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Background. Inadequate treatment practices with antimalarials are considered major contributors to Plasmodium falciparum
resistance to chloroquine, pyrimethamine and sulfadoxine. The longitudinal survey conducted in Dielmo, a rural Senegalese
community, offers a unique frame to explore the impact of strictly controlled and quantified antimalarial use for diagnosed
malaria on drug resistance. Methodology/Principal Findings. We conducted on a yearly basis a retrospective survey over
a ten-year period that included two successive treatment policies, namely quinine during 1990–1994, and chloroquine (CQ)
and sulfadoxine/pyrimethamine (SP) as first and second line treatments, respectively, during 1995–1999. Molecular beacon-
based genotyping, gene sequencing and microsatellite analysis showed a low prevalence of Pfcrt and Pfdhfr-ts resistance
alleles of Southeast Asian origin by the end of 1994 and their effective dissemination within one year of CQ and SP
implementation. The Pfcrt resistant allele rose from 9% to 46% prevalence during the first year of CQ reintroduction, i.e., after
a mean of 1.66 CQ treatment courses/person/year. The Pfdhfr-ts triple mutant rose from 0% to 20% by end 1996, after a mean
of 0.35 SP treatment courses/person in a 16-month period. Both resistance alleles were observed at a younger age than all
other alleles. Their spreading was associated with enhanced in vitro resistance and rapidly translated in an increased incidence
of clinical malaria episodes during the early post-treatment period. Conclusion/Significance. In such a highly endemic
setting, selection of drug-resistant parasites took a single year after drug implementation, resulting in a rapid progression of
the incidence of clinical malaria during the early post-treatment period. Controlled antimalarial use at the community level did
not prevent dissemination of resistance haplotypes. This data pleads against reintroduction of CQ in places where resistant
allele frequency has dropped to a very low level after CQ use has been discontinued, unless drastic measures are put in place
to prevent selection and spreading of mutants during the post-treatment period.
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INTRODUCTION
The steady increase of Plasmodium falciparum resistance to cheap

first line antimalarials over the last decades has resulted in

a dramatic increase in malaria-associated morbidity and mortality

in sub-Saharan Africa [1,2]. Research in recent years has

established that resistance to chloroquine (CQ), pyrimethamine

(P) or sulfadoxine (S) results from the accumulation of multiple

mutations in the respective target gene, which once formed, spread

across vast, continent-wide areas [3,4,5,6,7,8]. The conditions

involved in the positive selection of resistant parasites, and the

selective pressure contributing to their spread are largely un-

known. Malpractice in drug usage is unanimously blamed for

permitting emergence of drug resistance, but its impact subsequent

spreading of resistance is not known. One reason is the difficulty

associated with the assessment of drug intake in endemic areas. Anti-

malarial drug pressure is usually inferred from the amount of the

drug purchased and distributed in the country, but how this relates to

the actual selective forces exerted on the parasite population is

unclear, especially since use of antimalarials for any type of fever and

often with non optimal drug regimens is widespread [9].

Previous studies have attempted to correlate parasite resistance

with antimalarials use at the community level, but even in carefully

surveyed settings, irregular compliance and uncertain regimens

precluded definitive conclusions [10,11,12]. The longitudinal

active case detection study launched in Dielmo in 1990, a rural

Senegalese village [13], is probably the only place where drug use

has been controlled and constantly monitored for more than

a decade, coinciding to the time period of expansion of CQ- and

SP-resistance across Africa. This is an unprecedented opportunity

to quantify the impact of a strictly controlled use of antimalarials

on drug resistance. Furthermore, first line treatment was changed

in 1995, allowing to explore its consequences on dynamics of

spreading of drug resistance.

The design of the Dielmo project involves daily medical

surveillance with active case detection, associated with prompt
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treatment with recommended dosage and duration and monitor-

ing of medication on an individual basis together with the

longitudinal recording of transmission [13,14,15,16,17]. CQ was

used in the village as presumptive treatment before the onset of the

study, but was replaced by a 3 or 7-day quinine course as first line

treatment of all microscopically diagnosed malaria episodes for the

first five years of the project [13,15,17]. Treatment policy was

modified in 1995, with CQ and the sulfadoxine/pyrimethamine

combination (SP) being used as first and second line treatments,

respectively. Throughout the 1990–9 time period, every treatment

course was recorded and clinical efficacy measured by daily

monitoring. Parasite isolates were collected on a longitudinal basis.

The impact of drug pressure on clinical efficacy, in vitro susceptibi-

lity and drug target gene flow can thus be accurately quantified.

CQ-resistance in vivo has been associated with the presence of

a single point mutation at codon 76 (K76T) of the P. falciparum

chloroquine transporter (Pfcrt) [7,18]. SP-resistance results from

point mutations of the target enzyme dihydrofolate reductase

(DHFR) and dihydropteroate synthase (DHPS), respectively.

Several Pfdhfr-ts mutations have been associated with in vitro

pyrimethamine-resistance, with a key S108N polymorphism that

confers in vitro-resistance [19,20]. Concordant results indicate an

association of the triple N51I C59R S108N Pfdhfr-ts mutant with

reduced therapeutic efficacy [5,21]. Similarly, several Pfdhps

mutations have been associated with decreased susceptibility to

sulfadoxine in vitro. SP therapeutic failures have been associated

with presence of the double A437G, K540E mutant associated

with the Pfdhfr-ts triple mutant [22,23].

We have analysed here the Pfcrt, Pfdhfr-ts and Pfdhps loci in

a panel of clinical isolates collected every year from 1990 to 1999.

We show here that switching to CQ and SP use in 1995 was

followed within a few months by a sharp increase in the prevalence

of resistance haplotypes, pointing to a remarkably rapid expansion

of mutant haplotypes under strictly controlled drug usage. This

was associated with a concomitant increase of in vitro resistance and

with a progressively increased risk of early subsequent clinical

malaria episode after a CQ treatment course.

MATERIALS AND METHODS

Study site and design of the survey
Dielmo, located in Sine Saloum, Senegal, is a village of

approximately 300 inhabitants, where malaria is holoendemic.

