin signalling in the D4 line of

K14DNb-cateninER transgenic mice results in the conversion of

almost all of the follicles into benign tumours known as

trichofolliculomas [6], and as a result the tails of 4OHT treated

mice are swollen, lumpy and ulcerated (Figure 5A). Simultaneous

treatment with EB1089 and 4OHT normalised the gross

appearance of the tail (Figure 5A). Histological evaluation

confirmed that EB1089 blocked trichofolliculoma development,

inhibiting parakeratosis, stimulating IFE differentiation and

restoring normal anagen (Figure 5B and data not shown). The

protective effect of EB1809 was not due to inhibition of

proliferation (Figure S3G–K). We conclude that EB1089 treat-

ment inhibits the formation of HF tumours by promoting HF

differentiated gene expression.

If the primary effect of VDR loss is to deplete the stem cell

compartment [16] VDR 2/2 mice should be protected from b-

catenin induced tumours. However, if VDR signalling promotes

the HF lineages, then loss of VDR should change the type of

tumour that forms in response to b-catenin [1]. To test these

hypotheses we compared wild type;VDR+/2, K14DNb-cateni-

nER(D2);VDR+/2, wild type;VDR2/2 and K14DNb-cateni-

nER(D2);VDR2/2 mice, treated on the tail either with vehicle

(acetone) or 4OHT for 21 days. All K14DNb-cateninER;

VDR2/2 mice treated with 4OHT developed tumors

(Figure 5C). The tumours did not have the histological appearance

of trichofolliculomas and were negative for terminal differentiation

markers of all three epidermal lineages: several hair keratins (HF),

involucrin (IFE) and Oil Red (SG) (data not shown). We observed

invasion of basal cells from the IFE and HF ORS, the cells having

with large nuclei and small cytoplasm, which are features of BCC

[21]. 18/18 4OHT treated K14DNb-cateninER(D2);VDR2/2

mice developed BCC-like tumors compared with 0/18 K14DNb-

cateninER(D2);VDR+/2 mice, demonstrating a high penetrance

of the phenotype.

To investigate whether or not nuclear b-catenin and VDR

expression correlated with tumour type in human skin tumours,

we examined a panel of 59 human tumours, which were

categorised as basal cell carcinomas or having elements of HF

differentiation (trichofolliculomas (TF), trichoepithelioma (TE), or

sebaceous TF (STF) (Table S4). Those tumours with HF

differentiation were characterised by high expression of both

nuclear VDR and nuclear b-catenin, particularly within the

aberrant follicles (Figure 5D). In contrast, all BCCs with low VDR

expression and detectable nuclear b-catenin were characterized as

infiltrative tumours (Figure 5E; Table S4). We conclude that low

levels of VDR correlate with infiltrative BCCs (p,0.001).

DISCUSSION
Our results are summarised schematically in Figure 5F. In the

absence of active Wnt or VDR signalling adult epidermal hair

follicles are in the resting (telogen) phase of the hair growth cycle.

In wild type skin the combined activation of Wnt and VDR by

their endogenous ligands is required for normal anagen. Elevated

and sustained activation of b-catenin in adult K14DNb-cateninER

epidermis leads to ectopic hair follicle formation and, subsequent-

ly, to trichofolliculomas [5,6]. In the presence of EB1089

differentiation of ectopic HFs is stimulated and trichofolliculloma

development is therefore blocked. Conversely, in the absence of

VDR differentiation of ectopic follicles is inhibited and the

tumours that develop in response to b2catenin are undifferenti-

ated basal cell carcinomas.

It has recently been reported that the mechanism by which

VDR loss leads to postnatal alopecia is via progressive stem cell

depletion [16]. Stem cell depletion results in a failure of

replacement of differentiated cells and, as a result, spontaneous

wounds develop [22]. In contrast, as VDR 2/2 mice age they

develop massively wrinkled skin, more consistent with expansion of

the stem cell compartment (data not shown). Furthermore, we saw

no evidence that VDR loss led to an impaired proliferative response

to b-catenin, in contrast to the effects of inhibiting Hedgehog

signalling [5]. All our data are consistent with the conclusion that

combined activation of VDR and Wnt signalling promotes

formation of TCF/Lef-b-catenin and VDR/b-catenin complexes

that together induce genes that mediate HF differentiation.

b-catenin can no longer be considered as chiefly an activator of

TCF/Lef target genes [23]. The interaction of b-catenin with

other cofactors, such as VDR and Prop-1, is likely to contribute to

the pleiotropic effects of the Wnt pathway, which has different

target genes in different tissues. One example is the specification of

the hair follicle lineages by b-catenin/VDR complexes. A second

is the role of b-catenin binding to Prop-1 in cell lineage selection

during mouse pituitary development [24]. In the skin, the ability of

b-catenin to activate or inhibit other signalling pathways, such as

Notch and Hedgehog, provides further levels of complexity in the

regulation of stem cell renewal and lineage selection [25].

