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Background. Migratory animals comprise a significant portion of biodiversity worldwide with annual investment for their
conservation exceeding several billion dollars. Designing effective conservation plans presents enormous challenges.
Migratory species are influenced by multiple events across land and sea–regions that are often separated by thousands of
kilometres and span international borders. To date, conservation strategies for migratory species fail to take into account how
migratory animals are spatially connected between different periods of the annual cycle (i.e. migratory connectivity) bringing
into question the utility and efficiency of current conservation efforts. Methodology/Principal Findings. Here, we report the
first framework for determining an optimal conservation strategy for a migratory species. Employing a decision theoretic
approach using dynamic optimization, we address the problem of how to allocate resources for habitat conservation for
a Neotropical-Nearctic migratory bird, the American redstart Setophaga ruticilla, whose winter habitat is under threat. Our first
conservation strategy used the acquisition of winter habitat based on land cost, relative bird density, and the rate of habitat
loss to maximize the abundance of birds on the wintering grounds. Our second strategy maximized bird abundance across the
entire range of the species by adding the constraint of maintaining a minimum percentage of birds within each breeding
region in North America using information on migratory connectivity as estimated from stable-hydrogen isotopes in feathers.
We show that failure to take into account migratory connectivity may doom some regional populations to extinction, whereas
including information on migratory connectivity results in the protection of the species across its entire range. Conclusions/

Significance. We demonstrate that conservation strategies for migratory animals depend critically upon two factors:
knowledge of migratory connectivity and the correct statement of the conservation problem. Our framework can be used to
identify efficient conservation strategies for migratory taxa worldwide, including insects, birds, mammals, and marine
organisms.
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INTRODUCTION
Migratory birds comprise more than 80% of avian diversity in

temperate regions of the world [1]. Protecting these species

presents a unique conservation challenge because population

abundance is influenced by geographically separated events that

occur during different periods of the year [2]. If maximizing

population persistence is a central goal of species conservation [3],

then the optimal allocation of resources for conserving migratory

species should consider population dynamics throughout the

annual cycle, not just during a single period of the year. However,

the lack of information on how populations are geographically

linked between periods of the annual cycle (i.e. migratory

connectivity) has made it virtually impossible to develop

conservation strategies that incorporate year-round dynamics [4].

Investment in migratory bird conservation is substantial with

over US$650 million allocated to wetland lease and acquisition in

North America for migratory birds in 2005 alone [5]. Global

estimates for this same fiscal year are likely to be several billion if

all migratory species are considered [6]. Current strategies used to

allocate funds are ad-hoc or based on ranking methods [7] and fail

to incorporate both migratory connectivity and the cost of

implementing the conservation action.

Several recent studies addressing cost-effectiveness in conserva-

tion planning provide guidance on how to estimate where, when

and how much to invest for the conservation of non-migratory

species [7–10]. We build upon these approaches using a unique

dataset from a long-distance migratory songbird, the American

redstart (Setophaga ruticilla), to examine whether incorporating

migratory connectivity into habitat protection schemes influences

decisions designed to maximize the persistence of populations. We

demonstrate for migratory species how failure to include estimates

of migratory connectivity leads to the improper formulation of the

problem and could doom regional populations to near extinction.

RESULTS
Following a decision theoretic framework [7,11,12], we employed

an optimal search algorithm Dijkstra [13] to find optimal resource

allocation strategies for two problems; first, to maximize the

number of birds protected across the wintering range, and second,

to maximize the number of birds protected across the entire range

of the species by adding the constraint of maintaining a minimum

population size within each of five temperate breeding regions (see

Materials and Methods).
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To solve the first problem, we developed an optimization model

where sequential decisions to acquire parcels of wintering habitat,

within a fixed budget and time period, were based on rates of winter

habitat loss, land value, and the relative density of birds in each

wintering region (Table 1; see Supporting Information, Text S1 i,

ii). To solve the second problem, we developed an optimization

model that incorporated information on migratory connectivity,

using stable-hydrogen isotopes (dD) to estimate the breeding origin

of individuals sampled on the tropical wintering grounds [14]

(Figure 1; Supporting Information, Table S1). This information

allowed us to estimate the relative change in abundance of breeding

populations as a result of habitat conservation on the wintering

grounds. Although we used land acquisition as our mechanism to

preserve populations, our models can readily incorporate ongoing

management costs [15] and other conservation strategies such as

easements or active management [10].