Malaria transmission in Dielmo occurs all over the year, unlike the

neighbouring villages where it is highly seasonal. In 1990, the

entire village population was enrolled in a longitudinal prospective

study described in detail elsewhere [13]. Among the population

(female: male ratio = 0.98), 20.4% were children less than five

years old and 26.8% were 5–14 year-old children. Individual

informed consent was obtained from each adult participant and

from the parents or legal guardians of all children at the beginning

of the study and was renewed on a yearly basis. Any individual

could withdraw from the study at any time. Each year the project

was reviewed and approved by the Joint Ministry of Health and

Pasteur Institute Surveillance Committee [13,15,17].

From the end of May 1990 onwards, clinical malaria episodes

were diagnosed on site by microscopic examination of blood

smears collected for each febrile episode, and prompt anti-malarial

treatment administered by a medical team present permanently in

the village, who subsequently monitored therapeutic and parasi-

tological efficacy [13,14,15,17].The population of Dielmo was

asked not to use any drug without informing the medical team.

Random urine tests were made on a regular basis to detect the

presence of antimalarials [15]. This indicated the remarkable

compliance of the villagers with the study design and anti-malarial

intake. For each malarial episode, a fingerpick or 2 mL venous

blood sample was collected and stored as a frozen red blood cell

pellet at 280uC.

The study period explored here was 29 May 1990–31 Dec

1999. The intensity of malaria transmission was determined by

weekly or monthly mosquito collections as described [13]. During

this period, the entomological inoculation rate fluctuated from 115

to 347 infective bites/person/year, depending on the year.

Anti-malarial use
Before the longitudinal survey, CQ was irregularly used as the

presumptive treatment, together with traditional medicines.

Measures of CQ levels in children were made before the onset

of the project using the Bergquist test. This showed that about

13% of the children had detectable CQ levels, similar to children

from five neighbouring villages. From 29 May 1990 to 17 Jan

1995, quinine (QuinimaxH) administered every 8hr by a medical

field worker or a physician for 3 or 7 days was used for 96.4% of

the 1722 anti-malarial treatments administered, including a total

of 277 eradication therapies in 1992 and 1994 [24,25]. Halofan-

trine was used for eradication therapy in 46 adults in 1994 and

CQ for three curative treatments, representing 3.42% and 0.17%

of anti-malarial treatments administered, respectively. Early in

1995, the treatment policy was changed to CQ (NivaquineH), and

SP (FansidarH) as first and second line treatments, respectively

[17]. CQ was introduced on 20 Jan 1995, and SP was used for the

first time on 12 Sep 1995. From 01 Jan 1995 to 31 Dec 1999

quinine, CQ and SP were used for 5.2%, 85.3% and 9.5% of the

3130 anti-malarial treatments administered, respectively. There

was no chemoprophylaxis among villagers. The use of antimalar-

ials was restricted to acute malaria attacks in accordance with the

following criteria: 1) fever with a parasite:leukocyte ratio #2 in

children less than 10 years of age, 2) fever with a parasite:leukocyte

ratio #0.5 in pregnant women, or 3) fever with a positive thick

blood film in individuals with symptoms compatible with severe

malaria or in individuals returning from an area of low endemicity

where they had lived for more than one year during the past three

years. When fever persisted the next day, another thick blood film

was made. Criteria for antimalarials treatment remained un-

changed. However, in the absence of any clinical improvement

associated with a parasite density close to the treatment threshold

in children and adults, or a positive thick blood smear in pregnant

women, the prescription of a second antimalarial treatment was

based on the patient’s clinical and epidemiological data.

The yearly intake of antimalarials, which represents drug

pressure on the local parasite population, is depicted in Figure 1.

We used each calendar year, except for the year 1990 which

included the period 29 May–31st Dec 1990. The lack of non-

prescribed CQ use by villagers in 1990–94 was ascertained by

consistently negative random monthly urine tests [13,15,17]. The

number of CQ and SP treatments per person per year was

calculated based on the number of days of follow up divided by the

number of persons enrolled that year. These were as follows :

51,745/253, 81,120/235, 82,583/238, 90,761/263, 89,551/260,

88,908/257, 100,706/293; 95,917/289, 100,942/299, 99,083/

298 for 1990 (7 months of follow up), 1991, 1992, 1993, 1994,

1995, 1996, 1997, 1998, 1999, respectively.

In vivo efficacy
The risk of early occurrence of a subsequent clinical malaria

episode after a CQ or SP treatment course was estimated by the

proportion of cases present in the village for $31 days after the
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treatment in whom the treatment was followed within ,7, 14, 21

or 28 days by a second P. falciparum high density episode or the

need to administer an additional antimalarial treatment. From 1.1

to 7.7% of the treatments were administered for P. ovale clinical

attacks. None necessitated a second treatment course. They were

counted in the overall number of antimalarial treatments

administered, but not in the calculation of risk of subsequent

clinical malaria episodes that was restricted to P. falciparum attacks.

Overall, there were 1899 first CQ treatment courses for which

the clinical follow-up was complete for the next 7, 14, 21 and 28

days. There were 127, 316, 587 and 812 second treatments

administered within ,7, 14, 21 and 28 days, respectively. The 199

SP treatment courses administered all had a complete follow-up

for .31 days. There were 5, 6, 16 and 48 cases of administration

of another treatment within 7, 14, 21 and 28 days, respectively.

The protocol for the longitudinal follow up was not designed as

a drug clinical trial, and parasite clearance was not systematically

recorded as recommended for trials. The detailed analysis of

therapeutic efficacy over this decade using additional criteria

(including clearance rates when available and incorporating

individual host risk factors, age patterns as well as fluctuations of

transmission) is in progress and will be reported elsewhere (Tall et

al, in preparation).

Parasite population surveyed
Since the parasites exposed to heavy drug pressure were those

associated with clinical episodes, we studied parasites collected

during clinical malaria attacks. The isolates were selected from the

existing collection of frozen blood samples as follows: we

interrogated the database to identify the samples collected before

treatment administration from patients diagnosed with a clinical

malaria episode (fever+high parasite density) over the 10 y-period.

From a list of approx 3400, 336 samples were chosen for

molecular analysis so as to survey the largest possible panel of

villagers, but ignoring therapeutic efficacy of the treatment

administered after sample collection, and selecting wherever

possible isolates with interpretable in vitro data, whatever the result

of the assay. Since in this holoendemic setting, the heaviest clinical

malaria burden is in the ,10 y olds and since furthermore some

children are more susceptible than others [16], we needed to avoid

iteration biases due to increased susceptibility of some individuals.

