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Background. Diabetes is characterized by reduced thyroid function and altered myogenesis after muscle injury. Here we
identify a novel component of thyroid hormone action that is repressed in diabetic rat muscle. Methodology/Principal

Findings. We have identified a gene, named DOR, abundantly expressed in insulin-sensitive tissues such as skeletal muscle
and heart, whose expression is highly repressed in muscle from obese diabetic rats. DOR expression is up-regulated during
muscle differentiation and its loss-of-function has a negative impact on gene expression programmes linked to myogenesis or
driven by thyroid hormones. In agreement with this, DOR enhances the transcriptional activity of the thyroid hormone
receptor TRa1. This function is driven by the N-terminal part of the protein. Moreover, DOR physically interacts with TR a1 and
to T3-responsive promoters, as shown by ChIP assays. T3 stimulation also promotes the mobilization of DOR from its
localization in nuclear PML bodies, thereby indicating that its nuclear localization and cellular function may be related.
Conclusions/Significance. Our data indicate that DOR modulates thyroid hormone function and controls myogenesis. DOR
expression is down-regulated in skeletal muscle in diabetes. This finding may be of relevance for the alterations in muscle
function associated with this disease.
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INTRODUCTION
Thyroid hormones play a central role in metabolic homeostasis,

development, cell differentiation and growth [1–3]. Disorders in

thyroid function are among the most common endocrine diseases

and affect 5–10% of individuals during their lifetime [4]. Thyroid

hormones stimulate basal metabolic rate and adaptive thermo-

genesis through effects on major metabolic tissues such as skeletal

muscle, liver and adipose tissue. The major effects of thyroid

hormones are mediated by modulation of gene transcription. Most

thyroid response elements function in such a way that thyroid

hormone receptors (TRs) repress gene transcription in the absence

of ligand and are activated after binding to thyroid hormones. In

the presence of T3, TR undergoes a conformational change which

results in the replacement of a co-repressor by a co-activator

complex, which in turn triggers the transcriptional activation of

TR-regulated genes.

Thyroid hormone response elements have been identified in

muscle-specific genes such as myogenin, a-actin, or GLUT4 [5–7].

Several TR-regulated genes determine distinct aspects of muscle

biology. Thus, thyroid hormones regulate muscle development

and function by inducing myoblast cell cycle exit [8]. In addition,

thyroid hormones exert substantial effects on myotube formation

and muscle fiber composition by regulating the expression of

several masters of differentiation such as MyoD or myogenin [9–

12] or by inducing muscle-specific genes such as the myosin heavy

chain [13,14]. Thyroid hormones also affect the outcome of repair

in adult muscle. Thus, conditions of increased circulating T3 levels

are characterized by a shortening of the time in which myoblasts

are in a proliferative state and by speeding up their transition to

fusion; this pattern of changes reduces the number of myotubes

that are produced during injury repair [15]. In contrast,

hypothyroidism slows myoblast proliferation and reduces the

number of new myotubes formed during repair [16].

Here we identified a novel protein, DOR, which is abundantly

expressed in insulin-sensitive tissues and it is markedly repressed in

diabetes. We also report that DOR regulates thyroid hormone

action. Taken together, our data suggest that DOR determines

muscle development, function and metabolic response to hormonal

cues through modulation of the expression of TR-regulated genes.

RESULTS

Identification of DOR, a gene that is abundantly

expressed in skeletal muscle and heart and is down-

regulated in obese diabetic rats
To identify potential risk factors for the alterations associated with

type 2 diabetes, we screened genes differentially expressed in

Zucker diabetic fatty (ZDF) rats and non-diabetic lean rats

(control) by PCR-select cDNA subtraction. After obtaining the

subtracted cDNA library, we isolated several clones using

differential screening by PCR-selection. One of these clones was

chosen and used as a probe, which further allowed the detection of

a 4.5 kb mRNA species in various tissues. A human heart cDNA

library was then screened and the full-length cDNA of human
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DOR was isolated. This cDNA coincided with the predicted open

reading frame C20orf110 (NM021202). Given the criteria that led

to its identification, we named the gene DOR for Diabetes- and

Obesity Regulated. Human DOR maps to chromosome 20q11.22,

close to loci linked to human obesity [17–19] and type 2 diabetes

[20–22]. A comparison between the genomic and the cDNA

product reveals an intronic-exonic distribution of four introns and

five exons. The protein coding region starts at exon 3 and

generates an ORF of 672 nucleotides. Murine and rat DOR

cDNAs were also amplified and sequenced.

Human, rat and mouse DOR polypeptides are well conserved

(84% identity between human and mouse, 83% between human

and rat, 85% between rat and mouse), and encode a protein of 220

(human) or 221 (mouse, rat) residues (Figure 1A). The only

homologous protein described to date is a human p53-dependent

apoptosis regulator named p53DINP1/TEAP/SIP, with 36%

identity with human DOR [23]. DOR contains a strong positive

charge in its C-terminal region, which is predicted to form an

alpha-helix structure (Figure 1A) whereas the rest of the protein is

predicted to be unstructured (GLOBPLOT 2) [24].

The distribution of DOR mRNA in human and rat tissues was

examined by Northern blot. In the two models, transcripts were

predominant skeletal muscle and heart, while lower expression was

detected in other tissues such as white fat, brain, kidney and liver

(Figure 1B, 1C and data not shown). These data suggest a potential

role of DOR in tissues with high metabolic requirements or which

respond to insulin. We also examined DOR expression in skeletal

muscle from ZDF rats and found a reduction of 77% in its

expression (Figure 1D), thereby corroborating the original sub-

traction hybridization assay.

