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Abstract

Existing studies have shown that the abnormal expression of microRNAs (miRNAs) usu-

ally leads to the occurrence and development of human diseases. Identifying disease-

related miRNAs contributes to studying the pathogenesis of diseases at the molecular

level. As traditional biological experiments are time-consuming and expensive, computa-

tional methods have been used as an effective complement to infer the potential associa-

tions between miRNAs and diseases. However, most of the existing computational

methods still face three main challenges: (i) learning of high-order relations; (ii) insufficient

representation learning ability; (iii) importance learning and integration of multi-view

embedding representation. To this end, we developed a HyperGraph Contrastive Learning

with view-aware Attention Mechanism and Integrated multi-view Representation (HGCLA-

MIR) model to discover potential miRNA-disease associations. First, hypergraph convolu-

tional network (HGCN) was utilized to capture high-order complex relations from

hypergraphs related to miRNAs and diseases. Then, we combined HGCN with contrastive

learning to improve and enhance the embedded representation learning ability of HGCN.

Moreover, we introduced view-aware attention mechanism to adaptively weight the

embedded representations of different views, thereby obtaining the importance of multi-

view latent representations. Next, we innovatively proposed integrated representation

learning to integrate the embedded representation information of multiple views for obtain-

ing more reasonable embedding information. Finally, the integrated representation infor-

mation was fed into a neural network-based matrix completion method to perform miRNA-

disease association prediction. Experimental results on the cross-validation set and inde-

pendent test set indicated that HGCLAMIR can achieve better prediction performance

than other baseline models. Furthermore, the results of case studies and enrichment
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analysis further demonstrated the accuracy of HGCLAMIR and unconfirmed potential

associations had biological significance.

Author summary

Considerable studies have demonstrated that the dysregulation of miRNAs is closely

related to human diseases. Therefore, inferring unconfirmed associations between miR-

NAs and diseases is helpful for disease diagnosis and treatment. Numerous computational

models have been proposed to discover potential miRNA-disease associations on a large

scale, which can accelerate the understanding of disease pathogenesis. We constructed a

HGCLAMIR model to identify miRNA-disease associations through hypergraph convolu-

tional network with contrastive learning, view-aware attention mechanism and integrated

representation learning. The 5-fold cross-validation and independent testing were per-

formed to evaluate the performance of HGCLAMIR, which was better than ten baseline

models. In addition, we carried out case studies on breast neoplasms and lung neoplasms,

showing that 49 and 48 of the top 50 candidate miRNAs were confirmed by experimental

reports. In summary, HGCLAMIR could be considered as an effective and accurate

model for predicting the associations between miRNAs and diseases.

Introduction

MicroRNAs (miRNAs) are a class of single-stranded non-coding RNA molecules with a length

of about 22 nucleotides, which play an important role in many biological processes by target-

ing mRNA [1–3]. To be more specific, miRNAs inhibit the translation of target mRNAs to pre-

vent protein production or downregulate mRNA expression by binding to the 3’UTR of target

mRNAs [4, 5]. Existing studies have shown that the overexpression or dysregulation of miR-

NAs may lead to the occurrence and development of various human diseases [6]. For example,

the expression level of hsa-let-7 is significantly reduced in lung cancer, which verifies that miR-

NAs are closely related to tumors [7]. Studies have shown that hsa-mir-155 is identified as a

candidate biomarker for early pancreatic tumors [8]. In addition, the expression of hsa-mir-

18a in pancreatic cancer tissues and cell lines is significantly higher than in normal tissues [9].

Therefore, miRNAs may be potential biomarkers of various diseases, and further exploring the

associations between miRNAs and diseases is of great significance for understanding the path-

ogenic mechanism at the molecular level. Traditional wet experiments can infer the associa-

tions between miRNAs and diseases, but they are time-consuming and expensive. Hence,

computational methods, due to time-saving, cost-minimizing and large-scale discovery of

potential associations, have been increasingly used as complementary tools to identify poten-

tial associations between miRNAs and diseases.

The existing computation-based methods for predicting the associations between miRNAs

and diseases are mainly divided into two categories [10]. The first category is similarity mea-

sure-based methods, the basic assumption of which is that miRNAs with similar functions are

more likely to be associated with diseases with similar phenotypes, and vice versa. Chen et al.
[11] developed the RWRMDA method to infer potential miRNA-disease associations by

implementing random walks on miRNA-miRNA functional similarity networks. Chen et al.
[12] integrated known miRNA-disease associations, miRNA functional similarity network,

disease semantic similarity network and Gaussian interaction profile kernel similarity
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network, and developed the model of Within and Between Score for MiRNA-Disease Associa-

tion prediction (WBSMDA) based on the integrated similarity. You et al. [13] proposed a

path-based search method PBMDA, which uses a depth-first search strategy to predict the

associations between miRNAs and diseases. Chen et al. [14] proposed a computational model

of Bipartite Network Projection for MiRNA–Disease Association prediction (BNPMDA)

based on the bias ratings by exploiting the integrated similarity related to miRNAs and dis-

eases. Chen et al. [15] designed a bipartite heterogeneous network association prediction

method based on co-neighbor to predict miRNA-disease associations. Zhang et al. [16] pre-

sented a fast linear neighborhood similarity-based network method called FLNSNLI to predict

miRNA-disease associations. The second category is machine learning-based methods. As

more and more associations between miRNAs and diseases have been confirmed by biological

experiments, it is possible to predict potential miRNA-disease associations in a data-driven

manner. Fu et al. [17] utilized a stacked autoencoder to extract the embedding representations

of nodes from miRNA and disease similarity networks as feature vectors for miRNA-disease

pairs, and input them into a three-layer neural network to predict miRNA-disease associa-

tions. Chen et al. [18] proposed the RFMDA method combining filter-based feature selection

strategy and random forest classifier to predict the associations between miRNAs and diseases.