We therefore set a $three y interval between two samples from the

same individual and set the additional restriction that no person

could contribute with more than three samples overall. This

reduced the risk of over-representing certain genotypes to which

some individuals might be more susceptible than others, and also

of over-estimating polymorphism because successive clinical

malaria attacks experienced by one person are caused by ‘‘novel’’

parasites [26].

The number of isolates studied each year is shown in Table 1.

The samples originated from 246 villagers, with 167, 68 and 11

villagers contributing once, twice and three times, respectively, to

the panel of isolates for the retrospective molecular survey. There

were 130 males and 116 females among the villagers recruited

[175 and 161 males and females, respectively, among the panel of

isolates studied]. The mean age at the time of blood sampling was

11.4613.1 years. The isolates were from 31 out of 34 village

compounds.

In vitro susceptibility assays
Venous blood samples were collected during the high transmission

season on a longitudinal basis from consenting patients with

clinical malaria. Assays were conducted using the isotopic

microtest as described [27,28,29] on clinical malaria isolates

collected in the village or in the health centre of Toubacouta. The

isolates with an IC50 .100 nM and .2000 nM for CQ and

pyrimethamine, respectively, were classified as resistant

[27,28,29].

DNA extraction
Frozen blood samples were thawed and extracted with phenol-

chloroform as described [30] and stored at 220uC until use.

Figure 1. Amount of antimalarials used in Dielmo from 1990 to 1999.
The mean number of person-years surveyed was 124 in 1990 (from June to December) and 295, 235, 238, 262.8, 260.1, 257.1, 292.5, 288.7, 299.3 and
297.8 from 1991 to 1999, respectively. The cumulated survey days were 51745, 81120, 82583, 90761, 89551, 88908, 100706, 95917, 100942 and 99083
from 1990 to 1999, respectively. The monthly quinine, CQ and SP intake was calculated from the recorded drug prescriptions in the data base. For
,5% of cases, the actual prescribed dose was not available and was extrapolated from the standard treatment course at that time in the village. The
peaks in 1992 and 1994 correspond to eradication therapies administered to 100, 118, and 59 persons, respectively [21,22]. There were 155, 262, 567,
310, 428, 435, 710, 649, 681 and 823 treatment courses administered from 1990 to 1999, respectively.
doi:10.1371/journal.pone.0000139.g001
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Molecular beacon genotyping
Molecular beacons for Pfdhfr108 and Pfcrt76 genotyping were

used essentially as described [31,32]. The PCR primer and

molecular beacon sequences are shown in Table S1. The

molecular beacons reliably detect $10% of the alternative

genotype. However, in the samples used here the ratio of allele

was not greater than 1/3.

Gene sequencing
Gene sequencing was carried out for the isolates typed by

molecular beacons as containing a single allelic form at the locus.

All sequence data with ambiguous positions were rejected. The 72-

6/220 Pfcrt gene sequence was established as described [33], using

the primers listed in Table S1. The entire 1.8 kb Pfdhfr-ts coding

sequence was amplified by PCR in a 50 mL reaction volume

containing 2 mL DNA, 10 mM Tris-HCl pH 9.0 at 25uC, 50 mM

KCl, 0.1% Triton X-100, 2.5 mM MgCl2, 200 mM each dNTP,

0.6 mM each DhfrPfQs and DhfrPfCoasQ primers (see Table S1),

with 2.5 U Taq Polymerase (Promega). After an initial de-

naturation step at 94uC for 3 min, samples were subjected to 5

cycles of denaturation at 94uC for 30 sec and hybridization/

extension at 64uC for 4 min followed by 35 cycles of denaturation

at 94uC for 10 sec and hybridization/extension at 66uC for 3 min

15 sec, with a final extension step for 8 min. The amplified PCR

products were visualized on an 1.5% agarose gel by ethidium

bromide staining. A second PCR was performed on the negative

samples in a 50 mL volume as above, using 2 mL of the first

reaction and 0.8 mM each of dhfrsm13 and dhfrasm13 primers

(see Table S1). The nested PCR conditions were: an initial

denaturation step at 94uC for 3 min 94uC followed by 25 cycles of

denaturation at 94uC for 30 sec and hybridization/extension at

66uC for 4 min, with a final extension for 10 min at 66uC. Direct

sequencing was done with forward and reverse external and

internal sequencing primers (see Table S1 for primer sequence),

using an ABI Prism sequencer 3100 as described [34].

The complete coding region of Pfdhps was amplified and

sequenced (ABI 3100 Genetic Analyser, Applied Biosystems,

Courtaboeuf, France) as described [23].

Pfmsp1 block2 genotyping
The highly polymorphic Pfmsp1 block 2 was typed by semi-nested

PCR in a 50 mL reaction volume containing 5 mL DNA, 50 mM

KCl, 1.5 mM MgCl2, 10 mM Tris-HCl pH 9.0, 200 mM dNTP,

5 U Taq Polymerase (Amersham Pharmacia), 1 mM of each

primer (see Table S1 for primer sequence). For the first PCR, a first

denaturation step at 96uC for 5 min was used, followed by 25

cycles of denaturation at 96uC for 1 min; hybridization at 64uC for

1.30 min, extension at 72uC for 45 sec with a final extension at

72uC for 7 min. The semi-nested PCR was carried out using

a forward family specific primer and a reverse conserved primer

(see Table S1), under the same conditions except that annealing

was done at 68uC. PCR products were analysed on 1.5%

Nusieve:agarose gels (1:3). The size of the bands was evaluated

using the 100 bp DNA ladder (BioRad) as size markers. Alleles

were classified in 10 bp bins.

Microsatellite genotyping
Microsatellites were determined from single genotype infections

from which we had obtained reliable unambiguous gene sequence

at all positions. All ambiguous results were rejected from the

analysis. The Pfcrt intron 4 microsatellite was analysed by direct

sequencing of the PCR fragment generated using primers located

within exons 4 and 5 (see primer sequence in Table S1) essentially

as described [33]. The various Pfcrt intron 4 microsatellite types

were assigned codes described in Table S2.