Using differential screening, we thus identified a novel protein

which is strongly repressed in obese diabetic rats, and highly

expressed in tissues involved in metabolic homeostasis. Next, we

analyzed DOR cellular function in order to determine the

contribution of alterations in DOR expression to the pathophys-

iology of diabetes.

DOR is a nuclear protein that enhances the activity

of TRs
Several lines of evidence support the notion that DOR has

a nuclear function, namely: a) DOR is predicted to be a nuclear

protein (WoLF PSORT Prediction programme) [25], and b) DOR

uniquely shows homology to a nuclear protein. To test the first

hypothesis, HeLa cells were transfected with a plasmid encoding

DOR ORF and the protein was detected by Western Blot or

immunofluorescence. DOR migrated as a 40 kDa protein in SDS-

PAGE (Figure 2B). By subcellular fractionation assays, DOR was

detected in nuclear extracts (Figure 2B). Immunofluorescence data

confirmed this observation since DOR was localized mainly in

nuclei (Figure 2A). Within the nucleus, DOR colocalized with

PML bodies (Figure 2C). This colocalization was not due to the

over-expression of DOR in this cell line since the endogenously

expressed protein was also detected in these PML nuclear bodies

in murine 1C9 muscle cells (Figure 2C) derived from the

immortomouse [26].

DOR was localized within the nucleus, thereby corroborating the

theoretical prediction. On the basis of this observation, and given

that DOR is homologous to a nuclear protein involved in

transcriptional regulation, we proposed that it also regulates

transcription. Furthermore, the high DOR expression in tissues

characterized by high metabolic requirements led us to speculate

about a regulatory role of this protein in thyroid hormone action. To

this end, HeLa cells were transfected with DNA-encoding TRa1 and

CAT or luciferase reporters gene fused to TR elements, in the

presence or absence of DOR. TRa1 transactivated the reporter gene,

whereas DOR alone showed a small stimulatory effect on reporter

activity (Figure 3A). The cotransfection of DOR and TRa1 enhanced

the transcriptional activity of the reporter gene in a dose-dependent

manner (Figures 3A, 3B). This effect was specific of DOR expression

and transfection with a plasmid encoding the xCT amino acid

transporter did not cause any effect (data not shown). The effects of

DOR were also detected when using luciferase as a reporter gene (data

not shown). DOR did not cause any effect on the reporter activity

induced by transcription factors p53 or c-Myc (data not shown). In

addition, DOR did not stimulate the activity of the chimeric protein

GAL4-VP16, generated by fusion of the GAL4 DNA-binding

domain and the VP16 activation domain (data not shown). In all,

these observations indicate that DOR specifically potentiates the

activity of TRs. The effect of DOR is not a consequence of

a generalized stimulation of transcription since basal reporter

activity, activity driven by c-Myc or p53, and activity of GAL4-

VP16 remained unaltered.

To analyze whether DOR acts as an activator when tethered to

DNA, full-length DOR or distinct cDNA fragments were fused to

a GAL4 DNA-binding domain (Gal4-DBD) and transcriptional

activity was assayed by cotransfection with a Gal4 reporter plasmid in

HeLa cells. Gal4-DBD fused to full-length DOR caused a moderate

increase (3-fold) in reporter activity (Figure 4A) and deletion of the C-

terminal half of the protein (fragment 1–120) markedly increased this

activity (8.5-fold) (Figure 4A). The fragment encompassing amino

acid residues 31–111 showed the maximal stimulatory activity (47-

fold) (Figure 4A). In contrast, the C-terminal half of DOR showed no

transcriptional activity. Similar data were obtained in HEK293T cells

(Figure 4B). These data suggest that the N-terminal half of DOR

shows transcriptional activity, and this activity is increased when the

C-terminal half of the protein is deleted.

DOR loss-of-function reduces the action of thyroid

hormones in muscle cells
To determine whether DOR is required for thyroid hormone

action, we generated lentiviral vectors encoding for siRNA to

knock-down (KD) DOR expression in mouse cells. The siRNA

lentiviral infection in C2C12 muscle cells markedly reduced DOR

expression (80% reduction) compared to levels found in cells

infected with scrambled RNA (control group) (Figure 5A). Once

the KD system had been validated, control and KD cells were

transiently transfected with a reporter gene driven by a TRE, in

the presence or absence of TRa1 or T3. In control muscle cells,

while thyroid hormone caused a 5-fold stimulation of reporter

activity through the activation of endogenous TR a1, the addition

of exogenous TR increased the stimulation of transcriptional

activity up to10-fold (Figure 5B). DOR loss-of-function markedly

reduced the effect of T3, TRa1 and T3 (Figure 5B).

On the basis of these data, we next tested whether the reduced

DOR expression altered the effect of thyroid hormones on

endogenous target genes. In control C2C12 muscle cells, stimulation

with T3 (100 nM for 48h) markedly enhanced the expression of

genes such as myogenin, IGF-II, actin a1, caveolin-3, creatine kinase and

UCP2 (Figure 5 C–H). Stimulation of a-actin and myogenin expression

in response to thyroid hormones has been previously reported

[10,11]. Under these same conditions, DOR-KD cells markedly

reduced the stimulatory effect of thyroid hormones on the expression

of the same subset of genes (Figure 5 C–H).