In human skin tumours with detectable nuclear b-catenin, the

level of VDR correlates with differences in tumour phenotype, a

VDR, Wnt, Epidermis
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Figure 4. VDR is necessary for differentiation of b-catenin induced hair follicles. Mice were wild-type or D2 K14DNb-cateninER transgenics,
heterozygous (+/2) or homozygous (2/2) null for the VDR and had been treated with 4OHT for 21 days. (A–D) Macroscopic views of tail skin
showing extent of hair growth. (E–L) Tail epidermal whole mounts immunolabelled with the antibodies indicated (green) and counterstained with
Hoechst (blue) and phalloidin-TRICT (red). Arrows and dotted lines indicate ectopic HFs arising from SGs and arrowheads indicate residual HFs.
Asterisks show nonspecific SG staining. (M-B’) Immunostaining of tail skin sections with the antibodies indicated (green) and anti-keratin 14 (red) with
Hoechst counterstain (blue). Scale bars: 100 mm.
doi:10.1371/journal.pone.0001483.g004
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Figure 5. VDR modulates b-catenin induced skin tumours. (A, B) K14DNb-cateninER (D4) transgenic mice were treated with vehicle, 4OHT, EB1089
or 4OHT+EB1089 for 21 days. (A) Macroscopic appearance of tails. (B) H&E stained tail skin sections. Arrows indicate parakeratosis and increased
cornified layers. (C) H&E stained tail skin sections of wild type and K14DNb-cateninER (D4) transgenic mice that were heterozygous (+/2) or
homozygous (2/2) null for VDR, following 4OHT treatment for 21 days. Arrows indicate ectopic HF formation. eHF: ectopic hair follicles; DP: dermal
papilla; eDP: ectopic dermal papilla. (D, E) Human trichofolliculoma (D) and infiltrative basal cell carcinoma (E). Serial sections were stained with H&E
or immunolabelled for b-catenin (red) and VDR (green) with Hoescht counterstain (blue). Immunolabelling corresponds to boxed regions of H&E
stained sections. Arrowheads show nuclear b-catenin and VDR. Scale bars: 100 mm (B–E), 50 mm (inserts in d, e), 10 mm (Hoescht staining inserts d,e).
(F) Diagram summarizing dual role of b-catenin as a coactivator of TCF/Lef and VDR in adult epidermis. Hair follicle differentiation requires both the
canonical Wnt pathway and ligand activated VDR. In the absence of VDR differentiation is impaired, favoring tumor formation. CoR: co-repressor; b: b-
catenin; red triangle: endogenous vitamin D3; red star: vitamin D analog EB1089. eHF: ectopic hair follicles.
doi:10.1371/journal.pone.0001483.g005
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similar situation to human colon cancer [26,27]. These results

suggest that alterations in VDR-b-catenin interactions, in

combination with mutations in genes such as PTCH or p53, can

modulate BCC development or progression. Vitamin D analogues

may well be beneficial in the treatment of tumours in which the

canonical Wnt pathway is activated inappropriately [28].

MATERIALS AND METHODS

Antibodies, reagents and cell culture
The antibodies used have been described previously [5], except for

VDR (Chemicon), b-catenin (BD Transduction), cytokeratins 14,

31, 34, 35, 71 (Progen), Dlx3, S1003A (Abnova), cyclin D1

(Abcam) and b-tubulin (Sigma). CDP antibody was a gift from Dr.

Patrick Michl and PADI3 antibody a gift from Dr. Michel Simon.

In some experiments cells or tissues were counterstained with

phalloidin (Sigma) and Hoechst 33258 (Molecular Probes).

Primary keratinocytes derived from wild type, VDR null and

K14DNLef1 mice [29] were isolated and cultured as previously

described [5]. Wnt 3A protein was purified as previously described

[30]. EB1089 was a gift from Leo Pharmaceuticals.

Bioinformatics and statistics
TCF/Lef and VDR variant consensus motifs were defined by

comparing the natural binding sites in the promoter region of

several target genes (Table S2). The sites were mapped to 3 kb of

promoter sequence of the b-catenin target genes using the Emboss

program fuzznuc [31] allowing for 1 mismatch. Identified motifs

were filtered on conservation between mouse and human [32]. To

determine over-representation of motifs within the gene list, a

background was constructed by mapping consensus motifs to 3 kb

of promoter sequence for all NCBI reference sequences (RefSeq).