The Pfdhfr-ts flanking microsatellite loci called 20.1 kb, and

+0.5 kb, as well as for some isolates the 24.4 kb locus, were

studied by semi-nested PCR using specific primers described by

Roper et al 2003 [5] and Nair et al, 2003 [35] (primer sequences

shown in Table S1) but using different experimental conditions as

follows. The primary and secondary mixture reactions for the

20.1 kb and 24.4 kb loci were carried out in a 50 mL reaction

volume containing 10 mM Tris-HCl pH 9.0, 50 mM KCl,

0.1%TritonHX-100, 2.5 mM MgCl2, 0.64 mM dNTP, 0.05 U

Taq polymerase (Promega) and 1 mM each primer. The reactions

were cycled as follows: denaturation at 95uC for 5 min, followed

by 35 cycles of denaturation at 95uC for 30 sec, annealing at 58uC
for 45 sec and extension at 72uC for 30 sec, followed by a final

extension at 72uC for 7 min, then held at 4uC. The fluorescent

labelled primer was added in the secondary reaction using the

same reaction cycles. For the +0.5 kb locus, the primary and

secondary PCR were done as above except that MgCl2 was used at

1.5 mM and that annealing was done at 48uC for the first reaction

and at 53uC for the secondary PCR. For microsatellite genotyping,

1 mL of diluted PCR products was added to 10 mL of

a formamide/ROX-labeled internal size standard (GenescanH
400HD [ROX], Applied Biosystems) mixture (82:1), then

processed on an ABI Prism 3700 automated DNA sequencer for

electrophoresis. Data were imported to GeneScan software to

perform fragment analysis by sizing each peak relative to the

internal standard. The results were imported to Genotyper

software to provide final results in allele calls as well as automated

table building. Reference fragments from 3D7 and FCC1 were

included as standards in each amplification experiment. The 3D7

and FCC1 Pfdhfr-ts haplotypes are described in Table S3.

Statistical analysis
Allelic frequencies and multiplicity of infection were compared by

the exact Fisher and Kruskall-Wallis tests, respectively. We first

considered each calendar year separately and subsequently

grouped together consecutive years that were not statistically

different. The temporal Pfcrt genotype distribution could be

Table 1. Number of isolates studied by calendar year of survey
and successfully typed by molecular beacons for the Pfcrt
K76T and Pfdhfr-ts S108N loci and by nested PCR for the
Pfmsp1 block2 locus.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

No isolates typed

No isolates
studied Pfcrt Pfdhfr msp1block 2

year of
survey (N = 336) (N = 324) (N = 303) (N = 306)

1990 23 23 22 23

1991 30 30 30 29

1992 30 29 29 29

1993 37 37 36 36

1994 35 32 30 34

1995 38 35 34 33

1996 46 44 41 38

1997 26 24 18 25

1998 52 51 44 44

1999 19 19 19 15

doi:10.1371/journal.pone.0000139.t001..
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divided into three main distinct periods, namely 1990–2, 1993–4

and 1995–9. The temporal Pfdhfr-ts genotype distribution showed

four distinct periods namely1990–92, 1993–4, 1995 and 1996–9.

Mean and median age distribution by Pfcrt or Pfdhfr-ts genotype

were analysed by the Kruskall-Wallis test. Genetic diversity was

assessed by the number of alleles per locus and Nei’s unbiased

expected heterozygosity (He) [36] from haploid data using FSTAT

version 2.9.4. (Goudet J. (2003) update from [37]). Differences

between the estimated He at each locus were tested by the

Wilcoxon signed rank test using STATA 9 software (Stata

Corporation, College Station, TX, USA). The selection coefficient

(s) was calculated as described by Nair et al [35] from the slope

obtained by plotting Ln(R/S), with R and S being the frequency of

the resistant and sensitive allele, respectively, against the number

of estimated parasite generations. For CQ-selection, R and S were

calculated from the K76T Pfcrt molecular beacon genotype based

on prevalence of infected individuals for each allele. S, which

indicates the relative survival of resistant and sensitive parasites at

each generation, was calculated using two estimates for parasite

generation, namely 2 or 4 months i.e. 6 to 3 generations per year

[38]. The fitness (f) of resistant parasites was estimated by w = 1+s.

Linkage disequilibrium was tested using GENEPOP V3.3 [39].

The null hypothesis was the independence of the genotypes at one

locus from genotypes at the other locus. GENEPOP creates

contingency tables for all pairs of loci in each period, then

performs a probability test (or Fisher’s exact test) for each table

using a Markov chain [40]. The frequencies of early occurrence of

a subsequent clinical malaria episodes after an anti-malarial

treatment were compared using exact Fisher’s tests.

RESULTS

Resistance mutation frequency assessed by

molecular beacons
The Pfcrt K76T and Pfdhfr-ts S108N genotypes, which are key to

resistance to CQ and pyrimethamine, respectively, were estab-

lished for 324 isolates (151 from 1990–1994 and 173 from 1995–

1999) and 303 isolates (147 from 1990–1994 and 156 from 1995–

1999), respectively. The K76 and 76T Pfcrt genotypes were

detected in 269 and 100 isolates, respectively. The wild type S108

and mutant 108N Pfdhfr-ts were detected in 259 and 67 isolates,

respectively. Multiple infections, i.e. infections where both mutant

and wild type codons were present, accounted overall for 14% (45

of 324) and 7.6% (23 of 303) of the isolates for Pfcrt and Pfdhfr-ts,

respectively. The average number of alleles per isolate did not vary

for the Pfcrt locus over the 10y period (Kruskall-Wallis test,

p = 0.18) (Figure 2A). In contrast, it showed significant temporal

variations for the Pfdhfr-ts locus (Kruskall-Wallis test p = 0.001,

Fisher’s exact test, p = 0.001) (Figure 2A).

The Pfcrt allele distribution varied significantly over time. The

proportion of isolates harbouring a mutant 76T (either single or

associated with the K76 allele) decreased from approx. 22% in

1990–92 to 8.7% in 1993–94, increased to 44% in 1995 and

subsequently remained at a similarly elevated level (Fisher’s exact

test, p = 0.004 and ,0.001, respectively) (Figure 2B). Thus, the

change for CQ in 1995 was followed by a marked increase in the

prevalence of the mutant allele. It was also associated with an

augmented prevalence of isolates containing the 76T mutant type

only, which raised from 4.3% in 1993–94 to 29.5% in 1995–99

(Fisher’s exact test, p,0.001; Figure 2C). During the year 1995,

the selection coefficient of the 76T mutants was 0.22 and 0.44,

assuming 3 and 6 generations/year, respectively.