On the basis of these data, and the previous observation that

DOR enhances the transcriptional activation of TRa1 (Figure 3),

we propose that DOR regulates TR-mediated cellular responses.

Thyroid Hormone Action
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Functional role of DOR in myogenic differentiation
Given that DOR expression is markedly repressed in muscle from

ZDF rats and that diabetes is linked to skeletal muscle atrophy

[27–30], we next studied whether DOR participates in myogen-

esis. To this end, the expression of several genes and proteins in

scrambled or DOR siRNA C2C12 cells was examined during

myogenic differentiation (from myoblasts to myotubes). Muscle

differentiation in C2C12 cells caused a 3-fold stimulation of DOR

expression (Figure 6A), which was blocked in DOR KD cells

(Figure 6A). During C2C12 myoblast differentiation, several

Figure 1. DOR sequences and tissue distribution of DOR expression and down-regulation in skeletal muscle from ZDF rats. Panel A. Amino acid
sequence of human, mouse and rat DOR proteins (sequences 1, 2 and 3, respectively). Multi-alignment done using the CLUSTALW Sequence
Alignment programme [52]. Amino acids differing from the consensus are inverse. The amino acid residues used to generate the polyclonal
antibodies are shown in bold. The C-terminal basic motif, indicated by a line of ‘‘+’’, is predicted to form an alpha-helix structure whereas the N-
terminal half is unstructured (GLOBPLOT 2). Panel B. PolyA+-RNA membrane containing human adult tissues was probed with 32P-labelled rat DOR
cDNA and washed in stringent conditions. The probe hybridises to a transcript of approximately 4.5 kb. Hybridisation with human glycerol-3-
phosphate dehydrogenase (GPDH) cDNA was used as a control probe. Br, brain; He, heart; SK, skeletal muscle; Co, colon; Th, thymus; Sp, spleen; Ki,
kidney; Li, liver; Sl, small intestine; Pl, placenta; Lu, lung; Leu, leukocytes. Panels C. Total RNA was purified from several rat tissues and subjected to
Northern blot analysis. Ethidium bromide staining of the ribosomal 28S subunit was used as a control of the relative amounts of RNA loaded in each
lane and to check the integrity of RNA in each sample. SK, skeletal muscle; He, heart; WAT, white adipose tissue; Ki, kidney; Br, brain; Lu, lung. Panel D.
Total RNA was purified from skeletal muscle from non-diabetic and ZDF rats, and RNA was subjected to Northern blot analysis. The mean6SD of 6
separate observations is shown. * difference compared to the control group, at P,0.01 (Student’s t test).
doi:10.1371/journal.pone.0001183.g001
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muscle-specific genes such as myogenin, creatine kinase, caveolin 3, actin

a1 and IGF-II were markedly induced in control cells (from 10- to

20-fold) (Figure 6 B–F). Under these conditions, DOR-KD cells

showed altered induction in the expression of these genes (Figure 6

B–F). However, the expression pattern of each gene differed.

Myogenin, a transcription factor which plays a unique function in

the transition from a determined myoblast to a fully differentiated

myotube [31,32], was rapidly induced in early stages of

differentiation. While control cells normally induced myogenin

mRNA levels (5-fold stimulation at day 1 of differentiation), DOR-

KD cells showed a delay (Figure 6B). However, at day 3 of

differentiation, no differences were detected between control and

KD cells (Figure 6B). For actin a1, creatine kinase and IGF-II, the

inhibition of expression was greater at the onset of differentiation

(days 1 and 2) (Figure 6 D–F). The expression of caveolin-3 was

greatly repressed during differentiation in DOR-KD cells

(Figure 6C). Finally, the expression of muscle-specific genes at

the protein level was also analyzed. Our findings further confirmed

that DOR siRNA reduced the abundance of myogenin, glycogen

synthase or caveolin-3 compared to control cells (Figure 6 G).

In all, our results indicate that DOR plays a regulatory role in

the myogenic programme, and more specifically, during early

stages of muscle differentiation.

DOR physically binds TRa1

On the basis of the observation that DOR functionally modulates

thyroid hormone action, we also examined whether DOR and

TRs physically interact. To this end, chimeric fusion proteins

TRa1-GST, RXR-GST, and DOR-His were produced. TR a1-

GST bound DOR protein and the physical interaction in pull-

down assays was independent of the presence of T3 in the medium

(Figure 7A). Under these conditions, neither GST nor RXR-GST

bound DOR protein (Figure 7A and data not shown). To verify

that the DOR-TR a1 interaction was also established in vivo, HeLa

cells were transfected with DOR, TR a1 or both, in the presence or

absence of T3, and extracts were immunoprecipitated with an

anti-DOR antibody. The bound proteins were eluted and

analyzed by Western blot with polyclonal antibodies against TR

a1 or DOR. We detected specific co-immunoprecipitation of TR a1

and DOR proteins both in the presence and absence of T3

(Figure 7B).