Chen et al. [19] presented a prediction model called EGBMMDA based on extreme gradient

boosting for miRNA-disease association prediction. Ji et al. [20] developed a deep autoenco-

der-based computational method named AEMDA, which can extract embedding representa-

tions of diseases and miRNAs from similarity matrices for predicting the associations between

miRNAs and diseases. Liu et al. [21] proposed a computational method called SMALF. It uses

a stacked autoencoder to learn miRNA and disease embedding representations, and predicts

unknown miRNA-disease associations based on eXtreme Gradient Boosting (XGBoost). Dong

et al. [22] developed a biologically-motivated data-driven method called MPM to identify

miRNA-disease associations. MPM applies a message passing framework to enrich existing

biological associations and uses a random forest classifier to predict the miRNA-disease associ-

ation probabilities.

In recent years, graph-based neural networks can effectively aggregate information between

nodes through message passing in graph-structured data, which has demonstrated powerful

feature representation ability. Tang et al. [23] used graph convolutional network (GCN) and

attention mechanism to extract and enhance latent representations of miRNAs and diseases,

and predict potential associations based on the reconstructed miRNA-disease association

matrix. Dong et al. [24] proposed a multi-task graph convolutional learning framework

named MuCoMiD, which integrates knowledge from five heterogeneous biological informa-

tion sources and allows automatic feature extraction in an end-to-end manner to predict the

associations between miRNAs and diseases. Wang et al. [25] designed the MAGCN method

based on known lncRNA–miRNA interactions and graph convolution networks without using

any similarity measurements. This method predicts miRNA-disease associations by using

GCN with multichannel attention mechanism and convolutional neural network combiner.

Ruan et al. [26] developed the MSGCL method to optimize the graph structure by applying

self-supervised contrastive learning, which uses a graph convolutional network encoder to

identify the associations between miRNAs and diseases. Nevertheless, these graph-based neu-

ral network methods usually represent the relationship between nodes as a bipartite graph,

which results in only aggregating the information of neighbor nodes and failing to learn high-

order relations. Hypergraphs, as an extension of bipartite graphs, utilize a subset of nodes as a

hyperedge, thereby effectively capturing high-order relations between nodes. Wu et al. [27]

designed an MSCHLMDA method of multi-similarity based on combinative hypergraph

learning for predicting miRNA-disease associations, which makes use of K-nearest neighbor
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(KNN) and K-means methods to construct two different hypergraphs. Wang et al. [28] pre-

sented the HFHLMDA method to infer the miRNA-disease associations based on high-

dimensionality features and hypergraph learning. HFHLMDA can effectively learn the high-

order relations among miRNA-disease pairs by applying hypergraph Laplacian regularization

on the projection matrix. However, these methods are unable to learn nonlinear feature repre-

sentations related to miRNAs and diseases, which limits the improvement of prediction per-

formance. To learn high-order relations while capturing nonlinear information, Ning et al.
[29] developed a method called AMHMDA based on attention aware multi-view similarity

networks and hypergraph learning. This method introduces hypernodes in graph convolution

network to learn high-quality links and richer node information for miRNA-disease associa-

tion identification. However, AMHMDA still uses standard GCN and lacks effective strategies

to further enhance embedding representation learning ability, resulting in suboptimal predic-

tion results.

Although all the above methods have achieved excellent performance in discovering

potential associations, most of them still have some limitations. On the one hand, similarity

measure-based methods rely too much on known association information, which leads to

poor performance on association prediction for new or rare diseases. On the other hand, the

quality of the embedded representations of miRNAs and diseases has a critical impact on the

performance of association prediction. Although some models based on graph convolutional

networks have been proposed to learn high-quality nonlinear embedding representations

[23, 30], they only focus on pairwise relations in homogeneous graphs and ignore high-order

complex relations in heterogeneous graphs. In addition, existing graph-based methods have

the problem of insufficient learning ability of embedding representations. Moreover, these

methods ignore the importance of different views and the degree of concern between differ-

ent views, thus affecting the quality of integrated miRNA or disease embedding

representation.

To alleviate the abovementioned limitations, we proposed HyperGraph Contrastive Learn-

ing with view-aware Attention Mechanism and Integrated multi-view Representation, named