The frequency of mutant 108N Pfdhfr-ts genotypes (either single

or in multiple infections) decreased from 18.5% in 1990–92 to 3%

in 1993–94 (Fisher’s exact test, p = 0.021), increased to 20% in

1995 and again to around 35% in 1996–99 (Fisher’s exact test,

p,0.001) (Figure 2B). This increase was associated with an

increasing proportion of isolates typed as containing only the 108N

mutant that increased from 1.5% in 1993–94 to 11.8% in 1995

(Fisher’s exact test, p = 0.043) and further increased to 30.3% in

1996–99 (Fisher’s exact test, p = 0.030) (Figure 2C). Thus, in

1990–94, the 108N mutation was detected mainly in mixed

infections, whereas it was present mostly in isolates containing that

single allele in 1995–99.

Multiplicity of infection
To test whether drug policy has impacted on the overall

multiplicity of infection, we genotyped Pfmsp1 block 2, a highly

polymorphic locus derived from a merozoite surface antigen,

unrelated to the CQ or SP target genes and frequently used for

assessing multiplicity of infection [26,30]. Pfmsp1 block2 genotypes

were established for 306 isolates. This highlighted 38–66%

multiple infections, depending on the year. The mean number

of distinct Pfmsp1 block2 alleles detected for each isolate did not

show significant fluctuation over the years (Kruskall-Wallis test,

p = 0.51) (Figure 2A). This indicated that the various drug

regimens implemented in the village throughout the 10y period

did not profoundly affect the average number of parasite clonal

types associated with clinical malaria.

Genotyping by direct sequencing
To look for the presence of additional mutations in the target

genes and establish haplotypes, we sequenced PCR-amplified gene

fragments or full length genes. For Pfcrt, we analysed the gene

region coding for the resistance haplotype, where the 76T

mutation is associated with additional 74I 75E mutations also

encoded by exon 2, together with a 220S mutation encoded by

exon 4 [7]. The 74-76/220 haplotype was determined for 21

isolates with a 76T mutation by amplification and sequencing. All

isolates harboured the CVIET/S haplotype. No novel mutation

was observed in this region (data not shown).

A 1827 bp Pfdhfr-ts full gene sequence was generated for 204

isolates (91 from 1990–1994 and 113 from 1995–1999). This

identified three previously reported single nucleotide polymorph-

isms [SNP] (51I, 59R and 108N) and four novel SNPs within the

Pfdhfr-ts coding region [59Y, and two synonymous L40L and one

G241G]. The ts coding region was identical in all samples. Overall

there were nine distinct alleles at the nucleotide level, including

four wild type alleles, three of which with synonymous substitu-

tions. Hence at the protein level, there were six distinct alleles: wild

type, single mutant (51I or 59Y or 108N), double mutant (51I

108N) and triple mutant (51I 59R 108N) alleles. It is noteworthy

that the 59R SNP was not detected as a single or double mutant,

but was observed only in the triple mutant haplotype. Their

temporal distribution is shown in Figure 3. There was no

significant increase of any single mutant after SP introduction in

the village in 1995. However, the 51I 59R 108N triple mutant

frequency increased from 1.1% in 1990–94 to 15.4% in 1995 and

further increased to 32.2% in 1996–1999 (Fisher’s exact test,

p,0.001).

Analysis of Pfdhps by sequencing was done for 27 isolates

collected in 1997–1999. This identified one S436F (3.7%), one

S436A (3.7%) and 9 A437G (33%) mutants. The other positions,

including codon 540 usually associated with SP-resistance [22]

were wild type. All alleles sequenced were single mutants (data not

shown). So, overall there were four distinct Pfdhps alleles detected

in this analysis.
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Analysis of genetic relatedness of resistance

mutants using microsatellite genotyping

To analyse the genetic relatedness of the alleles carrying the

CVIET/S haplotype, we sequenced the exon4-exon5 Pfcrt gene

region encompassing the intron 4 microsatellite, located just

downstream from codon 220 [3,7]. This was done for 247 isolates.

No novel mutation was detected in the exons. Thirty one

microsatellite types were observed. Their distribution was highly

skewed (Skewness-kurtosis tests for normality, p,0.001) (Figure 4).

All but one CVIET/S alleles were associated with a type 13

microsatellite [(TAAA)3(TA)15], i.e. presented the characteristic

intragenic signature of the resistance allele of Southeast Asian

origin [33]. One CVIET/S allele was associated with the related

type 14 microsatellite [(TAAA)3(TA)16] (unbiased expected

heterozygosity He = 0.07, n = 31). In contrast, the CVMNK/A

Figure 2. Temporal variation of the multiplicity of infection in Dielmo (A), frequency of Pfcrt codon 76 and Pfdhfr-ts codon 108 genotypes (B)
and frequency of infections with only mutant type detected (C). The number of isolates typed at each locus is indicated in Table 1.
(A). Multiplicity of infection is depicted separately for each locus. For Pfmsp1 block2, the figures derive from nested PCR analysis using family-specific
primers and allele identification based on allelic family assignment and size polymorphism. For Pfcrt and Pfdfhr-ts, it is based on K76T and S108N
genotypes determined by molecular beacons, respectively. Symbols used: (Red triangles): Pfcrt codon 76 genotype; (green squares): Pfdhr-ts codon
108 genotype, (blue open circles) Pfmsp1 block2.
B) Allelic frequency of resistance genotypes, calculated as percentage of mutant genotype within the total number of alleles detected for each locus.
Symbols used as in A.
C) Percentage of isolates containing only the mutant type. Symbols used as in A.
doi:10.1371/journal.pone.0000139.g002
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wild type coding sequence was associated with 31 distinct

microsatellite types (Table S2), depending on the isolate (unbiased

expected heterozygosity He = 0.93, n = 318).

To study Pfdhfr-ts gene flow within the village, flanking

microsatellites were analysed. We typed 81 isolates for the

20.1 kb and +0.5 kb microsatellite loci, including 38 for the

additional 24.4 kb microsatellite locus (Figure 5 and Table S3).