Next, we determined whether this binding also occurred in vivo

in the context of a T3-responsive promoter of a gene transcribed in

HeLa cells. Thus, we selected the human dio1 gene promoter, since

its mRNA is expressed in this cell line [33]. DOR-TR a1-

transfected HeLa cells, treated or not with T3 for 1 h, were

subjected to ChIP assays by using DOR, TR a1 or SRC-1

antibodies. The resulting precipitated genomic DNA was then

analyzed by PCR using primers flanking the boundaries of the

TREs located in the promoter region of dio1 [34]. Under these

conditions, SRC-1 was recruited in the complex only after T3

treatment (Figure 7C), while TR a1 was bound both in the

presence and absence of T3 (Figure 7C). The same pattern was

detected with antibodies against DOR (Figure 7C), thus confirm-

ing the results obtained by Co-IP. ChIP assays in the absence of

antibodies did not amplify any unspecific band (Figure 7C). DOR

immunoprecipitates did not amplify a fragment of interleukin-2,

used as a negative control (Figure 7C). Similarly, immunopreci-

pitates with an irrelevant antibody (anti-hemaglutinin, HA) did not

amplify dio1 (Figure 7C)

In all, we observed either by CoIP or ChIP methods that DOR

physically binds TR in a ligand-independent manner, while the

functional activation is ligand-dependent. On the basis of these

data, we hypothesize that the presence of other proteins of the TR

complex ultimately determine DOR function.

Thyroid hormones rapidly modulate the

intranuclear localization of DOR
Current models propose that key components of transcriptional

complexes are functionally compartmentalized [35,36] so that the

achievement of a transcriptionally active status implies physical

Figure 2. DOR protein is localized in nuclear bodies. Panel A. HeLa
cells were transfected with a DOR expression vector or with the empty
vector and with GFP. After 48 h, cells were fixed and stained to view
DOR, GFP or with the DOR pre-immune serum (negative control). Cells
were also counterstained with Hoescht. The arrow indicates a GFP-
positive cell, also DOR-positive. DOR shown in red; GFP in green; nuclei
counterstained in blue. Panel B. After DOR transfection in HeLa cells
(48 h), cytosolic (Cyt), nuclear soluble (NuS) or nuclear nonsoluble
(NuM) fractions were obtained by an osmotic-shock method. Fractions
were subjected to Western Blot assays with anti-DOR, anti-Np62 or anti-
b-actin antibodies. Panel C. DOR-transfected HeLa cells or wild-type
mouse 1C9 myoblasts were fixed and stained to view DOR and markers
of subnuclear domains, such as the splicing speckles (SC-35), PML
bodies (PML) or transcriptionally active sites (RNA Pol. II). DOR is shown
in red in the images on the left, and SC-35, PML or RNA Polymerase II
are shown in green in the middle. Merging is shown on the right.
doi:10.1371/journal.pone.0001183.g002
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recruitment of chromatin and related proteins. Given that DOR is

localized in PML nuclear bodies, and that it functionally activates

TR in the presence of T3, we aimed to determine whether DOR

positioning in PML was affected by the presence of ligands. In cells

over-expressing both TRa1 and DOR, the addition of T3 caused

the intranuclear movement of DOR protein from its basal position

in PML nuclear bodies (Figure 8A). These effects were not

detected in cells that over-expressed only DOR (Figure 8A). To

gain further insight into the kinetics of the process, a DOR-GFP

construct was generated and transfected in HeLa cells. The

chimeric DOR-GFP protein retained the capacity to stimulate the

transcriptional activity of TR a1 (Figure 8B) compared to the

activity of wild-type DOR. Immunolocalization analysis indicated

that DOR-GFP rapidly moved after exposure to T3 (already

detectable at 5 min) (Figure 8C); the effects were transient and

after 60 min of treatment with T3, the extent of colocalization of

DOR and PML was similar to that detected in basal cells

(Figure 8C). Further time-lapse studies indicated that T3 caused

a rapid change in the localization of DOR-GFP (detectable in less

than 1 min) in HeLa cells (data not shown).

Figure 3. DOR transactivates nuclear hormone receptors. Panel A. HeLa cells were transfected with expression plasmids encoding TRa1 (TR), DOR,
the empty vector pcDNA3 as a control vector, and the reporter vectors containing TRa1 response elements linked to CAT. Cells were treated for 18 h
in the presence or absence of ligands (100 nM T3) and assayed for reporter expression. Results are mean6SD of 6 independent experiments. *
significant difference compared to the nuclear hormone receptor group, at P,0.05 (post hoc t test). Panel B. Reporter assays were done as in
previous panels but the amounts of DOR (ranging from 200 to 600 ng) used for transfection differed and these assay were done in the presence of
ligands. Results are mean6SD of 6 independent experiments. * significant difference compared to the nuclear hormone receptor group, at P,0.05
(post hoc t test).
doi:10.1371/journal.pone.0001183.g003

Figure 4. DOR shows transcriptional activity when tethered to a target gene promoter. DOR or fragments corresponding to the amino acids
indicated were fused to the DNA-binding domain of Gal4 (Gal4 DBD) and transfected in HeLa cells (panel A) or in HEK293T cells (panel B).
Transcription was assayed with a reporter plasmid containing five copies of the UAS linked to luciferase. Results are mean6SD of 6 independent
experiments. * difference compared to the Gal4 DBD-DOR group, at P,0.05 (post hoc t test).
doi:10.1371/journal.pone.0001183.g004
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Given these findings, we postulate that DOR is localized in

PML nuclear bodies mainly as a storage site in which it remains

until required. In this regard, TR-mediated responses trigger the

mobilization of DOR from the PML bodies. The sensitivity of

DOR to T3 reinforces the notion that the cellular role of DOR is

linked to the regulation of TR function.

