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Here we report the identification and molecular function of the p53 tumor suppressor-like protein nvp63 in a non-bilaterian
animal, the starlet sea anemone Nematostella vectensis. So far, p53-like proteins had been found in bilaterians only. The
evolutionary origin of p53-like proteins is highly disputed and primordial p53-like proteins are variably thought to protect
somatic cells from genotoxic stress. Here we show that ultraviolet (UV) irradiation at low levels selectively induces
programmed cell death in early gametes but not somatic cells of adult N. vectensis polyps. We demonstrate with RNA
interference that nvp63 mediates this cell death in vivo. Nvp63 is the most archaic member of three p53-like proteins found in
N. vectensis and in congruence with all known p53-like proteins, nvp63 binds to the vertebrate p53 DNA recognition sequence
and activates target gene transcription in vitro. A transactivation inhibitory domain at its C-terminus with high homology to
the vertebrate p63 may regulate nvp63 on a molecular level. The genotoxic stress induced and nvp63 mediated apoptosis in
N. vectensis gametes reveals an evolutionary ancient germ cell protective pathway which relies on p63-like proteins and is
conserved from cnidarians to vertebrates.
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INTRODUCTION AND RESULTS
All known organisms respond to genotoxic stress and have adopted

strategies to cope with DNA damage. A distinctive feature of the

stress response in multicellular eukaryotes is programmed cell

death, or apoptosis, which eliminates damaged cells. Although

apoptosis and its signal transduction mechanisms are very well

described in vertebrate somatic cells [1], little is known about its

regulation in germ cells. In particular, adverse environmental

conditions like enhanced oxidative stress, UV irradiation, or

nutrition deprivation–all conditions known to directly induce

DNA damage or hamper its repair–result in high germ cell loss.

This ‘‘death by defect’’ is commonly observed in the germ line in

a variety of species across the animal kingdom and might be

a selective mechanism for viable gametes [2]. However it is

unclear how this selection is governed and whether, for example,

p53-like proteins play a role in controlling this response. The

tumor suppressor protein p53 is a key molecule in regulating the

cellular response to genotoxic stress in somatic cells [1] and is

mutated in more than 50% of all human tumors [3]. As ‘‘guardian

of the genome’’, p53 prevents the acquisition of new mutations

during DNA repair and thus protects the integrity of the genome

[4]. The evolutionary origin of its pivotal function has remained

enigmatic and the discovery of two p53 siblings in vertebrates–p63

and p73–further added complexity to this question because of

their high functional diversity. P73 is involved in a variety of

processes ranging from nervous system development to governing

inflammation [5,6] whereas p63 regulates the proliferative

potential of the epidermis [7–9]. Only very recently, first hints

were provided that mammalian p63 also plays a pivotal role in

controlling genome integrity as it specifically protects the female

germ line from DNA damage [10]. Moreover, the question was

raised of whether the genome protective function of p53 in somatic

cells originates from an ancestral germ cell selecting mechanism

that is controlled by p63-like proteins [10].

Apoptotic regulatory mechanisms have been extensively de-

scribed in vertebrates and select invertebrate model organisms

[11–14]; however, investigations into apoptosis in non-bilaterians

has started only recently. Initial investigations revealed the

existence of programmed cell death in the fresh water cnidarian

Hydra [15–20] but the main regulatory mechanisms remained elusive

[21]. To further decipher apoptotic regulatory mechanisms in non-

bilaterians, we chose to study the starlet sea anemone Nematostella

vectensis, which is a model organism belonging to the class of

Anthozoa within the phylum Cnidaria [22]. Cnidaria are regarded

as a sister group to the bilaterian metazoans and are commonly

thought to be closely related to the ur-eumetazoa, which gave rise to

Bilateria and Cnidaria. N.vectensis is extensively investigated as model

organism for embryonic development [23,24] and recent sequencing

of its genome revealed a surprisingly high similarity to the human

genome [25]. Thus results obtained from this model organism may

be particularly informative with regard to the early evolution of

apoptotic regulatory processes in bilaterians.

N. vectensis is exposed to varying levels of solar UV irradiation in

its native habitat, the estuarine salt marshes along the Atlantic and

North Pacific coasts. In order to investigate the response of the

starlet sea anemone to genotoxic stress, we irradiated sexually

mature adult polyps with increasing doses of UV light and

determined the number of apoptotic cells. DNA fragmentation,
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a hallmark of programmed cell death, was detected with terminal

deoxynucleotidyl transferase (TdT)-mediated dUTP nick end

labeling (TUNEL). We found that high UV doses (1200 J/m2)

induced massive apoptosis in the germ cell compartment (Fig. 1A).

The germ cell compartment resides within the mesenteria [26],

which together with the epithelium constitute the body column of

adult N. vectensis polyps. TUNEL-positive cells were larger in size

than the surrounding cells and displayed nuclei of high genomic

DNA content. The same cells were also observed in non-irradiated

adult polyps and have been previously described as early gametes

in Anthozoa [27]. The number of apoptotic gametes was

dependent on the dose of UV irradiation delivered: 12 J/m2

induced cell death in about 20% of all early gametes, 120 J/m2

eliminated more than 60%, and at a dose of 1200 J/m2 all early

gametes were apoptotic (Fig. 1B). Almost none of the somatic cells

present in the same tissue compartment or in the adjacent

epithelium consisting of both ectoderm and endoderm responded

with cell death at these doses.