Our first objective was to maximize the number of birds

throughout the wintering range. The optimal resource allocation

strategy for this objective was to invest solely in Central America

and the Eastern Greater Antilles for the first 30 years (Figure 2a),

then include a single investment in the Western Greater Antilles at

year 35, and a heavy investment in the Lesser Antilles/South

America through to year 45. This optimal strategy did not

recommend an investment in Mexico.

In contrast, by adopting an objective that included the

protection of at least 30% of the redstarts in each of five breeding

regions through incorporating information on migratory connec-

Figure 1. Patterns of connectivity in American redstarts. The
distribution of the most likely breeding region (NW, Northwest; MW,
Midwest; NE, Northeast; CE, Central-east; SE, Southeast) for individuals
at each wintering region (M, Mexico; C, Central America; W, Western
Greater Antilles; E, Eastern Greater Antilles; L, Lesser Antilles/South
America). Black dots indicate sampling locations and bars indicate the
proportion of individuals assigned to each breeding region (rounded to
the nearest 5%) [adapted from ref 14].
doi:10.1371/journal.pone.0000751.g001

Table 1. Estimates used to parameterize optimization problem.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Region
Bird density
(km22)

Habitat Cost ($US
millions/km2)

Cost per bird
($US)

Annual Rate of
habitat loss

Available habitat
(km2)

Parcel size
(km2)

Parcels per
region

Western Greater Antilles 360 (2) 2.88 (4) 8,012 2.5% (1) 351 43 8

Eastern Greater Antilles 537 (1) 3.88 (5) 7,238 1.4% (3) 3523 252 13

Mexico 215 (4) 2.29 (3) 10,645 2.1% (2) 4400 462 9

Lesser Antilles/South America 320 (3) 1.85 (2) 5,768 0.7% (4) 2366 76 30

Central America 90 (5) 0.63 (1) 7,055 0.7% (4) 2207 77 28

Bird density, cost, threat, available habitat, parcel size and number of parcels available for acquisition for 5 regions in the wintering range of the American redstart.
Numbers in brackets represent a rank of parameters based on their relative priority from 1 (high priority) to 5 (low priority). Based on these ranks it is impossible to
design an optimal investment strategy.
doi:10.1371/journal.pone.0000751.t001..
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Figure 2. The total number of parcels purchased in each region over
a 45-year time-horizon. When the objective is to (a) maximize the
number of birds on the wintering grounds and (b) maximize the
number of birds on the wintering grounds and protect a minimum of
30% of birds in each breeding region by taking migratory connectivity
into account.
doi:10.1371/journal.pone.0000751.g002
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tivity, we obtained an entirely different conservation strategy

(Figure 2b). In the first five years, investments were targeted in

Western Greater Antilles, the Lesser Antilles/South America, and

heavily in Central America. In years 5–20, investments were made

solely in Mexico with one land parcel purchased every 5 years. In

years 20–45, investments were made in Central America and the

Eastern Greater Antilles, and heavily in the Lesser Antilles/South

America after year 35.

The conservation strategies to achieve each objective resulted in

large differences in the proportion of birds protected on the

breeding grounds (Figure 3). When migratory connectivity was

ignored, the Northwest region shrank to less than 2% of its original

population size because 82% of birds breeding in this region

wintered in Mexico [14], which did not receive any protection

under objective 1. In contrast, incorporating the conservation of

regional breeding populations into the decision analysis (objective

2) resulted in the purchase of habitat in Mexico despite its cost.