This sequence set was then randomly sampled to derive a

background distribution against which the b-catenin target gene

motif numbers were tested (p-values).

In evaluating human tumour sections we calculated the

probability of infiltrative tumours having low levels of VDR and

detectable levels of nuclear b-catenin and performed a contingen-

cy analysis using the ChiSquare Test (p-values).

Generation and experimental treatment of mice
The D2 and D4 lines of K14DNb-cateninER transgenic mice have

been described previously [5,6]. VDR 2/2 mice were fed with a

special diet to prevent rickets (Yoshizawa [20]. At the start of each

experiment, mice were 6 to 8 weeks old, and therefore in the

resting phase of the hair cycle. VDR2/2 mice started to develop

alopecia at 9 weeks of age, which later than some other VDR null

strains [15,20,33].

The K14DNb-cateninER transgene was activated by topical

application of 4-hydroxytamoxifen (4OHT; Sigma) dissolved in

acetone. Tail skin was treated by applying 4OHT with a paint brush

(0.5 mg per mouse every second day). In some experiments, mice

received topical applications of EB1089 (1.5 mg in acetone per

mouse) 30 min prior 4OHT treatment. All animal experiments had

the approval of the CR-UK London Research Institute ethics

committee and were carried out under a British Home Office license.

Three independent experiments comparing D4 line of

K14DNb-cateninER transgenics and transgenic negative litter-

mates (wild type) were performed. The combined total of mice per

treatment group and genotype was 16.

Four independent experiments examining the D2 line of

K14DNb-cateninER of transgenic mice on a VDR2/+ or

VDR2/2 backgrounds, were performed. A total of 18 mice per

treatment group/genotype was examined.

Immunoprecipitation, immunoblotting and

luciferase assays
Primary mouse keratinocytes were grown in KSFM medium

(Invitrogen-Gibco) and deprived of serum overnight prior to

treatment. Cell lysis, immunoprecipitation and immunoblotting

were performed as described [10], except that immunoprecipitates

were washed five times with 150 mM NaCl, 10% glycerol, 1%

Triton-X100 and 50 mM Hepes, pH 7.4. For luciferase assays,

keratinocytes were transiently transfected with Promega luciferase

reporter construct pRL (Renilla luciferase control) and TOP-

FLASH, FOPFLASH, 46VDRE or 25 kb mouse Krt15

promoter (firefly luciferase) using FuGene 6 (Roche) as previously

described [10] and treated with 1027 M EB1089 and/or 100 ng/

ml Wnt3A. In some experiments cells were cotransfected with

pSG5-VDR or pSG5 (Mock) constructs. Luciferase activity was

measured using the PerkinElmer EnVisionTM system.

RNA extraction and real time PCR
Total RNA from primary mouse keratinocytes was purified using the

Tri Reagent – RNA/DNA/Protein Isolation Procedure (Helena

BioSciences). Retrotranscription of mRNA to cDNA was performed

using 0.5 mg of total RNA from each sample, 2.5 mM oligo dT

primer (59tttttttttttttt 39), 0.5 mM dNTP mix, 0.05 mM DTT, 4 ml

of 56First Strand Buffer (Invitrogene) and 1 ml of Retrotranscriptase

(Invitrogene) in a final 20 ml reaction. All samples where analyzed by

real-time PCR using SYBR Green PCR master mix (Applied

Biosystems) and specific pairs of primers for each gene (Table S5).

Chromatin immunoprecipitation assay
Cells were treated with 1027 M EB1089 and/or 100 ng/ml

Wnt3A for 4 h. 106 keratinocytes were lysed and immunoprecip-

itated with 2.5 mg of VDR (Sigma), b-catenin (BD Transduction),

Lef1 (Upstate Biotech) or unrelated HA (Roche) antibodies.

Sonication, precipitation and washes were performed using an

Upstate ChIP assay kit. All the samples where analysed by real-

time PCR using SYBR Green PCR master mix (Applied

Biosystems) and specific pairs of primers for two regions of each

promoter that contained VDRE and/or TCF/Lef binding sites,

one region that does not contain any of these sites, and a

completely unrelated region of the genome as a negative control

(Table S3). The sequences of the binding sites for each promoter

are listed in Table S4. PCR cycles were as follows: 94uC for 5 min;

40 cycles of (95uC 15 sec, 60uC 20 sec, 72uC 15 sec), 72uC for

5 min, and a final 19.59 min of ramping the temperature to 95uC
in order to calculate the dissociation curve of the PCR products.