This showed that the Pfdhfr-ts wild type coding sequence was

associated with 41 distinct microsatellite combinations. Each

microsatellite locus was highly polymorphic [unbiased expected

heterozygosity He = 0.88, 0.89 and 1.00, n = 73, 62 and 5 for the

20.1, +0.5 and 24.4 kb loci, respectively. Heterozygosity across

the three loci (mean6SD) = 0.8860.01]). There were a minimum

of three distinct haplotypes for the 108N single mutants [for three

108N mutants, the +0.5 kb microsatellite could not be determined,

but each had a different 20.1 kb/24.4 kb microsatellite haplo-

type] and each of the single 51I and 51I 108N double mutants was

associated with a distinct microsatellite combination [heterozygos-

ity across the three loci for the single or double mutants

(mean6SD) = 0.8260.1]). In contrast, all 51I 59R 108N triple

mutants were associated with a single microsatellite allele at each

locus [He = 0.00, 0.00 and 0.00, N = 16, 15 and 26 for the 20.1,

+0.5 and 24.4 kb, respectively, heterozygosity across the three

loci: (mean6SD) = 0.0060.00]. Thus, there was a single tri-

microsatellite locus haplotype associated with the Pfdhfr-ts triple

mutant. This resistance haplotype is most likely the same as the

resistance allele of Southeast Asian origin described in KwaZulu

Natal and Tanzania in 1995–9 [5,6], since they have microsatellite

profiles that can be regarded as identical, considering inter-

laboratory experimental differences inherent to microsatellite

typing.

There was no significant linkage disequilibrium between Pfcrt

and the Pfdhfr-ts coding sequence and/or flanking microsatellites

(Fisher’s exact test, each p-value .0.00119, i.e. the adjusted p-

value for 5% nominal level). As predicted and confirming the

above analysis, Pfdhfr-ts and its flanking microsatellites were in

strong linkage disequilibrium (Fisher’s exact test, p = 0.00024 for

each pair of loci)

Allele distribution by age
While there was no influence of blood group or gender on Pfcrt

and Pfdhfr-ts allele distribution, there was an influence of age.

Table 2 shows that isolates with only the Pfcrt 76T mutation

detected were from younger individuals than those with the wild

type K76 allele or those containing both K76+76T mutations

(Kruskall-Wallis test; Chi-squared = 6.28 with 2 d.f., p = 0.043).

The Pfdhfr-ts allele distribution was also age-associated, with the

triple mutant detected at a younger age than the wild type, single

and double mutants (Kruskall-Wallis test; Chi-squared = 6.7 with 2

d.f., p = 0.035). The S108N genotype distribution showed no

association with age (p = 0.283).

Drug pressure and selection of resistance
Figure 6 A shows the temporal increase of resistance vis-à-vis CQ

pressure in the village. During year 1995, 404 CQ treatment

courses were administered, corresponding to 1.66 treatment/

person/year. During the following years, there was an average of

2.16 CQ courses/person/year and overall 2,345 CQ treatment

courses in 1996–9. In vitro susceptibility was assessed sporadically

over 1990–4 and systematically over a few month period at the

end of each calendar year over 1995–9. In vitro resistance to CQ,

which was low (3.8%) over 1990–4 was markedly increased by the

end of 1995, and fluctuated around 45–50% thereafter. The

temporal variation of in vitro resistance to CQ paralleled the

prevalence of Pfcrt ‘‘76T only’’ infections. The clinical impact of

Figure 3. Temporal variation of the relative Pfdhfr-ts gene polymorphism in Dielmo during 1990–99.
The 1.8 kb PCR fragment corresponding to the full length Pfdhfr-ts coding sequence was sequenced on both strands for a total of 204 isolates. The
yearly distribution of the various genotypes is shown, using the colour code shown to the right of the figure. The alleles presenting synonymous
mutations were omitted from the colour coding.
The C59Y non-synonymous substitution was a TGT to TAT mutation. The synonymous mutations (CTA to TTA or CTC for codon 40, GGA to GGC for
codon 241) are not depicted. No mutation was detected at codon 16 and 164, and no bolivia repeat type was observed. Overall there were 155
isolates with wild type coding sequence and 49 isolates with non synonymous mutations (76% and 24%, respectively). There were 15 (7.3%) single
mutants [51I (0.5%), 59Y (1%), 108N (5.8%)], one (0.5%) 51I 108N double mutant and 33 (16.2%) 51I 59R 108N triple mutants.
doi:10.1371/journal.pone.0000139.g003
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treatment was estimated by the necessity or not to administer

a second treatment course within the ,7, 14, 21 and 28 days after

the end of the treatment. Occurrence of clinical malaria episodes

within 7 days of CQ treatment progressively increased with

increasing cumulative number of CQ treatments in the village,

resulting in a 5 fold increase in 1999 compared to 1995 (Fisher’s

Exact test, p,0.001). Such a regular increase was not observed for

the longer follow-up periods, nevertheless the incidence of second

episodes within 14 days of CQ treatment was doubled in 1999

compared to 1995 (Fisher’s Exact test, p,0.001), and it was

increased by 1.67- and 1.41-fold by 21 and 28 days, respectively

(Fisher’s Exact test p,0.001 each). The prevalence of episodes

within 14 days and more markedly within 21 and 28 days

paralleled the prevalence of the isolates with only the Pfcrt 76T

mutant (Figure 6A).

The temporal increase of resistance vis-à-vis SP pressure is

shown in Figure 6B. The number of SP treatments/person/year

increased from 0.07 in 1995 to 0.5 in 1998–9, corresponding

overall to 424 SP treatments administered in the village during

1995–9, and a mean of 0.31 treatments/person/year. In vitro

resistance to pyrimethamine progressively raised from 14% in

1995 to 50% in 1998 and 1999 with increasing pressure

(Figure 6B). There was a strong correlation between the increase

in Pfdhfr-ts triple mutant frequency and the increasing SP drug

pressure during that period (R2 = 0.9, with a linear model).

Overall, 75 of 199 SP treatment courses were followed by a second

treatment (5, 6, 16 and 48 within ,7, 14, 21 and 28 days,

respectively). Confidence intervals were wide, due to the small

number of events each year. The occurrence of 2nd treatment

within 21 and 28 days fluctuated between 1996 and 1999 and no

temporal trend could be conclusively established.