DISCUSSION
We have discovered that key decisions aimed at conserving

migratory populations may depend critically on considering the

link between different periods of the annual cycle. Focusing solely

on maximizing winter population size without considering their

connection to breeding areas has the potential to reduce

dramatically the regional distribution of redstart populations in

North America. In contrast, using information on migratory

connectivity allowed us to set targets for maintaining minimum

population sizes within each breeding region, thereby dramatically

changing the decision pathways and improving the regional

stability thousands of kilometers away on breeding areas.

Our results have immediate implications for the allocation of

funds aimed at conserving migratory species. We demonstrate that

using a decision theoretic approach integrated with information on

migratory connectivity will improve the efficiency of resource

allocation. This approach is applicable to migratory species

around the globe and offers an effective means of identifying

and prioritizing conservation investment strategies.

Due to the number and complexity of parameters involved, it is

unlikely that the strategies we found to be optimal would arise

from a ranking-based method (see Table 1) or expert opinion. We

also suggest that the cost of protecting the wrong or insufficient

winter habitat, which may result in the loss of regional breeding

populations, is very likely to exceed the cost of collecting

information on migratory connectivity and running analyses like

those described here. A decision theoretic approach incorporating

species density, level of threat and cost of collecting migratory

connectivity per species, could be used to develop a species

prioritization list for the collection of data on migratory connec-

tivity. The range of many migratory species also spans multiple

countries or even continents. The probability of compliance with

conservation strategies will likely vary by country or region and

should be considered as another potential factor in the decision

analysis. For migratory birds in particular, the inclusion of key

information about stopover regions including level of threat, the

number of individuals that use each area, their origin and

destination will also be extremely valuable input for this type of

decision analysis.

Because our aim was to find an optimal solution, the sheer size

of the solution search space (see Supporting Information, Text S1

iii) forced us to assume that the system dynamics were deter-

ministic. In doing so, we made several simplifying assumptions. In

the absence of quantitative data, we assumed that American

redstart density was directly proportional to habitat loss, whereby

a loss in a habitat parcel resulted in the loss of birds occupying that

parcel. The budget per time-step was based on the cost of a parcel

in the most expensive region. The number of parcels that could be

purchased for the equivalent cost in each other region determined

the number of parcels available for purchase. This alleviated the

need for a stochastic process to determine how to allocate leftover

funds at each time-step (See Supporting Information, Text S1).

We acknowledge that species density, rate of habitat loss, and cost

are subject to unknown stochastic processes. However, it is not

clear whether a suboptimal stochastic solution [7] would be more

effective than our optimal deterministic solution. We also note that

the optimal strategy presented here is only for one species, whereas

managers must often make decisions that are designed to benefit

multiple species [16]. Our study introduces a framework for

achieving this goal while emphasizing the importance of

considering multiple periods of the annual cycle. We also show

that the optimal decision schedule depends on the time-horizon for

planning such strategies (Supporting Information: Text S1 iv,

Figure S1). Recognizing this dependency will be critical when

making decisions with fixed, short-term budgets subject to long-

term uncertainty.

Despite these caveats, we demonstrate the over-riding impor-

tance of considering year-round dynamics for allocating conser-

vation funds to habitat acquisition for migratory species. Un-

derstanding how different periods of the year are influenced by

conservation strategies can only be achieved through information

on migratory connectivity. Our modeling framework incorporates

this factor and can be applied to all migratory taxa. With this

knowledge, adopting a decision theoretic approach to the optimal

allocation of conservation resources should provide an effective

and timely method for securing the persistence and future of

migratory species around the world.

MATERIALS AND METHODS

Study Species
American redstarts are small (8 g) migratory songbirds that breed

in deciduous and mixed deciduous-coniferous forest across North

America and winter in Central America, the Caribbean, and the

north coast of South America [17]. Evidence suggests that the

quality of habitat used by redstarts on the tropical wintering

Figure 3. The proportion of the summer breeding population
protected, through the conservation of habitat parcels in the
wintering regions with an optimal strategy that ignores migratory
connectivity and one that incorporates migratory connectivity. The
Northwest population is reduced to less than 2%, well below the 30%
threshold, when connectivity data are ignored as denoted by the arrow.
doi:10.1371/journal.pone.0000751.g003
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grounds influences individual success. Redstarts occupying high-

quality mesic habitats, such as coastal mangroves and lowland

forest, are in better condition over the winter, have higher annual

survival rates, depart earlier for spring migration, and have higher

reproductive success the following season on the temperate

breeding grounds compared to individuals occupying lower quality

habitats, such as tropical dry forests [18–21]. These findings

suggest that the availability of high quality winter habitat is a key

limiting factor to the abundance of redstarts. In this study, we

consider coastal mangroves only as they are considered to be most

limiting non-breeding habitat for this species [18–21].