In vertebrates the transcription factor p53 is a key protein that

activates apoptosis in response to excessive DNA damage. Since

p53-like proteins have been identified so far only in bilaterians

[28], the evolutionary origin of this function has remained

enigmatic. In light of the hypothesis that an ancient germ cell

selective mechanism is mediated by transcription factors that are

p63-like proteins, we asked how non-bilaterians control apoptosis

and whether or not p53-like proteins would also be present in

N. vectensis. To test for p53-like transcription factors in adult polyps

in vivo, we performed electrophoretic mobility shift assays (EMSA)

with whole animal lysates and radioactively labeled oligonucleo-

tides containing either a random DNA sequence (Fig. 1C, left part

of the EMSA) or the consensus p53 responsive element first

described by El Deiry et al. [29] (Fig. 1C, right part of the EMSA).

With this assay we detected two different protein complexes

(Fig. 1C, arrow and arrowhead) that bound the consensus p53

responsive element (RE) but not the random DNA oligonucleo-

tide. Human TAp63a transfected in human SAOS-2 cells was

analyzed in parallel to verify the functionality of the assay.

Furthermore, we investigated the consequence of either c- or UV

irradiation on the DNA binding of these two protein complexes.

UV irradiation but not c-irradiation of adult polyps enhanced

DNA binding of the slower migrating protein complex (Fig. 1C,

arrowhead) as shown by increased signal intensity. In contrast, the

faster migrating complex (Fig. 1C, arrow) remained unaltered.

The EMSA thus indicated that proteins or protein complexes that

bound the p53 RE are present in adult polyps and are selectively

induced after UV irradiation.

In contrast to the single p53-like homolog found in classical

bilaterian invertebrate model organisms like D. melanogaster and C.

elegans, RT-PCR and bioinformatic approaches identified three

homologs of the vertebrate tumor suppressor protein p53 in this

cnidarian. The three homologs were named nvp63, nvpEC53 for

ecdysozoan-like p53 homologue, and nvpVS53 for very short p53

homolog (Fig. 2, 3). Full length cDNAs for all three family

members were obtained by 59 and 39 RACE experiments with

total RNA preparations isolated from adult polyps (nvp63 GI:

DQ632751; nvpEC53 GI: EF424412; nvpVS53 GI: EF424410-1).

The core DNA binding domain is invariably present in all

known p53-like transcription factors and its sequence similarity

ranges from 37% to 42% within the starlet sea anemone p53-like

protein family (Fig. 2A, B). This is lower than the percentage of

amino acid identities observed within the human p53 protein

family (59% to 86%). Whereas the vertebrate p53, p63 and p73

evolved from one ancestral p53-like protein during evolution of

Deuterostomia, the three N. vectensis p53-like proteins evolved

independently in cnidarians. Cross-species comparison of the two

protein families revealed that N. vectensis p53-like paralogs are 35%

to 46% identical to the human p53 protein family (Fig. 2B). In

contrast, CEP-1 in C. elegans [12] and dmp53 in D. melanogaster [11]

are only 18% and 27% identical to the human p53 protein family.

Phylogenetic sequence analysis using a consensus model tree with

additional p53-like proteins from other species and covering the full

length protein sequences support the suggested evolution of the

vertebrate p53 protein family (Fig. 3A). All three N. vectensis paralogs

root at the base of the phylogenetic tree. The bootstrap values in the

un-rooted phylogenetic tree reflect the divergence of the N. vectensis

protein family (Fig. 3B). Whereas nvpEC53 is allocated to the single

p53-like proteins found in the ecdysozoans C. elegans or D.

melanogaster, the third p53-like protein family member in N.

vectensis–nvpVS53–branches off separately in the consensus tree.

In situ hybridization indicated that nvp63 is almost exclusively

present in the mesenteria of adult N. vectensis polyps (Fig. 4A–G).

Strongest expression of nvp63 mRNA was detected within the germ

cell compartment of adult polyps. The same subset of round shaped

early gametes, which undergo cell death upon UV irradiation, were

also positive for nvp63 mRNA expression (Fig. 4C,F). These early

gametes are distinct from small stem cells expressing the dead-box

helicase protein vasa (nvvasa) in the germ line of N. vectensis [30].

Based on the highly specific localization of nvp63 mRNA, we further

analyzed the nvp63 gene, cDNA and protein.

The nvp63 cDNA (Fig. 5) encodes three major protein domains

common to all vertebrate p53-like transcription factors: The nvp63

DNA binding domain (DBD) and the C-terminal oligomerization

domain (OD) are highly conserved to the human p53 family

member p63 (Fig. 6A). A lower but still significant similarity was

observed between the N-terminus of nvp63 and the transactivation

domain (TAD) at the N-terminus of vertebrate p63 and p53. In

addition to these three typical transcription factor domains, two

exons at the 39 end of the nvp63 gene encode a putative

transactivation inhibitory domain (TID) originally identified in

hup63 [31]. The exons encoding the DBD and OD of nvp63 are

separated by five introns at identical positions as in the hup63, hup53

and hup73 gene. Thus the core gene structure and parts of the

protein domain structure of nvp63 have been well conserved from

anthozoans to vertebrates (Fig. 6B). The gene structure of nvpVS53

or nvpEC53 is less similar to the vertebrate p53 gene family.

To test whether nvp63 binds to the consensus p53 RE, full

length nvp63 protein with a C-terminal myc tag was over-expressed

in the human cell line SAOS-2. Subsequently, the DNA binding of

nvp63 protein was assessed in a DNA binding assay in vitro (Fig. 7A).