HGCLAMIR, for miRNA-disease association prediction. First, we used KNN and K-means

methods to construct hypergraphs of two different views of miRNAs (or diseases) from a

miRNA-disease heterogeneous network, respectively. Then, hypergraph convolutional net-

work (HGCN) was employed to capture high-order complex relations from hypergraphs

related to miRNAs or diseases. Next, we combined HGCN with contrastive learning to

improve and enhance the embedded representation learning ability of HGCN, thereby learn-

ing more higher quality embedding representation information. Moreover, view-aware atten-

tion mechanism was introduced to adaptively weight the embedded representations of

different views for obtaining the importance of multi-view latent representations. To obtain

more richer and reasonable embedding information, we innovatively proposed integrated

representation learning to integrate two-view embedding representations of miRNAs or dis-

eases. Finally, we utilized a neural network-based matrix completion method to predict

miRNA-disease associations based on integrated embedding information. Meanwhile, we con-

ducted extensive experiments to evaluate the prediction performance of our model on two dif-

ferent datasets. The experimental results of 5-fold cross-validation five times and independent

testing indicated that HGCLAMIR was better than other baseline models. In addition, the

results of ablation studies demonstrated the effectiveness of each module of our model. Fur-

thermore, the results of case studies further confirmed that HGCLAMIR can accurately predict

the associations between miRNAs and diseases, as well as unconfirmed potential miRNA-dis-

ease associations had biological significance. In conclusion, HGCLAMIR can be used as an

effective tool to discover potential miRNA-disease associations.
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Materials and methods

Human miRNA-disease associations

Since the miRNA-disease associations in Human MiRNA Disease Database (HMDD) have

been experimentally verified, the HMDD database was often used for miRNA-disease associa-

tion research [31, 32]. In this paper, we generated two miRNA-disease association datasets

from HMDD v2.0 and HMDD v3.2 database, where these two databases can be downloaded

from https://www.cuilab.cn/hmdd. The first dataset MDAv2.0 includes 5425 experimentally

verified associations between 380 diseases and 495 miRNAs, whereas the second dataset

MDAv3.2 contains 486 diseases and 917 miRNAs, and provides 9732 experimentally verified

human miRNA-disease associations. Next, we can construct adjacency matrix T 2 {0, 1}M×D

with 0–1 entries based on the HMDD database, where M and D represent the number of miR-

NAs and diseases, respectively. The adjacent matrix T indicates the known miRNA-disease

associations, where T(i, j) = 1 if a miRNA i is associated with a disease j, T(i, j) = 0 if the associ-

ation between a miRNA i and a disease j is unknown or unobserved.

Disease semantic similarity

The disease descriptors were utilized to calculate disease semantic similarity [33], which can be

obtained from the Medical Subject Headings (MeSH) database (https://www.nlm.nih.gov/

mesh/). To be more specific, the Directed Acyclic Graph (DAG) can be used to describe the

hierarchical relationships of different diseases. For a disease di, we defined DAG(di) = (di, T
(di), E(di)), where T(di) represents a set of nodes including di itself and its ancestor nodes, E(di)
denotes the edge set with regard to the direct links between the parent nodes and the child

nodes. Then, the semantic contribution of diseases dk to di can be calculated as follows:

D1ðdi; dkÞ ¼

1; if dk ¼ di

maxfD� D1ðdi; d0kÞj

d0k 2 children of dkg; if dk 6¼ di:

8
>>><

>>>:

ð1Þ

where Δ is a semantic contribution decay factor and it is set to 0.5 according to previous work

[33]. Concretely, the semantic contribution value of disease di to itself is 1, and the semantic

contribution value of disease dk to disease di progressively decreases as the distance between

them increases. Therefore, the semantic value of disease di can be formulated as below:

SV1ðdiÞ ¼
X

dk2TðdiÞ

D1ðdi; dkÞ ð2Þ

Based on the assumption that if a disease pair shares a large part of DAGs, they can be con-

sidered to have higher similarity between them. Then, we can obtain the disease semantic simi-

larity DSS1(di, dj) between diseases di and dj as follows:

DSS1ðdi; djÞ ¼

P
dt2TðdiÞ\TðdjÞ

ðD1ðdi; dtÞ þ D1ðdj; dtÞÞ

SV1ðdiÞ þ SV1ðdjÞ
ð3Þ

However, DSS1 ignores the importance of the semantic contributions of different diseases.

Because diseases appearing in less DAGs may be more specific and should have higher seman-

tic contribution values, the semantic contribution values of diseases in the same layer of DAGs

should be different. Based on previous study [34], the second semantic contribution of disease
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dk to di can be presented as below:

D2ðdi; dkÞ ¼ � log
the number of DAGs including dk

the number of disease

� �

ð4Þ

Similarly, we can obtain the second semantic value SV2(di) of disease di and the disease

semantic similarity DSS2(di, dj) between diseases di and dj as follows:

SV2ðdiÞ ¼
X

dk2TðdiÞ

D2ðdi; dkÞ ð5Þ

DSS2ðdi; djÞ ¼

P
dt2TðdiÞ\TðdjÞ

ðD2ðdi; dtÞ þ D2ðdj; dtÞÞ

SV2ðdiÞ þ SV2ðdjÞ
ð6Þ

To obtain a more reasonable disease semantic similarity, we integrated these two kinds of

disease semantic similarity DSS1(di, dj) and DSS2(di, dj) on the basis of previous study [35].

Finally, the disease semantic similarity DSS(di, dj) between diseases di and dj can be presented

according to the following equation:

DSSðdi; djÞ ¼
DSS1ðdi; djÞ þ DSS2ðdi; djÞ

2
ð7Þ

MiRNA functional similarity

Based on the assumption that miRNAs associated with similar diseases may have similar func-

tions, the miRNA functional similarity score can be calculated according to disease semantic

similarity [33]. Then, we can build a miRNA functional similarity matrix MFS. MFS(mi, mj)

denotes each element in the matrix MFS, which also represents the miRNA functional similar-

ity score between miRNAs mi and mj. Finally, MFS can be calculated by the following formula:

MFSðmi;mjÞ ¼

X

d2DðmiÞ

DSSðd; d∗j Þþ
X

d2DðmjÞ

DSSðd; d∗i Þ

jDðmiÞj þ jDðmjÞj

ð8Þ

where D(mi) denotes the set of diseases that are associated with mi, |D(mi)| represents the

number of elements in the set D(mi) and d∗i ¼ argmax
di2DðmiÞ

DSSðd; diÞ.