Figure 5. DOR loss-of-function in muscle cells. Panel A. C2C12 myoblasts previously infected with lentiviruses encoding scrambled RNA (open bar)
or DOR siRNA (black bar) were cultured. Cell extracts and total RNA were obtained and DOR protein and mRNA levels were assayed by Western blot
and real-time PCR. Relative amounts of proteins in each sample were checked by expression of the nonmuscle-specific protein b-actin. * difference
compared to the scrambled group, at P,0.05 (Student’s t test). Panel B. Scramble (open bars) or DOR siRNA C2C12 muscle cells (black bars) were
transfected with a reporter vector driven by a TRE, and with or without a expression vector for TRa1. Cells were then incubated in the presence or
absence of thyroid hormone for 16 h. Results are mean6SD of triplicates and are representative of three independent experiments. * difference
compared to the scrambled group, at P,0.05 (post hoc t test). Panels C–H. Scrambled (open bars) or DOR siRNA C2C12 muscle cells (black bars) were
incubated in 5% horse serum-containing medium either in the absence or in the presence of 100 nM T3. Total RNA obtained at 48 h of T3 t treatment
were assayed by real-time PCR to measure the expression of several genes. Results are mean6SD of a representative experiment. * difference
compared to the control group, at P,0.05 (post hoc t test).
doi:10.1371/journal.pone.0001183.g005
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DISCUSSION
Here we have identified a novel protein, named DOR, by means

of a substractive hybridization screening aimed to detect genes

down-regulated in skeletal muscle from ZDF rats. DOR was

abundantly expressed in tissues with high metabolic rates such as

skeletal muscle and heart. The experimentally induced DOR

repression in muscle cells (via siRNA) markedly reduced the action

of thyroid hormones and altered muscle differentiation. In this

regard, it has been reported that type 2 diabetes is characterized

by reduced thyroid function [37–39]. In addition, skeletal muscle

Figure 6. DOR loss-of-function alters myogenesis. Panels A–F. Confluent C2C12 myoblasts previously infected with lentiviruses encoding scrambled
RNA (squares) or DOR siRNA (triangles) were allowed to differentiate in 5% horse serum-containing medium for 4 days. Total RNA was purified and
the expression of DOR, myogenin, caveolin-3, actin a1, creatine kinase, IGF-II and HPRT was assayed by real-time PCR. Values were expressed as relative
to HPRT. Results are mean6SD of four independent experiments. Scrambled and DOR siRNA groups were significantly different as analyzed by two-
way ANOVA, at P,0.05. Panel G. DOR and muscle-specific protein expression (myogenin, caveolin 3, and glycogen synthase) were analyzed by
Western blot of total cell lysates (20 mg) from each condition. Relative amounts of proteins in each sample were checked by expression of the
nonmuscle-specific protein b-actin.
doi:10.1371/journal.pone.0001183.g006
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atrophy is a well-documented complication of diabetes and is

characterized by a reduction in the diameter of myofibers and

a decreased number of myonuclei [27–30]. All these data, together

with our observation of a marked reduction of DOR expression in

skeletal muscle from ZDF rats, lead us to propose that DOR

participates in the pathophysiology of type 2 diabetes.

We observed that DOR resides in PML nuclear bodies and

shows several properties characteristics of nuclear co-activators.

Thus, DOR moderately enhanced the transcriptional activity (2.5-

to 5-fold) of TRs in a ligand-dependent manner and acted as an

activator when tethered to DNA. In addition, DOR bound to TRs

in vitro and in vivo conditions and to the thyroid hormone

responsive dio1 promoter, as shown by ChIP. The transcriptional

activation capacity of DOR occurred through the N-half of the

protein, and deletion of its C-terminal half further increased its

activity. Whether DOR is a bona fide nuclear co-activator and

whether it exerts additional cellular roles remains to be elucidated.

More specifically, we have demonstrated that DOR participates in

thyroid hormone action. The supporting evidence is as follows: a)

DOR over-expression enhances the transcriptional activity of TRa1

4-fold, b) DOR loss-of-function represses the stimulatory effect of

thyroid hormones on the expression of genes such as actin a1, caveolin-

3, creatine kinase, IGF-II, UCP2 and myogenin in muscle cells. c) DOR

binds to TRa1 in vitro and in vivo in the context of a T3-responsive

promoter (human dio1 promoter), and d) DOR undergoes a rapid

and transient intranuclear movement from PML nuclear bodies in

Figure 7. DOR binds in vitro and in vivo to thyroid hormone receptors. Panel A. GST protein or TRa1 fused to GST (TR-GST) were immobilized on
glutathione sepharose beads and incubated with the DOR protein containing an N-terminal histidine tag (HisDOR), with or without the ligand (1 mM
T3). Bound proteins were eluted and resolved by SDS-PAGE and further Western blot using an antibody against the histidine tag (to visualize HisDOR)
or against GST (to visualize GST or TR-GST). Panel B. HeLa cells over-expressing His-tagged DOR (left), TRa-1 (middle), or both (HisDOR+TRa1) (right)
were exposed to T3 or were left untreated. After 1 h of treatment, cells were collected and DOR was immunoprecipitated from the nuclear fractions.
The input control (10% input) and the immunoprecipitates (IP) were assayed by Western blot with specific antibodies. Panel C. ChIP analysis over a T3