Nvp63 bound to the canonical p53 RE with twelve fold higher

specificity than to a random DNA sequence. The signal strength of

the specific DNA binding was comparable to the signal strength

determined for two hup63 protein variants, huTAp63a and

huTAp63c, which were identified previously [32,33].

Transactivation reporter assays in a heterologous expression

system with human SAOS-2 cells revealed functional conservation

over more than 700 million years of evolution. Nvp63 induced the

transcription of a reporter plasmid containing the canonical p53

binding DNA sequence when overexpressed in SAOS-2 cells

(Fig. 7B). In hup53, DNA binding of the DBD depends on Arginine

176, a mutational hot spot frequently altered in cancer [34] that

turns hup53 (R176) into a dominant negative mutant. Substitution of

the identical Arginine (R204) in hup63 results in an autosomal

dominant disorder characterized by ectrodactyly, ectodermal

dysplasia, and orofacial clefts (EEC) [35], which is most likely due

to a functional failure of hup63 to bind to its target DNA. Point

mutants of the corresponding Arginine 190 in nvp63 (R190A) also

failed to transactivate the luciferase reporter plasmid showing that
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Figure 1. UV-induced germ cell death in adult starlet sea anemones. A The immunofluorescence image depicts the germ cell compartment of the
mesenteria in a transverse section of an adult polyp. The epithelium of the body column consisting of ectoderm and endoderm is visible in the lower
left corner. TUNEL staining (green) indicates the number of apoptotic cells in the mesenteria of adult polyps after 1200 J/m2 UV irradiation. Massive
fragmentation of genomic DNA is detected in the germ cell compartment, whereas only few TUNEL positive cells were visible in the epithelium.
Genomic DNA is stained with propidium iodide (red). Scale bar 150 mm. B Cell death in the germ cell compartment was quantified following different
doses of UV irradiation by counting all TUNEL-positive gametes versus the total number of gametes. Error bars: standard deviation; * equals P,0.05,
** equals P,0.01, *** equals P,0.001. C Electromobility shift assay (EMSA) with whole protein lysates of irradiated (UV- or c-IR) or non-irradiated adult
N. vectensis polyps revealed DNA-binding activity for the canonical p53 binding sequence. Lysate was either incubated with a radioactively labeled
control oligonucleotide with random DNA sequence (left section of the EMSA) or with a radioactively labeled oligonucleotide containing the
consensus p53 DNA binding sequence (right section of the EMSA). Two different protein complexes (arrow and arrowhead) were detected using
whole animal lysates from adult polyps when incubated with the p53 DNA binding sequence encoding oligonucleotide. SAOS-2 cells transfected with
human TAp63a or vector only were analyzed in parallel as controls.
doi:10.1371/journal.pone.0000782.g001
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proper DNA binding of the DBD in nvp63 is dependent on the same

critical residues as in vertebrate p53-like proteins.

The DNA binding and transactivation capabilities of hup63 are

induced when the outermost C-terminus is removed artificially [31],

revealing it as a transactivation inhibitory domain (TID). Deletion of

the last 34 amino acids in nvp63 (DC) increased transactivation

activity in the reporter assay (Fig. 7B). The higher levels of

transcriptional activation indicated the presence and functional

Figure 2. Protein sequence comparisons of the DNA binding domains of the human and N. vectensis p53 protein family. A Protein sequence
comparison of the DNA binding domain sequences between the human (hu) and N. vectensis p53 protein family (nv). Black circles indicate all amino
acids with direct contact to DNA identified in human p53 and black rectangles mark amino acids that complex a zinc atom. All of these amino acids
are conserved in all N. vectensis p53 paralogs. B Protein sequence identities of the DNA binding domain within the p53 protein family of the species
H. sapiens and N. vectensis are depicted. The thick double arrow indicates the range of protein sequence identities of all possible cross species
sequence comparisons.
doi:10.1371/journal.pone.0000782.g002
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preservation of a TID as a potentially regulatory element not only for

human p63 but also for nvp63 mediated transactivation.

Next, we asked whether UV irradiation induces nvp63

transactivation activity in a heterologous expression system in

vitro. Strong UV irradiation (1200 J/m2) of SAOS-2 cells

transfected with the transactivation reporter system as described

above increased nvp63 mediated reporter gene transactivation

(Fig. 7C). This result suggests that the transactivation activity of

nvp63 is responsive to UV irradiation. Because nvp63 itself is

transcribed from a strong constitutively active expression plasmid,

it is likely that post-translational modifications may regulate its

activity by inactivation of the putative C-terminal TID.

In summary, nvp63 bound to the consensus DNA sequence

recognized by hup53 and transactivated target gene transcription

in vitro. UV irradiation increased nvp63-mediated target gene

transcription in vitro and nvp63 localizes to early gametes that

undergo UV-induced cell death in vivo. UV irradiation of adult

polyps increased the signal of a protein complex bound to the p53

RE in vivo. These results suggested that UV-induced apoptosis of

early gametes might be controlled by nvp63 in vivo.

To reveal the in vivo function of proteins in N. vectensis in general

and of nvp63 in particular, we evaluated RNA interference as

a strategy to knock down proteins in adult polyps in vivo. We tested

the effectiveness of siRNAs targeting the ubiquitously expressed

gene glyceraldehyde-3-phosphate-dehydrogenase (nvGAPDH)

and the germ line-specific proteins nvvasa1 and its paralog

nvvasa2. Adult polyps were incubated with double stranded

siRNA molecules for 48 h and protein levels were subsequently

determined by Western blotting (Fig. 8A). Incubation of adult

polyps with nvGAPDH-specific siRNAs did not change

nvGAPDH protein levels significantly when normalized to the

control nvb-actin signal (Fig. 8B, left). In contrast nvvasa-specific

siRNAs efficiently eliminated all nvvasa protein (Fig. 8B, right).