Gaussian interaction profile kernel similarity for miRNAs and diseases

Since miRNAs with similar function are likely to be associated with diseases with similar phe-

notypes, the Gaussian interaction profile kernel similarity has been calculated to represent

miRNA similarity and disease similarity in previous studies [35, 36]. For a given miRNA mi, a

binary vector IP(mi) was extracted from the known miRNA-disease associations to represent

associations between miRNA mi and each disease. Then, the Gaussian interaction profile ker-

nel similarity for miRNAs GPSM(mi, mj) between miRNAs mi and mj can be presented as fol-

lows:

GPSMðmi;mjÞ ¼ expð� gm k IPðmiÞ � IPðmjÞk
2Þ ð9Þ

where the parameter γm controls the kernel bandwidth, which can be calculated by using the
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following equation:

gm ¼
g0m

1

M

PM
i¼1
k IPðmiÞ k

2
ð10Þ

where M represents the number of miRNAs. Here, g0m is set to 1 according to the previous

work [36]. Similarly, the Gaussian interaction profile kernel similarity for diseases GPSD(di, dj)
between diseases di and dj can be calculated based on the following two equations:

GPSDðdi; djÞ ¼ expð� gd k IPðdiÞ � IPðdjÞk
2Þ ð11Þ

gd ¼
g0d

1

D

PD
i¼1
k IPðdiÞ k

2
ð12Þ

where a binary vector IP(di) represents whether a disease di is associated with each miRNA

in the known miRNA-disease associations, D refers to the number of diseases and g0d is also

set to 1.

Integrated similarity for miRNAs and diseases

To construct more accurate similarity related to miRNA and disease, we combined the

Gaussian interaction spectral kernel similarity with the miRNA functional similarity and the

disease semantic similarity. Based on previous study [14], the integrated similarity for miR-

NAs IM(mi, mj) and diseases ID(di, dj) can be calculated as below:

IMðmi;mjÞ ¼

MFSðmi ;mjÞþGPSMðmi ;mjÞ

2
; if mi and mj have

functional similarity

GPSMðmi;mjÞ; otherwise:

8
>>>>><

>>>>>:

ð13Þ

IDðdi; djÞ ¼

DSSðdi ;djÞþGPSDðdi ;djÞ
2

; if di and dj have

semantic similarity

GPSDðdi; djÞ; otherwise:

8
>>>>><

>>>>>:

ð14Þ

HGCLAMIR

In this paper, we proposed an end-to-end hypergraph contrastive learning with view-aware

attention mechanism and integrated multi-view representation model for predicting the asso-

ciations between miRNAs and diseases. As shown in Fig 1, HGCLAMIR model mainly

includes hypergraph construction, hypergraph convolutional network (HGCN), hypergraph

contrastive learning, view-aware attention mechanism, integrated representation learning and

neural projection. More specifically, we first separately used KNN and K-means methods to

construct hypergraphs related to miRNAs and diseases from the miRNA-disease heteroge-

neous graph. Then, we utilized HGCN to learn the miRNA (or disease) embedding representa-

tion of two different views. Furthermore, the hypergraph contrastive learning was proposed by

combining HGCN with contrastive learning to improve and enhance the embedded
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representation learning ability of HGCN. Next, we introduced view-aware attention mecha-

nism to obtain the importance of embedding representations of different views. Meanwhile,

integrated representation learning was proposed to effectively integrate the enhanced embed-

ding representations of different views. Finally, we input the integrated embedding representa-

tions into a neural network-based matrix completion method to identify miRNA-disease

associations.

Hypergraph construction and convolutional network

To capture beyond pairwise relationships from heterogeneous miRNA-disease networks, we

adopted a weighted hypergraph G = (V, E, W) to represent a hyperedge related to miRNAs (or

diseases). Concretely, V ¼ fv1; v2; . . . ; v �mg is the finite set of vertices of the hypergraph. E ¼
fe1; e2; . . . ; e�ng is the set of hyperedges of the hypergraph, and each hyperedge e is a subset of

V. W ¼ fW1;W2; . . . ;W�ng represents the weight of hyperedge, which is a diagonal matrix. In

this paper, we concatenated miRNA-disease associations and integrated miRNA similarity as

features of node miRNAs. Similarly, we concatenated disease-miRNA associations and inte-

grated disease similarity as features of node diseases. Based on the concatenated features, we

utilized KNN and K-means methods to learn hypergraphs for miRNAs and diseases, respec-

tively. To be more specific, we first calculated the nearest k neighbors of each miRNA based on

Euclidean distance in the KNN method, thereby determining a subset (i.e., hyperedge) from k
neighbors. The K-means method randomly selects the clustering center and uses Euclidean

distance to determine the distance between each miRNA and the clustering center, thereby

grouping those with close distances into one category and form a subset (i.e., hyperedge).

