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Swordtail Fry Attend to Chemical and Visual Cues in
Detecting Predators and Conspecifics
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Predation pressure and energy requirements present particularly salient opposing selective pressures on young fish. Thus, fry
are expected to possess sophisticated means of detecting predators and resources. Here we tested the hypotheses that fry of
the swordtail fish Xiphophorus birchmanni use chemical and visual cues in detection of predators and conspecifics. To test
these hypotheses we presented young (<7 day-old) fry with combinations of visual and chemical stimuli from adult
conspecifics and predators. We found that exposure to predator odors resulted in shoal tightening similar to that observed
when fry were presented with visual cues alone. In trials with conspecific stimuli, fry were particularly attracted to adult
conspecifics when presented simultaneous visual and chemical stimuli compared to the visual stimulus alone. These results
show that fry attend to the odors of adult conspecifics, whose presence in a particular area may signal the location of resources
as well as an absence of predators. This is one of the first studies to show that such young fish use chemical and visual cues in
predator detection and in interactions with conspecifics. Previous research in X. birchmanni has shown that anthropogenic
alteration of the chemical environment disrupts intraspecific chemical communication among adults; we suggest that because
fry use the same chemosensory pathways to detect predators and conspecifics, alteration of the chemical environment may
critically disrupt predator and resource detection.
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INTRODUCTION

Predation pressure is a primary force driving morphological,
physiological, and behavioral evolution in many fishes [1-6]. As
a result, individuals in prey species frequently employ multiple
sensory systems — visual, chemical, auditory, tactile — in the
detection and avoidance of predators. Vulnerability to predators
may be particularly high for young fish due to their small size and
lack of experience with predators. In two-spotted gobies
(Gobuusculus flavescens), for instance, whether juveniles respond to
predator chemical stimuli depends on prior visual experience with
the predator [7; see also ref. 8]. Moreover, young fish may
experience constant and conflicting pressure imposed by the high
metabolic demands of growth and development countered by
foraging-associated predation risk. Thus, young fish are expected
to attend closely to cues associated with predation risk while
foraging [e.g. ref. 9], and to modify their behavior appropriately
when these cues are encountered.

In addition to attending to cues associated with threat, young
fish should also attend to cues associated with resource availability
and the absence of threat. We suggest that one way they may do
this is to attend to the odors of adult conspecifics, whose presence
in a particular area may signal the location of resources as well as
an absence of predators. Here we investigate whether young fry of
the swordtail fish Xiphophorus birchmann: attend to chemical and
visual cues in the detection of predators and conspecifics.

X. birchmanni is a small livebearing species that inhabits shallow,
rocky streams of the Rio Panuco Basin in Mexico [10,11]. While
these sexually dimorphic fish have been of much recent interest to
evolutionary and behavioral biologists [12-16], little is known
about behaviors not directly associated with mate choice [12, 13,
15, 16; for research related to X. birchmanni shoaling preferences,
see ref. 14]. Typical of poeciliids, X. birchmanni adults do not
provide post-partum parental care. Thus, neonates are left to fend
for themselves. In their native streams, X. buchmanni fry likely
experience predation from multiple sources including several
piscivorous fishes [17,18]. Here we use the sympatric native cichlid
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Herichthys carpintes to investigate the use of the chemical and visual
cues of likely predators by X. burchmann: fry. If fry use chemical cues
in predator detection, we predict that when fry encounter predator
chemical cues they will respond with shoal tightening — tighter
shoaling in fish, flocking in birds, and herding in mammals, are
adaptive responses to the presence of potential predators [reviewed
in refs. 2-4] — and with defensive behaviors such as secking out
corners and walls of the test tanks. Also, if fry use chemical cues in
interactions with adult conspecifics, and if the presence of adult
conspecifics signals the presence of food and/or an absence of
predators, then we predict that fry will be most attracted to adult
conspectfics when they can see and smell them.

METHODS

On 22 and 24 April 2006, we used seines and baited minnow traps
to capture X. buchmanni adults and fry (~4-10 mm), and three
mature H. carpintes, on the Rio Garces, Hidalgo, Mexico (20°57'22
N, 098°16'48 W). All individuals were transported immediately
to the Centro de Investigacion Cientifica de las Huastecas
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“Aguazarca” (CICHAZ) in Calnali, Hidalgo, Mexico, where
preference/avoidance trials were conducted within three days of
capture. Based on growth curves of closely related Xiphophorus [19],
the fry used in the experiment were less than 7 days old.