Nvvasa protein expression was assessed with an anti-vasa broad

specific polyclonal antiserum first described by Chang et al. [36]

which was successfully tested for detection of nvvasa in adult N.

vectensis polyps by Extavour et al. [30]. Because two different nvvasa

proteins (nvvasa1 and nvvasa2) exist and are potentially expressed

in adult sea anemones we assessed the specificity of the RNA

interference approach. The protein signal for nvvasa was nearly

completely absent when nvvasa1 and nvvasa2 siRNAs together or

nvvasa1 specific siRNAs alone were administered (Fig. 8C). In

contrast, nvvasa remained detectable by the polyclonal antiserum

following RNA interference with nvvasa2 specific siRNAs,

suggesting that nvvasa1 is either the predominant isoform or

preferentially detected by the antibody. As observed for other

invertebrates like C. elegans [37], a nearly complete protein knock

down can be achieved in the germ line, whereas somatic cells are

relatively resistant to short term siRNA incubations.

In light of the findings that (1) the nvp63 mRNA is expressed in

early gametes of adult polyps that undergo UV irradiation

induced apoptosis and (2) the nvp63 protein bound to the

conserved p53 DNA binding sequence and (3) nvp63 mediated

gene transcription can be stimulated by UV irradiation in vitro, we

tested whether nvp63 mediates UV irradiation induced gamete

death in adult N. vectensis polyps, e.g. whether nvp63 knock down

would reduce UV irradiation-induced apoptosis of early gametes.

Adult polyps were incubated either with one of three different

siRNAs against nvp63 or a control random sequence siRNA.

Quantitative PCR determined a loss of over 90% of nvp63 mRNA

molecules after 48 h of siRNA incubation (Fig. 8D). Subsequently,

adult polyps incubated either with a scrambled siRNA or with

nvp63 specific siRNAs were irradiated with 12 J/m2 UV light,

a UV dose which is sufficient to induce apoptosis but low enough to

reveal effects caused by the absence of nvp63 protein (Fig. 8E).

Determining the number of apoptotic early gametes we found that

only the nvp63 specific siRNAs but not scrambled siRNAs reduced

the number of TUNEL positive cells in adult polyps (Fig. 8E, F). This

experiment showed that knock down of nvp63 prevented the

execution of the apoptotic program in early gametes. Therefore

nvp63 is most likely required for UV-induced germ cell death in

adult N. vectensis polyps.

Figure 3. Phylogeny of p53-like proteins. A Schematic depicting a rooted phylogenetic tree for the p53 protein family of different species (nvpEC53,
nvp63, nvpVS53: Nematostella vectensis, Cnidaria. Hup53, hup63, hup73: Homo sapiens, Deuterostomia. Lfp53: Loligo forbesi; map63/p73: Mya
arenaria, Ecdysozoa. Dmp53: Drosophila melanogaster and CEP-1: Caenorhabditis elegans, Lophotrochozoa). B An unrooted phylogenetic tree with
bootstrap values from 1000 iterations is depicted.
doi:10.1371/journal.pone.0000782.g003
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Taken together these data provide intriguing evidence that in

basal eumetazoans UV-induced cell death in the germ line is

mediated by the human p63-like protein nvp63. Therefore

activation of nvp63 after genotoxic stress in the germ line might

serve as a mechanism to eliminate damaged gametes.

DISCUSSION
Here we report first clues for a molecular mechanism that controls

apoptosis in a non-bilaterian animal, the sea anemone Nematostella

vectensis. Cnidaria with a vast spectrum of species belong to the

oldest animal phylae known and hold a key position at the base of

the animal tree. Given the lack of p53-like proteins in unicellular

eukaryotes, the discovery of p53-like molecules in cnidarians

provides intriguing insight into the evolutionary origins of

apoptosis controlling mechanisms.

A defining feature of all members of the p53 protein family

characterized so far is that they bind to the canonical p53

responsive element. The core DNA binding domain and the

canonical p53 RE can therefore be designated as an evolutionary

conserved module. The discovery of a TID domain at the far C-

terminus of nvp63 suggests the existence of a regulatory

mechanism for nvp63 protein activity that has also been conserved

through evolution. In contrast, nvpEC53 and nvpVS53 may have

acquired functions other than that of nvp63 as concluded from the

low protein sequence similarity between the three family members.

A molecular mechanism to protect the germ line is of major

importance since deleterious mutations would boost the cost of

reproduction if not selected against before fertilization. Therefore

programmed cell death in N. vectensis gametes may act as

a safeguard mechanism against too high mutational load in the

germ line. Indeed germ cell death by defect is a recurring

phenomenon observed in a variety of bilaterian species [2].

Consistent with the expression of nvp63 in the germ cell

compartment of adult N. vectensis polyps, p53-like molecules have

been found in the germ line of other species like C. elegans [38] and

M. musculus [10] where they induce germ cell death upon c-

irradiation. The high functional conservation suggests that p63

may be a key protein within an evolutionary ancient germ line

protective pathway.