Through multiple iterations until the clustering center no longer undergo changes. Then, the

relationship between vertices and hyperedges in hypergraphs can be represented by the inci-

dence matrix H 2 R �m��n
. In a hypergraph constructed using the KNN method, the number of

miRNAs is equal to the number of hyperedges, so the incidence matrix H is usually a square

Fig 1. The workflow of our proposed HGCLAMIR model for predicting potential miRNA-disease associations.

https://doi.org/10.1371/journal.pcbi.1011927.g001
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matrix. In a hypergraph constructed using the K-means method, the number of clustering cen-

ter c is equal to the number of hyperedges, so the incidence matrix H is not necessarily a square

matrix. Specifically, the element-wise representation of the incidence matrix H is defined as

follows:

Hðv; eÞ ¼
1; if v 2 e

0; otherwise:

(

ð15Þ

Based on previous study [37], hypergraph convolutional network (HGCN) using spectral

convolution can well encode high-order relations in a hypergraph structure. According to the

incidence matrix H and the weight W of the hyperedge, we can build a hyperedge convolution

layer of HGCN as follows:

Xðlþ1Þ ¼ sðD� 1=2
v HW D� 1

e HT D� 1=2
v XðlÞYðlÞÞ ð16Þ

where X(l) is the aggregated information of hypergraph at l layer, X(0) = X. Θ(l) is the learnable

filter matrix of the l-th layer. σ(�) denotes the nonlinear activation function. De and Dv repre-

sent the diagonal matrices of edge and vertex degrees, respectively. Concretely, the degree of a

vertex v is defined as d(v) = ∑e2Ew(e)H(v, e). The degree of an edge e is defined as d(e) =

∑v2VH(v, e).

Hypergraph contrastive learning

To improve and enhance the embedding quality in supervised learning, contrastive learning

has become an effective solution [38, 39]. In recent years, many studies have also begun to

combine contrastive learning and graph representation learning to enhance graph embedding

representations [40, 41], which aim to learn good data representations by optimizing a con-

trastive loss generated from positive and negative pairs. Therefore, we proposed a hypergraph

contrastive learning method to seek the consistency of the same node and the difference of dif-

ferent nodes in different views as shown in Fig 2A. Specifically, we first utilized KNN and K-

means methods to construct two different hypergraph views, respectively. Then, we employed

a contrastive objective function that enforces the encoded embeddings of each node in two dif-

ferent views to be consistent with each other and distinguishable from embeddings of other

nodes. For any node vi, its embedding generated in one view, ui, is regarded as the anchor,

where the bold lowercase letters are used to represent vectors. The embedding of node vi gen-

erated in the other view is represented as vi. Next, the different embeddings ui and vi of the

same node in two views form the positive sample, and are naturally regarded as negative sam-

ples with other embeddings uk and vk (k 6¼ i) in two views. To be more specific, the embedding

uk of other nodes in the same view as anchor ui, which forms intra-view negative pairs with ui.
The embedding vk of other nodes is not in the same view as anchor ui, which forms inter-view

negative pairs with ui. Similar to InfoNCE [42], we defined the pairwise training objective for

each positive pair (ui, vi) as follows:

LCL ui; við Þ ¼

� log
ey ui ;við Þ=t

eyðui ;viÞ=t
|fflfflffl{zfflfflffl}
positive pair

þ
X

k6¼i

ey ui ;ukð Þ=t

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
intra-view

negative pairs

þ
X

k6¼i

ey ui;vkð Þ=t

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
inter-view

negative pairs

ð17Þ

where τ is a temperature parameter, the critic θ(u, v) = s(g(u), g(v)). Here, s(�, �) is the cosine
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similarity and g(�) is a nonlinear projection to enhance the expression power of the critic func-

tion [38]. In our method, the projection function g was implemented with a two-layer percep-

tron model.

In terms of M miRNAs, the contrastive loss of the hypergraph constructed by KNN can be

defined as follows:

Lm1

CL ðui; viÞ ¼

�
XM

i¼1

log
eyðui ;viÞ=t

eyðui ;viÞ=t þ
X

k6¼i

eyðui ;ukÞ=t þ
X

k6¼i

eyðui ;vkÞ=t
ð18Þ

Since the two views constructed by KNN and K-means for miRNAs are symmetric, we can

obtain another contrastive loss of the hypergraph constructed by K-means which is also

defined similarly as Lm2

CL ðvi; uiÞ.

Finally, we obtained the overall contrastive loss function for miRNAs as follows:

Lm
CL ¼ ZL

m1

CL ðui; viÞ þ ð1 � ZÞL
m2

CL ðvi; uiÞ ð19Þ

where η is a coefficient to balance the effect of two views. In this paper, we set η to 0.5 for sim-

plicity in our experiments. Similarly, we can obtain the overall contrastive loss function Ld
CL

for diseases.

View-aware attention mechanism

In general, the quality of embedding representations of miRNAs (or diseases) varies between

different views, resulting in different contributions to the prediction of miRNA-disease associ-

ations. To learn the importance of different views obtained by HGCN, we utilized global aver-

age pooling and fully connected neural network (FNN) to calculate attention weights of the i-
th views for miRNAs as follows:

ai
m ¼ FNNmðGAPmðZHGCNðiÞ

m ÞÞ ð20Þ

where GAPm(�) represents a global average pooling layer for miRNAs. FNNm(�) is a two-layer

FNN for miRNAs, and the nonlinear activation functions of two layers are ReLU activation

and Sigmoid activation, respectively. ZHGCNðiÞ
m denotes the embedding representation of the i-th

Fig 2. The detailed description of different modules in HGCLAMIR. (A) Illustration of hypergraph contrastive learning. (B) Introduction of integrated representation

learning.

https://doi.org/10.1371/journal.pcbi.1011927.g002
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view output by HGCN. Then, the two-view attention weight of miRNAs can be obtained as

am ¼ ½a
1
m; a

2
m�.