Real-Time PCR was performed with the ABI 7700 Real-Time

PCR system (Applied Biosystems). The primers used are indicated

in Table S5. All 64 samples were run in the same 96 well plate to

allow us to compare the different levels of amplification.

Real-time PCR was repeated more than three times within

every experiment and each experiment was repeated three times.

To calculate the fold values we first measured the cycle number at

which the increase in fluorescence (and therefore cDNA) was

logarithmic. The point at which the fluorescence crossed the

threshold is called the Ct. We corrected the Ct values of each

sample by the Ct value obtained for the corresponding input using

the same primers or using unrelated primers. The formula used is

shown as follows:

a : Ct value for PCR of immunoprecipitated samples.

i : Ct value for PCR of imput samples (prior immunopre-

cipitation).

c : Ct value for PCR using unrelated oligos for each sample.
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DctIP : Differential Ct for the immunoprecipitates.

DctIP = a-i

DctC : Differential Ct control. DctC = c-i

DDct : Differential between DctIP and DctC. DDct = DctIP-

DctC.

Fold = 2DDct

Immunohistochemistry
Conventional fixed, paraffin-embedded sections and tail epidermal

whole mounts were prepared and immunolabeled as described

previously [5]. Images were obtained using a Zeiss 510 confocal

microscope [34]. Alkaline phosphatase activity was measured on

frozen sections as previously described [6]. Human tumor samples

were obtained with ethical approval from Yamagata University

Hospital.

Flow cytometry
To analyze cell cycle keratinocytes isolated from epidermis were

fixed with 2% paraformaldehyde (PFA) at room temperature for

10 min and then permeabilized with 0.1% Triton-X100 for

10 min. Cells were washed with PBS and re-suspended in PBS

with 2% FBS containing DAPI (2 mg/ml; Sigma). Pulse

processing was used in order to exclude any unstained, apoptotic

or clumped cells and analysis was performed using an LSRII

(Becton-Dickinson). Analysis of flow cytometry data was per-

formed using a FlowJo 6.3.3 (Treestar Inc., Ashland, Oregon).

SUPPORTING INFORMATION

Figure S1 Expression of beta-catenin target genes in wild type

anagen follicles. (A) H&E staining. Positions of dermal papilla

(DP), hair matrix (ma), outer root sheath (ORS), inner root sheath

(IRS) and hair shaft (HS) are indicated. (B-L) Immunostaining

with antibodies indicated (green), anti-keratin 14 (red) and

Hoescht (blue) counterstain. Scale bar: 100 micrometers.

Found at: doi:10.1371/journal.pone.0001483.s001 (9.52 MB TIF)

Figure S2 Beta-catenin is recruited to hair follicle gene promoters

by binding ligand activated VDR. (A,B) Wild type (WT; white bars)

and VDR null (KO; black bars) primary mouse keratinocytes were

lysed and immunoprecipitated with VDR, beta-catenin or unrelated

antibody (HA tag; UR). Immunoprecipitated genomic DNA

fragments or input controls were amplified by real-time PCR using

specific primers for region 3 of the mouse promoters indicated or

unrelated genomic primers (UR). Data are means6S.D. of triplicate

reactions. Scaled diagrams summarize location of VDREs and

TCF/Lef binding sites and the proteins bound to each region in cells

treated with Wnt3A and EB1089.

Found at: doi:10.1371/journal.pone.0001483.s002 (0.91 MB TIF)

Figure S3 EB1089 promotes ectopic hair follicle differentiation

without affecting proliferation in K14DeltaNbeta-cateninER

transgenic mice. Epidermal sections (A–F) or whole mounts (G–

H) of D4 tail skin treated with 4OHT and/or EB1089. (A–D)

Double immunolabelling with keratin 14 (red) and the antibodies

shown (green), with Hoechst (blue) counterstain. Asterisks indicate

ectopic HFs encircling dermal papillae. Dashed lines demarcate

dermal-epidermal boundary. (E, F) Alkaline phosphatase activity

(blue) with fast red counterstain. Asterisk indicates dermal papilla.

(G–I) Ki67 staining (green) with phalloidin-TRITC (red) counter-

stain. Inserts show IFE sections. Scale bars: 50 micrometers (A–F).