A germ cell selective mechanism mediated by p53-like proteins

on the one hand functions to maintain the integrity of the genome

transmitted to the next generation. On the other hand, it may

cause infertility in response to excessive or chronic genotoxic stress

and may thereby threaten the survival of a species. The apoptotic

response observed in the germ line of cnidarians is of special

interest given that anthropogenic activities change the global

climate with negative consequences for biodiversity [39]. One of

the changes is elevated UV irradiation due to reduction or even

depletion of the stratospheric ozone layer [40]. Elevated exposure

to solar UV irradiation has a broad impact on marine species

Figure 4. Nvp63 localizes to gametes. A–G Non-radioactive in situ hybridization revealed nvp63 expression in mesenterial gametes. A Adult N.
vectensis polyps were sectioned longitudinally in the middle of the body column. B The Hematoxylin and Eosin staining (H&E) of the boxed region in
A depicts the three prominent tissues in anthozoa: Ectoderm (ec) and entoderm (en) are separated by a mesoglea (mg). The mesenteria (me) reside
within the body cavitiy of the polyps. C Strong hybridization of the antisense riboprobe was observed within mesenteria (region according to boxed
area in B). D The hybridization signal was absent in serial sections incubated with the corresponding sense probe. Higher magnification of nvp63-
positive cells indicated that a sub-population of larger, nearly round cells (E) express high levels of nvp63 (F), which is absent in control hybridizations
(G). Arrows indicate round shaped gametes. Scale bars: A 0.5 cm; C,D 50 mm; E–G 10 mm.
doi:10.1371/journal.pone.0000782.g004
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Figure 5. Nvp63 cDNA sequence. The mRNA for nvp63 comprises 158 bp of 59-untranslated region with an in-frame stop codon preceding the start-
methionine, a coding DNA sequence of 1485 bp (495 amino acids) length, and 1200 bp of 39 UTR terminated by a polyadenylation signal. The open
reading frame encoding the nvp63 protein is underlined in red. The stop codon preceding the open reading frame in the 59 UTR and the putative
polyadenylation signal at the end of the 39 UTR are boxed.
doi:10.1371/journal.pone.0000782.g005
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ranging from reduced photosynthetic activity of phytoplankton to

defects in fish larval development [41]. Especially in combination

with global warming this rise in UV irradiation has been proposed

to alter the onset and magnitude of the reported biodiversity

decline in coral reefs over the last decade [42,43]. Despite

extensive observations it is still under debate how cnidarians, to

which reef forming corals belong, react to enhanced UV

irradiation and cope with the increase of genotoxic stress. In

particular, the molecular mechanisms involved in regulating the

cellular stress response in the phylum Cnidaria have not yet been

investigated.

Here we show that nvp63 may induce cell death in response to

low doses of UV irradiation in gametes of N. vectensis. Natural UV

irradiation of the normal habitat of N. vectensis may be an

important genotoxic stressor: Although solar UV-irradiation is

absorbed efficiently within the first meters of the surface water, in

flat estuarine salt marshes–the natural habitat of N. vectensis–this

protective barrier is subject to high variations due to water level

changes for example along with the tide (Fig. 9). This leads to

a more than 100-fold increased UV exposure of benthic organisms

during low tide than during high tide. The amount of DNA

damage induced by UV irradiation is inversely exponentially

correlated to the height of the water column [44] and resident

animals in shallow waters thus require highly inducible molecular

response mechanisms to protect themselves against this variation

in genotoxic stress.

Figure 6. Protein comparison of nvp63 to hup63 and gene structure comparison of N. vectensis p53 protein family to hup63. A Protein sequence
comparison between the human TAp63a (hup63) and nvp63. Highly identical regions comprise the N-terminus, the core DNA binding domain, the
tetramerization domain, and the C-terminus. Several SQ motifs are present within the first 23 amino acids at the N-terminus. These motifs were
identified in vertebrates as possible phosphorylation sites for DNA damage-induced kinases ATM or ATR [50,51]. This potentially regulatory part of the
protein is followed by a glutamate/aspartate rich amino acid sequence which is common to transcriptional activation domains (not shown in
sequence comparison). Like in other invertebrates, nvp63 lacks the amino acid motif (WxxYF) otherwise present in the transactivation domain of
vertebrate p53 family members. B Schematic representation of the nvp63, nvpVS53, nvpEC53, and human hup63 gene. All three p53-like genes were
assembled according to the cDNA sequences determined by 59 and 39 RACE experiments. The nvp63 gene includes 14 exons (boxes) of which 11
exons encode the nvp63 protein (open boxes). 59 and 39 non-translated sequences are indicated by black boxes. The arrow depicts the transcriptional
start site. The transactivation domain (TAD), the DNA binding domain (DBD), the oligomerization domain (OD), sterile alpha motif domain (SAM), and
the transactivation inhibitory domain (TID) are boxed in yellow, red, green, blue and light grey respectively. Greek letters indicate alternative splice
variants identified for hup63. DN indicates a cryptic transcriptional start site in intron 3 of the human p63 gene. Four introns interspersed within the
DNA binding domain and one intron at the N-terminus of the tetramerization domain in nvp63 are at identical positions as in vertebrates. The
nvpEC53 gene has acquired one more splice site within the 59 end of the DNA binding domain and comprises in total more exons than the two other
sea anemone genes nvp63 and nvpVS53. One of the introns conserved from nvp63 to human p63 within the DNA binding domain is absent in
nvpVS53. The C-terminal variants of nvpVS53 identified so far are devoid of the canonical OD and putative TID. The observed alternative 39 exon
(exon 9) for nvpVS53 may translate a protein with altered DNA binding capacity. Alternatively, additional splicing patterns might exist during specific
developmental stages.
doi:10.1371/journal.pone.0000782.g006
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Whereas the elimination of damaged gametes through nvp63-

mediated apoptosis may contribute to maintain genome fidelity

and stability and thus preserves a key feature of a stem cell, it may–

as a negative consequence–lead to reduced fertility in response to

high or chronic genotoxic stress. A decline in biodiversity

subsequent to climate changes may thus not only be caused by

death of developing or adult animals [45] but may also be

a consequence of reduced fertility–a yet unrecognized correlation.