Finally, we combined the embedding representations of different views with attention

weights, which is defined as follows:

~Zi
m ¼ Fðai

m;Z
HGCNðiÞ
m Þ ¼ dðai

m � Z
HGCNðiÞ
m Þ ð21Þ

where δ(�) indicates ReLU activation function. Through the above steps, we can obtain the

miRNA embedding representation information with attention weights ~Zm ¼ ½
~Z1

m;
~Z2

m�.

Similarly, the disease embedding representation information with attention weights for the

j-th view is calculated as follows:

a
j
d ¼ FNNdðGAPdðZ

HGCNðjÞ
d ÞÞ ð22Þ

~Zj
d ¼ Fða

j
d;Z

HGCNðjÞ
d Þ ¼ dða

j
d � Z

HGCNðjÞ
d Þ ð23Þ

where GAPd(�) is a global average pooling layer for diseases. FNNd(�) is a two-layer FNN for

diseases. The two-view attention weight of diseases can be obtained as ad ¼ ½a
1
d; a

2
d�. Through

the above steps, the final disease embedding representation information with attention weights

can be defined as ~Zd ¼ ½
~Z1

d;
~Z2

d�.

Integrated representation learning

After view-aware attention mechanism, we can obtain two miRNA (or disease) embedding

information with attention weights from different perspectives. Inspired by Transformer

encoder [43], we proposed integrated representation learning to integrate different views for

achieving richer embedded representations in Fig 2B. For a miRNA m, we first concatenated

the vectors ~z 1
m and ~z 2

m to obtain the embedding representation matrix of its two views as

Ẑm ¼ ½~z 1
m; ~z

2
m�. Then, the query matrix Qm ¼WqẐm ¼ ½q1

m; q
2
m�, the key matrix Km ¼WkẐm ¼

½k1

m; k
2

m� and the value matrix Vm ¼WvẐm ¼ ½v1
m; v

2
m� can be obtained through the projection

matrices Wq, Wk and Wv. Further, the scaled dot product function was chosen as the attention

function [43]. Finally, the inter-view attention matrix Am can be computed as follows:

Amði; jÞ ¼
exp½ðqi

mÞ
T
� kj

m=
ffiffiffiffi
df

q
�

P2

j¼1
exp½ðqi

mÞ
T
� kj

m=
ffiffiffiffi
df

q
�

ð24Þ

where Am(i, j) represents how much concern the i-th view has for the j-th view of miRNA m,

df refers to the dimension of the embedded representation for miRNAs. For two views, the

inter-view attention matrix Amði; jÞ 2 R
2�2

for a miRNA m. Note that we can obtain M inter-

view attention matrices for M miRNAs. In addition, we considered inter-view attention, so the

interaction between different views can be highlighted.

To improve the expressive ability and obtain the robust learning process, we extended self-

attention to a multi-head version. Multi-head attention can be obtained by the following for-

mulas:

V̂m ¼ Am � VT
m; V̂ ave

m ¼
1

N

XN

p¼1

ðV̂ T
mÞ

p
ð25Þ

where N denotes the number of head. Moreover, different heads can capture different perspec-

tive information.
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Finally, we utilized a two-layer Feedforward network to further encode the embedding rep-

resentations obtained from multi-head attention. The detailed calculation formula is shown

below:

hm ¼Wh � VecðV̂ ave
m Þ ð26Þ

where Wh is used to represent parameters in the Feedforward network. Vec(�) represents the

vectorization of row-wise concatenation. Then, the miRNA embedding representation matrix

can be expressed as H = [h1, h2, � � �, hm, � � �, hM] for M miRNAs. Similarly, the disease embed-

ding representation matrix can be calculated as G = [g1, g2, � � �, gd, � � �, gD] for D diseases.

Optimization of HGCLAMIR

Through integrated representation learning, we obtained the integrated miRNA embedding

representation H and the integrated disease embedding representation G, respectively. Based

on the integrated representation information H and G, the neural network-based matrix com-

pletion method was utilized to perform miRNA-disease association prediction. More specifi-

cally, we used the fully connected neural network to obtain the final miRNA embedding

representation matrix Xm and disease embedding representation matrix Yd. Then, we obtained

the reconstructed association matrix T̂ by matrix multiplication as shown below:

T̂ ¼ XmYT
d ð27Þ

There is an imbalance problem that unknown (or unobserved) is much larger than

observed in the association matrix between miRNAs and diseases, which will affect the train-

ing of the model. To alleviate this problem, we introduced a tradeoff parameter α to balance

the observed and unknown (or unobserved) entries well. Finally, the objective function of our

model can be more accurately defined as follows:

LRE ¼
ð1 � aÞ

2
k POðT � T̂Þ k2

F þ
a

2
k P�OðT � T̂Þ k2

F
ð28Þ

where Ω and �O represent the set of observed, unobserved or unknown miRNA-disease entries

from the known association matrix T, respectively.