Prior to placing fry in ‘test tanks’ (28 cmx17.5 cmx17 cm),
cach tank was filled to a depth of approximately ~2.30 cm with
tap water treated with Prime (Seachem Laboratories Inc.,
Covington, Georgia, USA), and placed on a piece of graph paper,
allowing us to quantify fry location at different periods during each
trial. The test tanks were placed on opposite sides of the visual
stimulus tank (same dimensions as test tanks) (Figure 1), and then
one pair of fry was placed in each test tank. Between trials, during
acclimatization periods, and during chemical stimulus trials not
involving a visual stimulus presentation, removable opaque
dividers visually separated test tanks from the visual stimulus tank
(Figure 1). The chemical stimulus tank — identical dimensions as
test tanks — was filled with chemical stimulus water, and was placed
approximately 0.5 m above the test tanks and the visual stimulus
tank (Figure 1). To make predator chemical stimulus water, the
three cichlids were housed for more than 24 hours in a standard
40 1 aquarium; water from this tank was then used in all predator
chemical stimulus trials. To make conspecific chemical stimulus
water, X. birchmanni adults were housed in tubs filled with ~40 1 of
treated tap water; approximately 50 adults were housed in each
tub for at least 24 hours before the water was used for conspecific
chemical stimulus trials. Adults were not fed during the housing
period. All trials were recorded using a Sony VX2000 digital video
camera, mounted approximately 0.75 m above the test and visual
stimuli tanks.

We separated our 36 fry into 16 pairs, haphazardly chosen —
every two fry caught with a sweep of the dip net became a pair for
the experiment. Each pair of fry was presented with a full suite of
stimulus presentations (see below), and was used only once;
following the final stimulus presentation, each fry pair was into an
awaiting post treatment 40 1 tank. Sets of fry pairs — four fry in
total (see Figure 1) — were presented with a series of six stimulus
presentations: conspecific chemical (CC), conspecific visual (CV),
conspecific chemical and visual (CCV), predator chemical (PC),
predator visual (PV), and predator chemical and visual (PCV); for
each set of fry pairs, the order of stimulus presentations was
randomized to control for possible order effects. In CV and CCV
presentations, one adult male and one adult female were placed in

Figure 1. Schematic of the Experimental Setup

Two pairs of fry — one in each compartment ‘A’ — were placed on either
side of the visual stimulus tank (B). During trials with visual stimuli, the
opaque dividers (thick black lines) were removed, and fry could see
either a single large cichlid - in PV and PCV trials — or two adult
conspecifics — in CV and CCV trials. In trials involving chemical stimuli,
stimulus water was dripped into one end of the fry tanks (represented
by the black point).

doi:10.1371/journal.pone.0000118.g001
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the visual stimulus tank. In PV and PCV presentations, one large
(~5.0 cm) cichlid was placed in the visual stimulus tank, between
the fry test tanks on either side (Figure 1). After placing one pair of
fry in each test tank, trials began with a five minute acclimatization
period, followed by a five minute stimulus presentation. After
visual stimulus presentations, the opaque dividers separating the
test tanks from the visual stimulus tank were replaced. During
chemical stimulus presentations, chemical stimulus water was
dripped into each test tank at constant rate; following chemical
stimulus presentations, fry were removed from test tanks, the tanks
were rinsed and then refilled with treated tap water, and fry pairs
were returned to test tanks. All stimulus presentations were
preceded by a five minute acclimatization period.

Video recording began at the start of each acclimatization
period, and continued through the proceeding five-minute
stimulus period; twice during each trial we recorded still images
to determine fry locations. These images of fry locations were
taken 30 seconds prior to stimulus presentations (i.e. during the
acclimatization period), and 30 seconds after stimulus presenta-
tions began. At each time period, we determined fry proximity to
(i) each other, (i1) the stimulus (for chemical stimulus presentations,
we calculated the distance of each fry from the chemical water
input tube; for CV presentations, we used the distance of each fry
from the nearest adult), (iii) the nearest corner of the test tank, and
(iv) the nearest wall of the test tank. For analyses, we pooled
measurement data across fry pairs so that we could compare mean
distances of fry from each other, from the stimulus, and from tank
walls and corners, among treatments. ANOVA were used to
evaluate treatment effects on fry proximity to tank walls, tank
corners, and each other. If an ANOVA revealed significant treat-
ment effects, Fisher LSD tests were used to evaluate differences
between specific means [20]. Because the visual stimulus tank was
not on graph paper, we could not calculate precise distances of fry
from the visual stimulus animal, either a cichlid or nearest adult
conspecific, thus we used discrete measures of distance: tank
widths. For each visual stimulus trial, we calculated the number of
half-tank widths between the fry and the visual stimulus animal; in
the cases of CV and CCYV trials, we determined the distance from
the fry to the nearest adult. We pooled data among pairs of fry,
and for each trial calculated the mean tank-width distances from
visual stimuli. An ANOVA was used to evaluate treatment effects,
and Fisher LSD tests were then used to evaluate differences
between specific means [20]. We did not replicate the predator
trials for two primary reasons. First, housing multiple predators is
logistically problematic. Second, It has been argued that prey
animals’ responses to the presence of predators is under strong
selection to be a highly generalized and stereotypical response —
though in some cases requiring experiential learning to become
stereotypical. This argument is supported by the common usage of
single individuals as predator stimuli in previous studies of
predator avoidance behavior in fishes [7,9,24]. For these reasons,
we did not find it necessary to conduct replicated trials using
multiple cichlids as predator stimuli.

RESULTS

We tested the hypotheses that X. birchmanni fry use visual and
chemical cues in detection of predators and conspecifics. We found
that stimulus presentation did not affect fry proximity to the
nearest wall (/] =1.59, p=10.16) or corner (¥, s=1.43, p=0.21)
of the test tank, but did have a significant effect on fry shoaling
(F16=2.24, p=0.04). Fry responded to predator visual and
chemical stimuli with shoal tightening (Figure 2).