responsive promoter. DOR and TRa1-transfected HeLa cells were treated with T3 for 1 h or left untreated. Cross-linked chromatin prepared from cells
was immunoprecipitated with the antibodies indicated. As negative controls, the samples were subjected to ChIP in the absence of antibody or in the
presence of an irrelevant antibody (anti-hemaglutinin, HA). Aliquots of chromatin taken before immunoprecipitation (input) and the
immunoprecipitates were subjected to PCR analysis with primers directed to the dio1 promoter. DOR immunoprecipitates were used to amplify
IL-2 (an additional negative control group).
doi:10.1371/journal.pone.0001183.g007
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Figure 8. DOR rapidly delocalizes from PML nuclear bodies in response to thyroid hormones. Panel A. HeLa cells were transiently cotransfected
with DOR and TRa1 expression vectors. The intranuclear positioning of DOR relative to PML nuclear bodies was determined before and after T3

addition. Antibodies and immunofluorescence legend: Anti-DOR, stained red (column 1); anti-PML, stained green (column 2); merged images (column
3). Panel B. Full length DOR was fused in frame with the fluorescent protein GFP. To determine whether DOR-GFP retained the capacity to coactivate
TRa1, experiments were done as in Figure 3A. * significant difference compared to the nuclear hormone receptor group, at P,0.05 (post hoc t test).
Panel C. HeLa cells were transiently cotransfected with DOR-GFP and TRa1 expression vectors. The intranuclear positioning of DOR relative to PML
nuclear bodies and TRa1 was determined before and after a range of times after T3 addition. Antibodies and immunofluorescence legend: Anti-DOR,
stained red (column 1); anti-PML, stained green (column 2), anti-TRa1 cyan. Merged images: DOR/PML (column 3), DOR/TRa1 (column 4).
doi:10.1371/journal.pone.0001183.g008
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response to T3. The rapid changes in the nuclear localization of

DOR in response to T3, may be relevant in the ligand-dependent

DOR-mediated potentiation of TRa1 activity.

DOR protein contains two functionally distinct regions. The N-

terminal half with predicted random structure (GLOBPLOT 2)

shows transcriptional activation capacity (mapped between amino

acid residues 31 to 111). In this regard, DOR may belong to the

group of proteins characterized by sizeable regions that lack

a predicted well-structured three-dimensional fold, which show high

conservation among species (from mouse to human in the case of

DOR) and in which, contrary to the traditional view, the disordered

region is functional [40]. The C-terminal region of DOR is predicted

to form a positively charged alpha-helix structure and has no

transcriptional activation capacity; in contrast, the presence of the C-

terminal region reduces the transcriptional activity of the N-terminal

half. This observation supports the notion that the transcriptional

activity of DOR is subjected to intramolecular control. Such control

of transcriptional activity has been reported for other nuclear

proteins such as ATF2 or NK-2 [41,42].

Thyroid hormones stimulate muscle development and differen-

tiation [8] as well as myogenin, and myotube formation in muscle

cells [9–12,43]. Moreover, these hormones induce the expression

of muscle-specific genes such as a-actin and GLUT4 [5–7]. We

have demonstrated that in C2C12 muscle cells thyroid hormones

also potently stimulate the expression of other genes such as

caveolin-3, creatine kinase, IGF-II and UCP2. The induction of IGF-II

may be particularly relevant since it modulates the biology of

muscle cells [44]. In addition, and more central to our study, we

have found that DOR loss-of-function markedly reduced the

myogenic effect of thyroid hormones in muscle cells, as assessed by

the expression myogenin, a-actin, caveolin-3, creatine kinase, IGF-II and

UCP-2. Thus, our data implicate DOR in the specific stimulatory

effects of thyroid hormones on muscle differentiation.

In fact, DOR loss-of-function also affected the capacity of

myoblasts to undergo myogenesis. C2C12 muscle KD cells for

DOR showed a lower induction of myogenin expression, and

a reduced expression of creatine kinase, a-actin and caveolin-3. These

results indicate that DOR regulates muscle differentiation, at least

in part, by controlling myogenin expression.

On the basis of our findings, we propose that DOR repression

participates in a deficient response of muscle to thyroid hormones

and in the alterations of muscle biology associated with the

diabetic condition.

MATERIALS AND METHODS

Animals
Two month-old male Zucker diabetic fatty rats (ZDF) rats and non-

diabetic lean (+/?) controls were purchased from Charles River

Laboratories (Wilmington, MA). The animals were housed in animal

quarters at 22uC with a 12 h light/12 h dark cycle and fed ad libitum.

On the experimental day, rats were anesthesized with sodium

pentobarbital and gastrocnemius muscles of non-diabetic lean and

ZDF rats were collected. All procedures were approved by the

Animal Ethics Committee of the University of Barcelona.

Subtractive hybridization and cDNA cloning
Messenger RNA was extracted from gastrocnemius muscle of non-

diabetic lean and ZDF rats with oligo(dT)20-cellulose columns, as

described [45]. Complementary DNA was prepared from 2 mg of

mRNA using Superscript II (Life Technologies). PCR-Select cDNA

Subtraction kit (Clontech) was used to select genes that are down-

regulated in diabetic muscle [45]. The C42 260 bp fragment

obtained from subtractive hybridization was used to screen a human

heart l-ZAP cDNA library (Stratagene). Five clones were isolated,

one of which contained the full-length cDNA of human DOR. This

cDNA clone was subcloned and the sequence of human DOR was

obtained by sequencing both strands with a two-fold coverage

minimum. To determine the murine 59-cDNA sequence, a cDNA

clone (AI95670R) covering 1.8 kb was sequenced. The 39-cDNA

was obtained by RT-PCR amplification. The rat DOR cDNA 59-

region was obtained by RT-PCR using heterologous primers from

the mouse DOR sequence. GenBank accession numbers are

AJ297792 Homo sapiens mRNA for DOR protein; AJ297793

Mus musculus mRNA for DOR protein; AJ297794 Rattus

norvegicus partial mRNA for DOR protein. Mutated versions of

DOR were generated by the Quick Change Site Directed

Mutagenesis Kit (Stratagene). Full-length DOR cDNA, and cDNA

fragments encompassing distinct amino acid fragments were PCR-

amplified and cloned in the pGBKT7 vector containing the DNA-

binding domain of GAL4 (Clontech) and then cloned in pCDNA3.