Finally, the optimization objective of our model consists of three parts: the reconstruction

loss, the contrastive loss for miRNAs and the contrastive loss for diseases:

L ¼ LRE þ lL
m
CL þ gL

d
CL ð29Þ

where λ and γ control the impact of contrastive loss for miRNAs Lm
CL and diseases Ld

CL, respec-

tively. In this paper, we set λ and γ to 1 for simplicity. Meanwhile, we used Adam [44] with

learning rate β to optimize the HGCLAMIR model based on PyTorch.

Results

Implementation details and evaluation metrics

Based on previous work [45], we randomly selected 9/10 samples from a sample set containing

all positive and negative samples to generate the cross-validation set, and utilized the remain-

ing 1/10 samples as the independent test set. Note that there is no overlap between the cross-

validation set and the independent test set. In this paper, we performed cross-validation exper-

iments and parameter analysis by conducting the 5-fold cross-validation on the cross-valida-

tion set. To be more specific, all experimentally verified miRNA-disease associations were
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randomly divided into five equal subsets. In each fold, one subset as testing set in turn and the

other four subsets as training sets. Meanwhile, in order to make a more reasonable and fair

performance analysis, we compared the proposed model with other baseline models on an

independent test set. The area under the precision-recall (AUPR) curve, the area under the

receiver operating characteristic (AUC) curve and F1 score were used to evaluate the predic-

tion performance of all models.

Baseline models

To comprehensively evaluate the prediction performance of our proposed HGCLAMIR

model, we introduced the following several models as baselines.

IMCMDA [34]: IMCMDA utilizes the inductive matrix completion method for miRNA-

disease association prediction based on integrated miRNA and disease similarity matrices.

PBMDA [13]: The miRNA-disease associations, integrated miRNA and disease similarity

information are used to construct a heterogeneous graph. Then, PBMDA applies a depth-first

search algorithm to infer potential associations between miRNAs and diseases based on the

heterogeneous graph.

GRGMF [46]: Zhang et al. developed a graph regularized generalized matrix factorization

method to infer potential associations in biomedical bipartite networks.

NIMCGCN [30]: The method aggregates the embedded information of miRNAs and dis-

eases by utilizing GCN and applies a neural inductive matrix completion method to infer

miRNA-disease associations.

MMGCN [23]: MMGCN performs GCN to capture the embedded representation of multi-

view miRNA and disease and uses the attention mechanism to learn the importance of differ-

ent views. Then, CNN is utilized to integrate multi-view embedded information for predicting

potential miRNA-disease associations.

MvKFN-MDA [47]: Multiple kernel fusion network is used to integrate the similarity infor-

mation of multi-view miRNA and disease. Then, these integrated similarities are fed to a neu-

ral matrix completion method to infer the potential associations between miRNAs and

diseases.

GCAEMDA [48]: GCAEMDA uses graph convolutional autoencoder to learn scores of

miRNA-disease from miRNA-based and disease-based sub-networks, and adopts an average

ensemble way to integrate two prediction scores for the final miRNA-disease association

prediction.

MSGCL [26]: The method employs self-supervised contrastive learning to optimize the

graph structure and utilizes a graph convolutional network encoder to infer the associations

between miRNAs and diseases.

ERMDA [49]: Dai et al. proposed an ensemble learning framework with resampling

method for miRNA-disease association (ERMDA) prediction to discover potential disease-

related miRNAs.

AMHMDA [29]: AMHMDA method, leveraging attention aware multi-view similarity net-

works and hypergraph learning, introduces hypernodes into the graph convolution network to

learn high-quality links and richer node information for miRNA-disease association

identification.

Parameters analysis

In this section, we showed the influence of several hyperparameters on the performance of

HGCLAMIR on the MDAv2.0 dataset. Furthermore, we used cross-validation and AUC,

AUPR, F1 values to evaluate them for selecting the optimal hyperparameters. Among them,
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the hyperparameters mainly include k in KNN method, the number of clustering center c in

K-means method, learning rate β and the biased item α in the loss function defined by Eq 28.

First, we fixed the other hyperparameters to select the optimal k value. Specifically, we searched

the optimal k value from {1, 3, 5, � � �, 13, 15}. As shown in Fig 3A, we found that when k was

set to 13, HGCLAMIR model obtained the optimal prediction performance. In a similar way,

optimal c value can be found from {1, 3, 5, � � �, 13, 15} and set c = 9 in Fig 3B. Then, training α
within {0.01, 0.03, 0.05, � � �, 0.13, 0.15} and set α = 0.11 in S1(A) Fig. Finally, we searched the

optimal β from {0.00001, 0.0001, 0.001, 0.01, 0.1} and set β = 0.0001 in S1(B) Fig. It is worth

noting that other experimental datasets also require hyperparameter selection, and detailed

hyperparameter adjustment results can be obtained in S2 Fig.

Comparison experiments

For a fairer comparative analysis with other baseline models, all comparison experiments were

conducted with the same datasets and experimental settings. First, we compared HGCLAMIR

with other models by performing 5-fold cross-validation five times on cross-validation sets.

Moreover, when evaluating the prediction performance of the model, we also randomly

selected unobserved elements equal to the positive sample size as negative samples 10 times

and reported the average results to obtain a more reasonable evaluation. As shown in Table 1,

our proposed HGCLAMIR model achieved the best prediction performance on all datasets.