Based on the results presented, further experiments in natural

settings may take into account altered fertility of animals as

a consequence of climate changes.

Nvp639s protein structure, its localization in early gametes, and

function suggest that the induction of apoptosis in the germ line

upon genotoxic stress is a primordial function of the p53 family

that existed already before bilaterians evolved. Further research

will decipher the network activating nvp63 and identify compo-

nents of this stress response pathway. The analysis of these

signaling pathways and the regulatory molecules that decide over

cell death after genotoxic stress in non-bilaterians will lead to

a better understanding of the molecular evolution of DNA-

protective mechanisms, which prevent malignant cell transforma-

tion and cancer in humans.

MATERIALS AND METHODS

In vivo experimental procedures
Adult Nematostella vectensis polyps were collected in the Greater

Sippewissett salt marshes at Cape Cod, MA, USA, or provided by

the aquatic resources of the Marine Biological Laboratories in

Woods Hole, MA, USA and cultivated in 1/3 artificial seawater

(Tropic Marin), 2/3 freshwater under standard laboratory

conditions [46]. All animals were fed every 24 h to 48 h with

Figure 7. Nvp63 drives gene transcription in a heterologous expression system. A The direct binding for nvp63, human TAp63a, and human
TAp63c to the consensus p53 DNA binding sequence was determined in vitro. Lysates of SAOS-2 cells transfected with myc-tagged nvp63, TAp63a, or
TAp63c were incubated with biotinylated DNA encoding the canonical p53 binding sequence or random sequence. DNA-protein complexes bound
to streptavidin were detected with an anti-myc-tag antibody. The value determined for the binding to the random DNA sequence was subtracted
from the value obtained for the binding to the p53 binding sequence for each protein lysate. All obtained values are normalized to control. The
dashed line indicates the signal obtained for the lysate with the random DNA sequence and the signal obtained with the p53 consensus DNA binding
sequence. B Co-transfection of a luciferase reporter plasmid containing several repeats of the canonical p53 binding sequence allowed the
determination of the level of nvp63-mediated transactivation. The mutation R190A in nvp63 abolished while the deletion of the C-terminal 34 amino
acids (DC) induced reporter gene transcription. A schematic depicts the nvp63 protein and mutated variants. The transactivation domain (TAD), the
DNA binding domain (DBD), the oligomerization domain (OD), and the transactivation inhibitory domain (TID) are boxed in yellow, red, green and
light grey respectively. The black triangle and bar in the DNA binding domain indicates the position of the point mutation (R190A). C UV irradiation
(1200 J/m2) of nvp63 expressing SAOS-2 cells increased the transactivation ability of nvp63. The fold induction in nvp63-transfected SAOS-2 cells is
normalized to controls.
doi:10.1371/journal.pone.0000782.g007
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Figure 8. UV irradiation induced apoptosis is nvp63 dependent. A Schematic representation of the experimental protocol for the siRNA treatment
of adult polyps. 24 h starved adult polyps were incubated in artificial sea water containing 10 mM double stranded siRNA for 48 h at room
temperature. Subsequently, protein expression was analyzed by Western blotting. B Western blots depict the expression of nvvasa, nvGAPDH, and
nvb-actin after treatment of adult polyps with the indicated siRNA. Bar graphs indicate the amount of expression relative to cytoplasmic b-actin and
after normalization to the scrambeled siRNA value. C Nvvasa1 is efficiently suppressed by RNA interference in the experimental setup. Adult polyps
were incubated with a non-vasa siRNAs, a mixture of nvvasa1 and nvvasa2 siRNAs in equal amounts, or with nvvasa1 siRNAs or nvvasa2 siRNAs alone.
The relative signal intensities normalized to nvGAPDH are visualized in the bar graphs below the Western blot signals. D Quantitative RT-PCR
determined the knock down of nvp63 mRNA in adult polyps by the siRNA nvp63si1. The amount of nvp63 mRNA was normalized to nv18S-rRNA
expression. E UV-induced apoptosis was determined at 12 J/m2 after incubation of adult polyps with the siRNAs indicated. Nvp63 specific siRNAs
suppressed UV-irradiation induced death of gametes. * equals P,0.05, ** equals P,0.01. F Cell death was detected by TUNEL staining (green) on
mesenterial tissue sections from adult polyps incubated with either scrambled siRNA or nvp63 specific siRNAs. Genomic DNA was visualized with
Hoechst 3342 (colored in red).
doi:10.1371/journal.pone.0000782.g008
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freshly hatched Artemia salina (Brineshrimpdirect, Utah). Experi-

ments were carried out with adult N. vectensis at least 24 h after the

last feeding.