Comparison with neighbouring villages
To compare the situation in Dielmo with the surroundings by end

of 1995, CQ-in vitro tests were conducted during the period Oct

1995–mid Jan 1996 in the health centre of Toubacouta, which

captures 11 neighbouring villages with typical CQ-usage. This

showed different proportion (Chi2, p,0.005) and level of

resistance (log transformed ANOVA p,0.05) between the two

sites. In Dielmo, there was approx 60% CQ-resistance (N = 43

samples; mean IC50 for CQ = 102 nM; 95% CI = 72.8–143.4 nM;

min = 25 nM, max = 563 nM), compared to 24% in Toubacouta

(N = 50 samples, mean IC50 for CQ = 53.6, 95% CI = 43.2–

66.4 nM, min = 25 nM, max = 261 nM).

DISCUSSION
Here, we have explored whether a strictly controlled use of CQ

and SP, administered for microscopically diagnosed, high density

malaria episodes would prevent spreading of resistance. Our data

indicate that such a drug policy failed to do so. The reintroduction

of CQ after several years of discontinued use was followed by rapid

dissemination of the Pfcrt resistance allele of Southeast Asian origin

and of CQ-resistance in vitro and progressive deterioration of its

clinical efficacy. Within four years of SP introduction in the village

as second line drug, in vitro pyrimethamine-resistance had

markedly raised, Pfdhfr-ts resistance genotypes had reached the

same prevalence as CQ-resistance genotypes and a similar trend

was observed for the A437G Pfdhps mutant.

Figure 4. Frequency distribution of Pfcrt intron 4 microsatellite types by codons 72–76 and 220 haplotype.
247 isolates were typed (19, 23, 22, 33, 28, 22, 29, 17, 39 and 15 isolates in 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998 and 1999,
respectively) for the intron 4 microsatellite by gene sequencing (see Materials and Methods). There were 31 CVIETS haplotypes and 216 wild type
haplotypes. The haplotype codes are listed in Table S2.
doi:10.1371/journal.pone.0000139.g004
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It took 407 CQ treatments in the community (1.66 treatment/

person/year) to raise the Pfcrt 76T mutation from a 8–9%

prevalence in 1993–4 to 46% during the year 1995. Increased

pressure (2752 CQ treatments cumulated during the years 1995–9)

did not increase the prevalence of the mutant much further, did

not increase the in vitro resistance further either, but increased by

five-fold the rate of treatment failures within 7 days. It took 112 SP

treatments in the community (Sep–Dec 1995–year 1996) to raise

the prevalence of the triple Pfdhfr-ts mutant from 0% in 1994 to

20% in 1996. The pressure on the parasite population was

altogether strong because of the very high proportion of high

density episodes treated through active medical surveillance and

essentially restricted to the 0–14 y age group who accounted for

47% of the village population and experienced 93% of the clinical

malaria attacks [13,16]. Thus, an overall remarkably limited

number of treatments in a fraction of the population resulted in

massive changes over a very short time period.

The clinical impact of the drug policy implemented in the

village for ten years was evaluated by measuring the need for an

additional treatment during the one month post-treatment period.

The incidence of clinical malaria within 7 days of CQ treatment

raised from 2.6% in the year 1995 to reach 13% in the year 1999.

This represents a marked increase compared to the 1% incidence

by day 7 post-Quinine treatment in the period 1990–3 [41]. These

episodes should therefore be classified as early treatment failures.

The incidence of early treatment failure after CQ implementation

in 1995 increased rapidly, but much slower than the increase of in

vitro resistance and increase in 76T mutant frequency. Increase of

mutant prevalence and/or of in vitro resistance are thus relevant

indicators of emerging therapeutic failures.

Since CQ half-life is 10–30 days, the parasites that reached high

density during the 14–28 day post-treatment period had to survive

sub-therapeutic post-treatment drug levels. The increased in-

cidence of a second episode within 14, 21 and 28 days of a CQ

treatment from 1995 to 1999 correlating with increasing of the

76T Pfcrt mutant frequency is consistent with selection of parasites

(be they recrudescence or re-infection) during the post-treatment

period. The children were administered several treatments each

year [14,16], and consequently had quite substantial post-

Figure 5. Frequency distribution of Pfdhfr-ts 24.4 kb/201 kb+
0.5 kbmicrosatellite haplotypes by coding the sequence mutant
type.
The microsatellites were determined as described in Materials and
Methods for 81 isolates. The haplotype codes are listed in Table S3.
doi:10.1371/journal.pone.0000139.g005

Table 2. Age association of mutant Pfcrt and Pfdhfr-ts
prevalence over the entire survey period.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pfcrt K Pfcrt K+T Pfcrt T
Total
genotyped

median age (y) 7.6 9.6 4.7 7.0

[25–75] quartile 3–15 5–17 3–8 3–14

min 0.4 0.7 0.3 0.3

max 69.7 42.5 89.7 89.7

No indiv 224 45 55 324

Pfdhfr wt*

Pfdhfr single
& double
mutants

Pfdhfr triple
mutant**

Total
sequenced

median age (y) 7.4 5.9 3.9 6.3

[25–75] quartile 3–11 2–8 3–7 3–11

min 0.4 0.4 0.3 0.3

max 89.7 15.3 38 89.7

No indiv 155 16 33 204

*wt = wild type
**51I 59R 108N
doi:10.1371/journal.pone.0000139.t002..
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treatment time periods, providing the terrain for selecting

resistance haplotype among the re-infecting parasites. This is in

line with the observed higher frequency of the resistance allele in

the younger age group. The dark side of the treatment policy used

with properly dosed and administered CQ may thus be to help

spreading of reinfecting parasites with resistant genotypes selected

during the post treatment period.