(J, K) DNA content of keratinocytes isolated from mouse skin was

used to determine proportion of cells in different phases of the cell

cycle. % cells in S+G2/M phase was calculated for mice treated as

indicated. Cyclop: cyclopamine. Data shown are for two mice of

each founder line per treatment.

Found at: doi:10.1371/journal.pone.0001483.s003 (5.85 MB TIF)

Figure S4 Lack of VDR impairs beta-catenin induced hair

follicle differentiation but not proliferation. D2 mice were treated

with 4OHT for 21 days and tail epidermis was analyzed. (A, B)

Double immunostaining of tail skin sections with antibodies to

keratin 14 (red) and VDR (green) with Hoechst counterstain (blue).

(C, D) Alkaline phosphatase activity (blue) with Fast Red

counterstain. Dashed line in (C) indicates dermal-epidermal

junction. (E–H) Whole mount staining for Ki67 with Hoescht

(blue) and phalloidin (red) counterstains. (I) % cells in S+G2/M

was determined by flow cytometry. Data shown are for two mice

of each genotype. (J, K) Immunohistochemistry for cyclin D1

(brown). Positive staining is indicated by arrows. eHF: ectopic hair

follicle; eDP: ectopic dermal papilla. Scale bars: 100 micrometers.

Found at: doi:10.1371/journal.pone.0001483.s004 (5.18 MB TIF)

Table S1 TCF/Lef and VDR binding sites in the promoter

regions of beta-catenin target genes. The 3 kb proximal promoter

region of 91 genes upregulated more than 3 fold in transgenic skin

of K14DeltaNbeta-cateninER (D2) mice treated with 4OHT for

7 days [5] was analyzed. The numbers of putative TCF/Lef and

VDR variant consensus motifs, filtered on conservation between

mouse and human, are shown [19]. The list is organized into

different groups according to the abundance of VDREs and TCF/

Lef binding sites. Within each group genes are ranked according to

fold upregulation on the original microarrays. Genes with multiple

LEF and VDR sites are subdivided according to whether they

have fewer TCF/Lef sites than VDREs, similar numbers of both

types of sites or lower number of VDREs than TCF/Lef sites.

Found at: doi:10.1371/journal.pone.0001483.s005 (0.03 MB

DOC)

Table S2 Enrichment of TCF/Lef and VDR binding sites in the

promoter of beta-catenin target genes. To determine over-

representation of motifs within the gene list in Table S1, a

background was constructed by mapping consensus motifs to 3 kb

of promoter sequence for all NCBI reference sequences (RefSeq).

This sequence set was then randomly sampled to derive a

background distribution against which the beta-catenin target

gene motif numbers were tested (p-values). The total number of

TCF/Lef binding sites (303) was calculated for the 91 genes

studied (Table S1) [19]. The presence of 11 different VDR binding

motifs was analyzed in the same 91 genes. 5 types of VDREs were

significantly enriched in the gene list (p,0.05), with 414 sites

present. The presence of the other VDREs (55 sites) was not

significantly increased in the gene list (p.0.05). The references

listed correspond to the original reports of natural TCF/Lef and

VDR binding sites, used to define the consensus motifs. The

consensus motifs use a degenerate code: A = A, C = C, G = G,

T = T, R = AG, Y = CT, M = AC, K = GT, W = AT, S = CG,

B = CGT, D = AGT, H = ACT, V = ACG, N = ACGT.

Found at: doi:10.1371/journal.pone.0001483.s006 (0.04 MB

DOC)

Table S3 VDR and Lef1 binding sites in the promoter regions of

Krt15, PADI3 and S1003A genes. For each gene the actual

sequence present in the mouse promoter is shown (real site), together

with the corresponding consensus binding site and the regions in the

ChIP analysis. Sequences are numbered in order, according to their

relative proximity to the transcription start (number 1 being closest).

DR: Direct Repeat. IP: inverted palindrome.

Found at: doi:10.1371/journal.pone.0001483.s007 (0.07 MB

DOC)
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Table S4 VDR and nuclear beta-catenin expression in human

skin tumours. 59 human skin tumors were stained for VDR and

beta-catenin. Expression was scored as high, medium or low. In

green are highlighted all tumors with elements of hair follicle

differentiation; these had high levels of both VDR and nuclear

beta-catenin. In red are indicated those infiltrative BCCs that had

high nuclear beta-catenin and low VDR.

Found at: doi:10.1371/journal.pone.0001483.s008 (0.08 MB

DOC)

Table S5 Primers used for real time PCR

Found at: doi:10.1371/journal.pone.0001483.s009 (0.02 MB

DOC)
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