Cloning of the nvp63 cDNA, sequence analysis, and

molecular modeling
A fragment of the nvp63 sequence homologous to Mya arenaria

p63/p73 was identified in the NCBI EST database by BLAST

sequence homology searches [47] and RT-PCR. The 39 end and

59 end were determined by rapid amplification of cDNA ends and

all sequences were compared to WGS trace files and ESTs

available at NCBI and www.stellabase.org [48]. The full length

coding DNA sequence was amplified by RT-PCR from total RNA

isolated from adult polyps. The nvp63 gene was assembled from

WGS trace files by sequence comparison with the software

package Lasergene (DNAstar, Madison). The nvp63 cDNA

sequence (GI: DQ632751) and the annotation of the nvp63 gene

(GI: BK005818) were deposited at GenBank. The mRNA

sequences and the gene sequences for nvpEC53 and nvpVS53

were identified and assembled as described above (nvpVS53

cDNA GI: EF424410-EF424411; nvpEC53 cDNA GI:EF424412).

Sequence alignments were performed with ClustalW [49] and

the following protein sequences were used for the phylogenetic tree

construction with the PHYLIP package (Felsenstein, J. 2005.

PHYLIP (Phylogeny Inference Package) version 3.6): Homo sapiens

p53 (gi: 189478), Homo sapiens p63 (gi: 3695081), Homo sapiens p73

(gi: 2370175), Mya arenaria p63/p73 (gi: 7689272), Drosophila

melanogaster p53 (gi: 8453175), Caenohabditis elegans CEP-1 (gi:

51038400). Phylogenetic trees were calculated with the NJ and

UPGMA method and rooted subsequently. The protein sequences

were aligned with CustalW and aligned sequences were boot-

strapped 1000 times with SEQBOOT. Distance matrices of the

protein sequences were calculated with PROTDIST and trees

were assembled by NEIGHBOR. The bootstrap values are

presented at the consensus tree (CONSENSE) determined.

Transcriptional activation reporter assay
The nvp63 CDS obtained by RT-PCR was subcloned in

pcDNA3.1A-myc/his vector and protein expression was detected

in transiently transfected BHK cells with the monoclonal anti-c-

myc antibody 9E10 by standard immunocytochemistry. SAOS-2

cells were transiently transfected with pRL (Stratagene), the p53

responsive element containing plasmid p53RE-pGL3, and the

appropriate protein expression plasmid using Lipofectamine

(Invitrogen). Transcriptional activation was determined in tripli-

cates with the Dual-Glo Luciferase assay system (Promega).

Luciferase expression was driven by the p53 DNA binding

element of the human p21 gene and the resulting luminescence

signal was normalized to the co-transfected Renilla plasmid.

DNA binding and electromobility shift assay
To quantify DNA binding, SAOS-2 cells were transiently

transfected with the pcDNA3.1A-myc/his plasmids encoding the

cDNA of interest. Cells of one confluent well (12 well plate) were

lysed in 30 ml binding buffer (20 mM Hepes pH 7.9, 20%

Glycerol, 450 mM NaCl, 1% Nonidet P-40, 1 mM MgCl2,

0.5 mM EDTA, 0.1 mM 1,4-Dithiothreitol, Complete Protease

Inhibitor Cocktail (Roche)) 24 h post transfection for 30 min at

4uC and remaining debris removed by centrifugation. 2 ml lysate

was incubated in the presence of 0.5 mg poly dIdC with 2 pmol

biotinylated double strand oligonucleotide coding either for the

p53 DNA binding consensus (59-/Bio/CCCGGGGCTGA

ACATGTCTAA GCATGCTGAC CGGCCGG-39) or random

(59-/Bio/CCGGCCGGAT GCCAAGCAGG TCCTTTAACA

GCCCGGG-39) sequence. Bound protein was detected with anti-

myc-tag monoclonal antibody and quantified with the TransFac-

tor Universal Chemiluminescence Detection Kit according to the

manufacturer’s recommendations (Clontech). The chemilumines-

cence signal was measured in a Wallac VICTOR2 1420 multilabel

counter and each signal individually corrected for the background

value obtained with the random DNA sequence.

For electrophoretic mobility shift assay, UV-irradiated (4800 J/

m2, Stratalinker, Stratagene, 3 h recovery at room temperature)

and control adult animals were completely dissolved in lysisbuffer

(25 mM Hepes pH 7.6, 50 mM KCl, 1 mM DTT, 1 mg/ml BSA,

0.1% Triton X100, 20% Glycerol, 5 mg/ml EDTA-free complete

Protease inhibitors (Roche, Bale, Switzerland), Phosphatase

Inhibitor Cocktail Set I and II, 1:100 diluted each (Sigma),

50 mg/ml poly-dIdC (Amersham), 50 mg/ml calf thymus DNA

(Amersham)), sonicated, and lysates cleared from tissue and cell

debris by centrifugation. Reverse complementary oligonucleotides

harboring the canonical p53 (59TAGACATGCCT AGA-

CATGCCTA39), the p63 (59AGCTTGGACA TGCCCAGG-

CAG39), or the random DNA sequence (59ATGCCAAGCAG

Figure 9. UV exposure in tidal marshes strongly depends on the sea level. The schematic qualitatively depicts the fluctuations in UV exposure for
N. vectensis as a function of the sea level. Most of the DNA-damaging UV light drops within the first 1–2 meters to about 10% of UV irradiation present
at the water surface. DNA damage caused by UV-irradiation decreases by several magnitudes within the first meters of coastal sea water.
doi:10.1371/journal.pone.0000782.g009
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GTCCTTTAACA39) were annealed and radioactively labeled by

DNA polymerase I (NEB) mediated fill-in of 59 guanosine

overhangs (5 nt). 1 ng of annealed and radioactively labeled

oligonucleotide was added to the protein lysate and incubated for

30 min on ice. Protein-DNA complexes were separated by native

polyacrylamide gel-electrophoresis (4% Polyacrylamide, 0.36Tris-

Borate-EDTA buffer, 2% Glycerol, 0.05% Nonidet-P40) for 3 h at

300 V, 4uC. Gels were dried and exposed to a phosphoimaging

plate.