ANOVA revealed that the type of stimulus affected fry distances
from visual stimuli (#, 3=8.16, p<<0.0001). Comparisons of mean
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Figure 2. Mean Distance Between Fry During Trials

This figure shows that fry shoal more tightly when presented with
predator chemical (PC), predator visual (PV), and simultaneous predator
chemical and visual (PCV) stimuli, than when presented with conspecific
chemical (CC), conspecific visual (CV), and conspecific chemical and
visual (CCV) stimuli. The mean distance between fry during the
acclimatization period (A) was intermediate between the mean inter-
fry distances during conspecific and predator stimuli trials. Bars and
whiskers represent the mean=SE. Means with different letters above
them are significantly different (p<<0.05).
doi:10.1371/journal.pone.0000118.g002

distances from visual stimuli revealed that fry avoided predators,
but were attracted to adult conspecifcs, especially when they could
see and smell them (Figure 3).

DISCUSSION

Individuals in prey species are expected to attend closely to
predator cues, and respond to these cues with predator avoidance
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Figure 3. Comparisons of Mean Distances from Visual Stimuli

This figure shows that fry (1) stayed further away from predators than
they did from adult conspecifics, and (2) were most attracted to adult
conspecifics when they could see and smell them (in conspecific
chemical visual trials (CCV)). Bars and whiskers represent the mean=SE.
Means with different letters above them are significantly different
(p<<0.05; asterisk: p<<0.01).

doi:10.1371/journal.pone.0000118.g003
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tactics. This hypothesis has received much support among studies
of adult fish [7, 8, 21; reviewed in refs. 22, 23], and in a handful of
studies investigating the use of predator chemical cues by juvenile
fish. In the European perch (Perca_fluviatilis), for instance, young-of-
the-year reduce food intake when in the presence of odors of
northern pike (Fsox lucius) —a common perch predator [9]. And, in
what reflects the long coevolutionary history between trout fry and
their sympatric predators, young arctic char (Salvelinus alpinus 1..)
are able to discriminate among multiple predators based solely on
chemical information, and modify their behavior adaptively based
on olfactory information [24]. Here we show that week-old
Xiphophorus  birchmanni fry use a multimodal combination of
chemical and visual cues in both predator detection and in
interactions with adult conspecifics.

In this experiment, we found that fry responded to predator
visual stimuli, chemical stimuli, and a combination of visual and
chemical stimuli with tighter shoaling behavior than when
presented with stimuli from adult conspecifics (Figure 2). Shoaling
in response to predator proximity may benefit potential prey in
several ways. First, shoaling may reduce the hunting efficiency of
visual orienting predators that are confused in the presence of
multiple targets [25,26]. Second, by shoaling, the likelihood that
a particular individual is attacked decreases with increasing shoal
size. This adaptive explanation — i.e. the ‘selfish herd’ model — has
been used to explain the widespread occurrence of grouping in
many animals as a predator avoidance strategy [reviewed in refs.
25, 26]. Third, in species where experience is important in
predator avoidance — such as in two-spotted gobies [7] — an
inexperienced individual may benefit by associating with more
experienced individuals who have acquired important predator
avoidance behaviors.

We also found that X. birchmanni fry attend to the chemical cues
of conspecific adults, and are particularly attracted to them when
presented with simultaneous chemical and visual stimuli (Figure 3).
One explanation for these results is that fry are attracted to the odors
of conspecifics because they contain cues indicating the presence of
food. More specifically, we suggest that the odors may contain
information about the success of the particular adults at acquiring
tood. Xiphophorus birchmannmi can smell the nutritional state of
conspecifics: a recent study of mate choice in X. birchmann: showed
that females prefer the odors of well-fed males to the odors of food-
deprived males [15]. We suggest that X. birchmanni fry may attend to
the same cues indicating nutritional state, though use the information
in decisions related to resource acquisition, not mate choice.

Our findings that Xiphophorus birchmanni fry use chemical cues in
predator detection and in interactions with conspecifics may have
important implications for conservation of this species. Recent
research on mate choice in X. birchmanni has shown that (i) females
use chemical cues in mate choice [13], and (i) anthropogenic
alteration of the chemical environment disrupts the chemical
communication system used in mate choice [15]. More specifical-
ly, Fisher et al. [15] showed that females lose their species-specific
mate preferences in the presence of anthropogenic chemical
inputs, such as sewage and washing detergents. Because fry likely
use the same chemosensory pathways to detect predators, and
conspecifics, alteration of the chemical environment may similarly
disrupt predator detection and resource acquisition.

Chemical information is a ubiquitous feature in most environ-
ments [27]. It is therefore not surprising that animals have evolved
diverse sensory systems for collecting, detecting, and processing
chemical stimuli [27]. Here we show that very young animals have
sophisticated mechanisms for discriminating among specific chemi-
cal cues, and that they are able to process information from multiple
sensory modalities resulting in adaptive behavioral responses.
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