RNA expression studies
Total RNA extraction and treatment with DNase I were

performed with Rneasy mini kit (Qiagen). Total RNA from tissue

samples or from cells was stored at –80uC until further assay. RNA

concentration was determined by spectrophotometry at an

absorbance of 260 nm. Northern blot assays on 20 mg of total

RNA or with human polyA+-RNA obtained from several tissues

(Human 12-Lane MTN Blot, Clontech) were performed as

described [46] using the 32P-labelled C42 cDNA fragment or

a 0.5 kb cDNA labelled fragment of human glycerol-3-phosphate

dehydrogenase (as a control). The C42 rat cDNA fragment is

homologous to the nucleotide sequence 2,912–3,172 of human

AJ297792 (GenBank). Real-time PCR was performed from 0.1 mg

of total RNA from muscle cells, as described [47]. Cyclophilin or

HPRT mRNA were assayed as controls in real-time PCR assays.

Western blot
A rabbit antibody against the DOR-specific peptide PPPAPSLM-

DESWFVTPPAC (amino acid residues 63–81) was purchased

from Research Genetics. Anti-b-actin antibodies were used as

a control of loading. Proteins from total homogenates or fractions

enriched in nuclear proteins were resolved in 10% SDS-PAGE

and transferred to Immobilon sheets. Incubation with antibodies

and ECL detection were performed as described [48].

Cellular localization studies
The full cDNA sequence of human DOR was amplified by PCR

and cloned into the HindIII-BamHI sites of the pCDNA3 vector

(Invitrogen). Murine cDNA was amplified by PCR and cloned into

the pGEM-T Easy vector (Invitrogen). Recombinant GFP-DOR

vectors were generated by cloning a PCR product spanning the

murine DOR-ORF in-frame into the EcoRI and SalI sites of the

pEGFP-C2 vector (Clontech). HeLa cells were transfected with the

DOR expression vectors by the calcium phosphate precipitation

method. In some studies, 36-h transfected cells were fixed with 3%

paraformaldehyde and subjected to immunofluorescence micros-

copy with a confocal scanning microscope (Leica TCS SP2, Leica

Lasertechnik GmbH, Manheim, Germany). No bleed-through was

detected between channels. Samples were scanned using a 63x

Leitz objective (oil) and a zoom ranging from 2.5 to 4 to analyse

intracellular regions. The fluorochromes used (Hoestch, Oregon

Green or GFP, Alexa-Fluor 546 and Cyanine 5) were excited with

UV, 488, 543 and 633 laser lines, respectively. To avoid bleed-

through effects in double or triple staining experiments, each dye

was scanned independently.
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In some experiments, nuclear extracts from transfected cells

were obtained as reported [49] and subjected to Western blot

analysis with a specific anti-DOR antibody.

Cell cultures and transcriptional activation assays
HeLa, L6E9, 1C9, CH310T1/2 or C2C12 cells were maintained

in DMEM supplemented with 10% FBS, penicillin (100 U/ml),

and streptomycin (100 mg/ml). For transient transfection assays,

cells were typically plated onto 24-well plates 24 h prior to

transfection by the Lipofectamine 2000 method (Invitrogen) as

reported [7]. All transient transfections included 10% of the total

DNA of expression vector for GFP (pEGFP, Clontech) to

normalize for transfection efficiency. In a typical experiment,

150 ng of reporter plasmid, 75 ng of nuclear receptor expression

plasmid and 100 to 300 ng of DOR expression vector was

transfected. Ligands were dissolved in absolute ethanol (1 mM

dexamethasone) or water (1 mM rosiglitazone or 100 nM T3).

Sixteen hours after transfection, cells were harvested and cell

extracts were analyzed for CAT expression by specific CAT-ElisaH
kit (Roche) or luciferase assay system (Promega). Transfection

efficiency was analyzed by flow cytometric analysis of GFP

expression.

The reporter vector used to assay TR activation was as

previously described [7], and consists of a functional TR element

from the muscle-specific GLUT4 enhancer, cloned at 59 of

a thymidine kinase basal promoter, controlling the expression of

the CAT reporter gene (TKCAT). An expression vector for the rat

TRa1 was also as previously described [7]. To express murine

DOR ectopically in cell lines, a PCR fragment spanning the

murine ORF was cloned into the EcoRV and SalI sites of the

pcDNA3 (Invitrogen) vector. A mutated version of DOR

(mutDOR) was generated by the Quick Change Site Directed

Mutagenesis Kit (Stratagene). Full-length DOR cDNA, and cDNA

fragments encompassing amino acid residues 1–120, 120–220 and

31–111 were PCR-amplified and cloned with NdeI and BamHI in

the pGBKT7 vector containing the DNA binding domain of

GAL4 (Clontech) and subsequently cloned in pCDNA3. The

fragment of DOR cDNA encompassing amino acid residues 1–

111 was obtained by mutagenesis from construct 1–120 by

generating a stop codon at position G112.