The SP pressure was substantially lower than that of CQ and

yet similar conclusions can be drawn. There was quite efficient

expansion of in vitro resistance to pyrimethamine associated with

dissemination of the Pfdhfr-ts triple mutant, consistent with its

reported increased transmissibility [42]. The incidence of early

treatment failures was marginal. This is not surprising since SP

therapeutic failures have been associated with presence of the

‘‘quintuple mutant’’, namely the Pfdhfr-ts triple mutant associated

with the Pfdhps A437G K540E double mutant [22,23], which was

not detected in the village. Similar observations were reported for

isolates collected in different localities across Senegal in the years

2000–3 [43,44] This confirms the time shifted invasion by Pfdhfr-ts

and Pfdhps alleles observed in East Africa, with invasion of the

triple mutant Pfdhfr-ts preceding invasion by the Pfdhps double

mutant that is associated with SP-treatment failure [5,23]. The use

of antibiotics such as Sulfamethoxazole+Trimethoprim (Bac-

trimTM), which may contribute to antifolate resistance [45,46,47]

was restricted in Dielmo, and furthermore did not substantially

vary over the 1990–9 period. This indicates a key role for SP

pressure in antifolate resistance in the village. The only mutant

Pfdhfr-ts genotype that expanded under SP drug pressure had the

typical molecular signature of the ancestral resistance haplotype of

Southeast Asian origin that has spread across Africa [5,6]. Several

Pfdhfr-ts point mutations were detected, including novel ones not

observed in other Senegalese sites [43,44]. None expanded under

SP pressure. Each single mutation was associated with a distinct

microsatellite haplotype. This is consistent with, but by no means

a proof of local generation of mutants. The consequence of the

C59Y mutation on enzyme activity is unknown [48].

There was a considerable slowing down of the invasion process

after an explosive rapid first phase, despite continued drug

pressure. We interpret this as a consequence of having restricted

drug pressure to a fraction of the Dielmo population and hence of

the parasite reservoir. Thus, older children and adults perpetuated

a large parasite population that remained essentially without drug

pressure. It is most likely the combination of efficiently treating

only a fraction of the potential parasite transmitters with the strong

overall population immunity that has slowed down further

spreading of resistant mutants in this setting.

Where do the resistant parasites that disseminated after CQ and

SP implementation come from? Most probably from local

expansion of the residual low frequency resistance alleles and

from invasion of resistant strains from the surroundings. Trans-

Figure 6. Temporal distribution of CQ and SP drug pressure and drug resistance in Dielmo in 1990–9.
The drug pressure is expressed as No of treatments/person/year (first graph) and as overall No of treatment courses administered per year (second
graph). Panels A and B refer to CQ and SP, respectively. The prevalence of the Pfcrt mutant alleles was calculated from molecular beacon studies
(N = 324) (see Figure 2), while the prevalence of the Pfdhfr-ts triple mutant was calculated from the full gene sequences available (N = 202) (see
Figure 3). In vitro susceptibility assays were carried out in 1990–4 during the rainy season (N = 26) and from 1995 onwards for the last 2–3 months of
the year, namely from 7/11/1995–26/12/1995 (N = 46) ; 6/01/1996–3/12/1996 (N = 59); 27/10/97–15/121997 (N = 26) ; 10/01/1998–15/11/1998 (N = 54)
and 29/09/1999–08/11/1999 (N = 25). The proportion of interpretable CQ and pyrimethamine susceptibility tests was 68–81% and 72–81%,
respectively, depending on the year. The prevalence of resistance is expressed as the percent of interpretable assays presenting a CI50 for CQ
.100 nM or a CI50 for pyrimethamine.2000 nM. The occurrence of a second clinical malaria episode within 7, 14, 21 and 28 days of treatment was
calculated as described in Materials and Methods. The bars correspond to the 95% confidence interval. The years before implementation of CQ and
SP (1990–4) are grouped together.

A. CQ pressure, Pfcrt 76T resistance mutation, CQ in vitro resistance and prevalence of clinical attacks following a CQ treatment
B. SP pressure, Pfdhfr-ts triple mutant, pyrimethamine in vitro resistance and prevalence of clinical attacks following a SP treatment

Colour codes: 1990–4: grey; 1995: purple; 1996: yellow; 1997: light green; 1998: light blue; 1999: orange.
doi:10.1371/journal.pone.0000139.g006
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mission is perennial in Dielmo due to the presence of permanent

mosquito breeding sites [13], unlike the surroundings, where it is

highly seasonal [49]. Based on the entomological inoculation rate,

the villagers’ habits during the mosquito biting time periods and

the geographic distance from breeding sites outside the village, we

estimate that 97% of the infections in adults and 99% of the

infections in young children are contracted within the village. The

surrounding area was certainly infested with CQ-resistance by

1995, as indicated by the in vitro resistance data from the health

centre of Toubacouta. The relative contribution of expansion of

residual alleles from within the village and invasion of alleles from

the neighbourhood during the rainy season is uncertain. Dissection

of the phenomenon requires additional population genetic studies.

The Dielmo unique longitudinal assessment at the community

level during 10 years of clinical malaria incidence, malaria

treatment, drug use, genetics of parasites, travels of individuals,

anopheline density and entomological inoculation rates, provides

the first autopsy of the spread of drug resistance in an African

setting. This indicates that a population unit cannot deter the

rapid spread of CQ- and SP-resistance when resistance alleles are

present (even at low rate) within the village or in the vicinity, and

this even when drug use is strictly reserved for the treatment of

properly diagnosed acute malaria attacks and essentially in

children. This argues against deploying antimalarials in areas

where resistance haplotypes are present, even at low frequency,

unless drastic measures are taken to prevent their spreading.

Recent report that CQ is again efficacious against clinical malaria

in Malawi after discontinued use for more than 1 years has raised

hopes for a future reintroduction of CQ in this country [50,51].

Reintroducing chloroquine is conceivable only once CQ-re-

sistance has totally disappeared or if its transmission is completely

blocked. Neither of these conditions are met. CQ-resistance has

invaded the whole African continent, although it tends to decline

in countries that have discontinued its use [50,52,53]. Using

chloroquine in combination therapy requires a companion drug

that efficiently prevents selection of reinfecting CQ-resistant

parasites during the post-treatment period, otherwise spreading

of CQ resistance will turn the drug combination into mono-

therapy. Artemisinin derivatives reduce gametocyte production

[54] but their a very short half life is unlikely to prevent selection of

re-infecting CQ-resistant parasites during the post-treatment

period. A further important conclusion of our study is that greater

attention should be paid in drug development to design molecules

that target sexual stages as well, and in control efforts to prevent

dissemination of the resistance haplotypes, which once formed,

will have their spreading promoted by drug pressure.
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