Problem definition and approach
In the first problem our goal was to maximize the number of birds

protected across the winter range. In doing so, we took into

account the amount of winter habitat available for conservation,

its rate of loss, the cost of land acquisition, and estimates of redstart

density across the winter range (Table 1). In the second problem

our goal was to maximize the number of birds protected across its

entire range by adding the constraint of maintaining a minimum

proportion ($30%) of each regional breeding population (Sup-

porting Information, Text S1 i). To do this, we incorporated

information on migratory connectivity to estimate the proportion

of birds at a given wintering site that bred in one of five breeding

regions in North America [14] (Figure 1; Supporting Information,

Table S1). The winter regions are defined as the Western Greater

Antilles (Dominican Republic, Haiti, Puerto Rico), Eastern

Greater Antilles (Florida, Bahamas, Jamaica), Lesser Antilles/

South America (Trinidad, Tobago, Venezuela), Mexico, and

Central America (Belize, Panama) (Figure 1).

Algorithm
We implemented an optimal search algorithm, ‘Dijkstra’ [22], to

find the shortest path from our starting state (the current situation)

to our goal state. Dijkstra’s algorithm does not traverse the entire

solution space but rather only pursues paths that are likely to lead

to the optimal path and is therefore an efficient and computa-

tionally fast method of finding an optimal solution for problems of

this size (Supporting Information, Text S1 iii).

The efficacy of our optimal search algorithm was evaluated

through a comparison of results with a second algorithm ‘myopic’

[7] (see Supporting Information, Text S1 iv). This heuristic

algorithm makes the optimal choice one step at a time with the

goal of finding a global optimum. In other words, at each time

step, the site with the most birds per unit cost is chosen. However,

because this algorithm moves in a single forward direction, it is

‘short-sighted’ leading to solutions that are likely to be suboptimal

(cf. the maximize ‘short-term gain’ and ‘minimize short-term loss’

heuristics [7]). We found that ‘Dijkstra’ outperformed the ‘myopic’

algorithm returning between 4 to 28 percent more birds protected

per dollar spent depending on the time-horizon. Our findings are

presented for Dijkstra’s algorithm using a 45-year time-horizon.

Simulations and Sensitivity
We ran scenarios with each algorithm for each objective function,

with various finite time-horizons (5 to 60 years). We determined

the sensitivity of changes in cost and migratory connectivity by

comparing our results to simulations run with an equal cost

function for each region. This comparison revealed that including

information on migratory connectivity resulted in greater

differences in the prioritization of winter parcels than regional

variation in cost of winter habitat. All models and simulations were

run using MATLAB version 7.0 [23].

SUPPORTING INFORMATION

Text S1

Found at: doi:10.1371/journal.pone.0000751.s001 (0.07 MB

DOC)

Table S1 American redstart migratory connectivity. The pro-

portion of birds that migrate from a winter region to each breeding

region based on stable-hydrogen isotopes in feathers (Figure 1, see

ref [1]). NW = Northwest; MW = Midwest; NE = Northeast;

CE = Central-east; SE = Southeast.

Found at: doi:10.1371/journal.pone.0000751.s002 (0.04 MB

DOC)

Figure S1 Contrasting the performance of two algorithms

‘myopic’ and Dijkstra over different time-horizons (5 to 60 years)

showing the total number of birds saved when the objective

function is to maximize the number of birds in the winter

population.

Found at: doi:10.1371/journal.pone.0000751.s003 (0.08 MB TIF)
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