Protein binding assays
Full-length DOR with a histidine-tagged N-terminus (DOR-His)

was generated. The DOR-His and TRa1-GST fusion proteins

were expressed and purified from E.coli on affinity beads. Two mg

of extract GST or TRa1-GST and 2 mg of DOR-His were

incubated in resuspension buffer (10 mM Tris/HCl, 200 mM

NaCl, EDTA 0.2% pH 7.5 containing 10 mM PMSF,10 mM

aprotinin, 1 mM pepstatin and 1 mM leupeptin). Proteins were

incubated with glutathione-Sepharose beads (Pharmacia) for 1 h

at 4uC. The beads were then washed three times in 0.5 ml of

resuspension buffer in the presence of 0.1 mM Mg2Cl. Proteins

were eluted in 200 ml of Laemmli sample buffer and subjected to

SDS-PAGE. Proteins were then blotted.

The DOR-His and the TRa1 expression vectors were

transiently transfected in HeLa cells. Thirty-six hours after

transfection, cells were exposed to T3 for 1 h or were left

untreated. Cells were then rinsed twice with ice-cold PBS

containing 0.5 mM PMSF and cytosolic and nuclear fractions

were obtained as described [49]. The nuclear soluble fraction was

immunoprecipitated by means of a NI-NTA resin (Qiagen) [50].

The immunocomplexes were resolved by SDS-PAGE and

Western blot.

Chromatin immunoprecipitation (ChIP)
DOR and TRa1 expression vectors were transiently transfected in

HeLa cells. Thirty-six hours later, cells were exposed to T3 for 1 h

or left untreated. They were then treated with the cross-linking

agent formaldehyde and lysed. Chromatin was then sheared.

Immunoprecipitation was performed with antibodies against

TRa1, DOR or SRC-1. After ChIP, DNA was purified by

phenol/chloroform extraction. Input (1% of total immunopreci-

pitated) and immunoprecipitated DNA were subjected to PCR

analysis with primers flanking the TRE site on the promoter (dio 1

promoter) (see primer sequences in supplementary methods) or

flanking a region of GPDH or IL-2. The following primers were

used for amplification of promoter regions: -dio 1 (forward: 59-

GAGGCCAAGGCGCGGGTAGGTCATCT-39; reverse: 59-

CCGGGTCAGGGGAAGGAGTCAG-39); -glycerol-3-phosphate de-

hydrogenase (GPDH) (forward: 59-GCTCCAATTCCCCATCT-

CAG-39; reverse: 59-CCAGGCTCAGCCAGTCCCAG-39); -in-

terleukin-2 (IL-2) (forward: 59-GTTCAGTGTAGTTTTAGGAC-

39; reverse: 59-CTCTTCTGATGACTCTTTG-39).

Lentiviral infection and siRNA generation
DOR siRNA was obtained from sFold software (http://sfold.

wadsworth.org). Scrambled siRNA was obtained by scrambling

a functional DOR siRNA sequence. Lentiviruses encoding

scrambled or DOR siRNA were used as reported [51]. All HIV-1

derived lentiviral constructs (pLVTHM transfer vector,

pCMVD8,74 helper packaging construct and pMD2G vector

encoding for envelope protein) were kindly provided by Dr. Didier

Trono from the Ecole Polytechnique Federale de Lausanne (Switzerland)

and used as reported [51]. The pLVTHM vector contains a GFP

expression cassette and two restriction sites (ClaI and MluI) after the

H1 promoter, thereby allowing direct siRNA cloning. Lentiviruses

encoding scrambled and DOR siRNA were produced by triple

transient transfection of HEK 293T cells using the calcium-

phosphate method. Subconfluent cells were transfected with 10 mg

of pLVTHM encoding scrambled or DOR siRNA, 7 mg of

pCMVD8,74 and 3 mg of pMD2G. Culture medium containing

lentiviruses was harvested 48 and 72 h after transfection. Lenti-

viruses were concentrated by ultracentrifugation (26,000 rpm, 1 h

30 min at 4uC, using a 4 ml sucrose 20% cushion) and resuspended

in 100 ml fresh medium. We stored lentiviral aliquots at 280uC.

Titration was performed transducing 105 HEK293T cells grown in

12-well plates with 1, 10 or 100 ml of a 1/100 dilution of the

concentrated lentiviruses. After 48 h, the percentage of transduced

HEK 293T cells (% GFP positive cells) was determined using an

EPIC H S XL flow cytometer (Beckman Coulter H).

Fifteen million C2C12 myoblasts grown on 12-well plates were

transduced at moi 100 and cells were amplified during 5–7 days.

Transduced cells (GFP-positive) were then sorted with a MoFloH
flow cytometer (DakoCytomationH, Summit v 3.1 software),

obtaining between 93%–99% GFP-positive cells.

Statistical analysis
Data are presented as means6SD. An unpaired Student’s t test was

used to compare two groups. When experimental series involved

more than two groups, statistical analysis was done by one-way

analysis of variance or two-way analysis of variance and further post

hoc Dunnett’s or Tukey’s t tests. Statistical analyses were performed

using the Graph Prism programme (GraphPad Software).
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