In situ hybridization
Adult polyps were relaxed with 3% urethane, fixed with 4%

paraformaldehyde in 1/3 artificial sea water and embedded in

tissue freezing medium (OTC, Jung, Nussloch, Germany).

Longitudinal cryosections of 10 mm thickness were prepared and

in situ hybridization was performed essentially as described [35].

Briefly, pretreated cryosections were incubated with sense and

antisense digoxygenin labeled riboprobes over night at 60uC.

Riboprobes covering the N-terminus of the nvp63 coding DNA

sequence (nt 1-841) were generated by standard in vitro

transcription in the presence of digoxygenin labeled-UTP.

Hybridized cRNAs were detected with Alkaline Phosphatase

conjugated antibodies to digoxygenin (Roche) and visualized by

precipitation of NBT/BCIP (Promega). Sections were mounted in

Mowiol (Sigma) and photographed with a Zeiss Axioscope2

microscope equipped with an Axiocam HRc.

TUNEL assay and immunohistochemistry
Each adult polyp was placed in a droplet of medium in a Petri dish

and UV-irradiated (Stratalinker, Startagene). Animals were kept

for additional 8 h–12 h in the appropriate medium. Polyps were

embedded in tissue freezing medium (OTC, Jung,) and transver-

sally cut in 10 mm sections. Terminal deoxynucleotidyl transferase

(TdT)-mediated dUTP nick end labeling (TUNEL) was performed

with the In Situ Cell Death Detection Kit according to the

manufacturer’s recommendations (Roche). DNA was stained with

Propidium Iodide and Hoechst 29934 (Molecular probes). At least

10 microphotographs for each condition were taken with a Leica

SP2AOBS confocal microscope (Leica). Gametes were identified

based on the high genomic DNA density and counted with

Openlab software (Improvision). The percentage of apoptotic cells

was calculated from the number of TUNEL positive gametes

divided by all gametes identified on the section area. The standard

deviation and the Student’s t-test was calculated with Prism

(Graphpad Software).

RNA-interference mediated gene knock down
Adult polyps were incubated in 1/3 artificial sea water containing

10 mM siRNA for 24 h prior to UV irradiation. Double stranded

siRNAs were either purchased from MWG Biotech (nvp63si-1: 59–

UGAAGUGACC UCAGUCUAA(dTdT)–39) or generated with

the Silencer siRNA Construction Kit (Ambion) (nvp63si-2: 59–

AAUGACGUCA AUGGAUUAUU A(UU)–39; nvp63si-3: 59–

AAGAGUUCAC CAUUACGUUU C(UU)–39; scrambled: 59–

AAUAGCAGAU UGCUAUGUAU A(UU)–39). The GAPDH

mRNA was blocked with the siRNAs nvGAPDHsi-1 59-AAC-

GAUCCCU UCAUCGACCU A(UU)-39 and nvGAPDHsi-2 59-

AACUCUGGAG AAAGCCGGCU U(UU)-39. Both cDNA

sequences for nvvasa1 and nvvasa2 were assembled in full length

from EST data available and their size calculated to 49.1 kDa for

nvvasa1 and 51.7 kDa for nvvasa2. SiRNAs targeting these

(nvvasa1-si: 59-AAAGAGUCCA GACAAACGCU UUU-39 ;

nvvasa2-si: 59-AAUGAAAAGA GAGACAGGUU AUU-39) were

designed according to the cDNA sequences inferred from

assembled ESTs.

For Western blotting and protein detection polyps were lysed,

tissue and cell debris were spun down, and proteins in the

supernatant separated by SDS-acrylamide gel electrophoresis.

Following Western blotting nvGAPDH was detected with a mono-

clonal antibody 4G5 (HyTest, Finland). This broadly GAPDH

specific monoclonal antibody detects a single strong signal in

whole cell lysates at a molecular weight at about 118 kD which is

in good accordance with the predicted molecular weight of the

nvGAPDH at 124 kD (Stellabase: SB_59557). Cytoplasmic nvb-

actin was visualized with the monoclonal antibody AC-15 (Sigma)

which was raised against a synthetic cytoplasmic nvb-actin N-

terminal peptide with high homology to the N-terminus of the

predicted nvb-actin (Stellabase: SB_56628). The only signal

detected in N.vectensis protein lysates runs at a molecular weight

of 42 kD which is in good accordance with the molecular weight

(41.8 kD) of the predicted nvb-actin. The polyclonal rabbit

antiserum directed against vasa protein was kindly provided by M.

Akam. The specificity of the polyclonal antiserum for nvvasa

protein was tested previously [30]. Bound antibodies were

visualized with the appropriate HRP-conjugated secondary

antibody and chemiluminescence reaction.

Knockdown of nvp63 was detected by quantitative PCR with

the ABsoluteTM QPCR SYBR-Green ROX mix (Abgene, UK)

and a ABI PRISM 7700 sequence detector (Applied Biosystems,

US) according to the manufacturer’s recommendations. Results

were quantified by comparative CT method as suggested by the

manufacturer.
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