To be more specific, the average AUC value of 5-fold cross-validation five times of HGCLA-

MIR on the MDAv2.0 dataset is 0.945284, whereas the average AUC values of IMCMDA,

PBMDA, GRGMF, NIMCGCN, MMGCN, MvKFN-MDA, GCAEMDA, MSGCL, ERMDA

and AMHMDA are 0.848512, 0.916204, 0.921368, 0.936045, 0.917045, 0.937915, 0.930890,

0.906431, 0.938933, 0.923040, respectively. Similarly, HGCLAMIR model was also significantly

better than ten comparison models on the MDAv3.2 dataset. It is worth noting that the

Fig 3. The influence of different hyperparameters on HGCLAMIR based on the MDAv2.0 dataset under 5-fold cross-validation. (A) The impact of hyperparameter k
on HGCLAMIR. (B) The impact of hyperparameter c on HGCLAMIR.

https://doi.org/10.1371/journal.pcbi.1011927.g003
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prediction performance of HGCLAMIR can open up a significant gap compared with

IMCMDA, PBMDA and GRGMF. This may be due to the fact that HGCLAMIR using hyper-

graph convolutional network can better capture complex nonlinear relationships in biological

heterogeneous networks, thereby improving prediction performance. Then, we more intui-

tively displayed the prediction performance of the proposed HGCLAMIR model in graphical

form based on MDAv2.0 and MDAv3.2 datasets. From Figs 4 and S3, we observed that the pre-

diction performance of HGCLAMIR in each fold is not much different under 5-fold cross-vali-

dation, which further indicated that the performance of HGCLAMIR is relatively stable. In

addition, Figs 5 and S4 show the comparative ROC curves and PR curves performed by

HGCLAMIR and ten baseline models under 5-fold cross-validation, from which we can see

that HGCLAMIR still achieved better prediction performance on MDAv2.0 and MDAv3.2

datasets. Finally, in order to stricter evaluate the prediction performance of HGCLAMIR, we

further considered the issue of avoiding data leakage based on previous study [50]. More spe-

cifically, the training set’s known associations were used to calculate biological similarities

related to miRNAs and diseases. From S1 Table, we observed that the prediction performance

of HGCLAMIR is still better than other baseline models, without a huge drop in performance.

This further demonstrates that the HGCLAMIR model has good robustness and can be con-

sidered as an effective tool to predict miRNA-disease associations.

To avoid over-optimistic results on cross-validation set, we further conducted comparative

analysis of all models on independent test set. More specifically, all models were trained on the

cross-validation set and performed miRNA-disease association prediction on an independent

test set. Since the model parameters were selected by 5-fold cross-validation on the cross-vali-

dation set and training is irrelevant to independent test set, we can evaluate the prediction per-

formance of all models on the independent test set for unseen data. Table 2 shows the

prediction performance of all models on an independent validation set, from which we can see

that HGCLAMIR also achieved the best prediction results in terms of AUC, AUPR and F1 on

all datasets. This result demonstrated that our model has better generalization ability.

Ablation studies

To better verify the effectiveness of hypergraph convolutional network (HGCN), contrastive

learning, view-aware attention mechanism and integrated representation learning, we con-

structed GCN_AMIR, HGCN_AMIR, HGCLAM_concat and HGCL_IR as four variants of

Table 1. The prediction performance of all models evaluated by 5-fold cross-validation five times.

Model MDAv2.0 MDAv3.2

AUC AUPR F1 AUC AUPR F1

IMCMDA 0.848512 0.868595 0.778759 0.878090 0.887196 0.811497

PBMDA 0.916204 0.920863 0.846252 0.935506 0.929664 0.867088

GRGMF 0.921368 0.932778 0.857465 0.938011 0.946759 0.877490

NIMCGCN 0.936045 0.935408 0.866438 0.954876 0.953186 0.892786

MMGCN 0.917045 0.933986 0.864688 0.937804 0.946449 0.888515

MvKFN-MDA 0.937915 0.936040 0.870066 0.958430 0.955316 0.895589

GCAEMDA 0.930890 0.943125 0.874576 0.933799 0.946583 0.876278

MSGCL 0.906431 0.912735 0.846619 0.931279 0.934223 0.874771

ERMDA 0.938933 0.937784 0.864552 0.959165 0.954715 0.893585

AMHMDA 0.923040 0.919820 0.835820 0.951680 0.946420 0.876040

HGCLAMIR 0.945284 0.945074 0.879973 0.962600 0.959563 0.902512

https://doi.org/10.1371/journal.pcbi.1011927.t001
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HGCLAMIR for comparative analysis. (1) GCN_AMIR: we replaced HGCN with GCN to

explore the ability of hypergraph convolutional network to capture complex high-order rela-

tions. To obtain embedding information of two different views for miRNAs (or diseases), we

utilized GCN to extract embedding representations of different views of miRNAs (or diseases)

from two different biological similarity information. (2) HGCN_AMIR: we removed the con-

trastive learning and kept other modules unchanged to explore whether the contrastive learn-

ing can enhance the embedding representation learning ability of HGCN, thereby improving

Fig 5. ROC curves and PR curves performed by HGCLAMIR and ten baseline models based on the MDAv2.0 dataset under 5-fold cross-validation.

https://doi.org/10.1371/journal.pcbi.1011927.g005

Fig 4. ROC curves and PR curves performed by HGCLAMIR based on the MDAv2.0 dataset under 5-fold cross-validation.

https://doi.org/10.1371/journal.pcbi.1011927.g004
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the prediction performance of the model. (3) HGCLAM_concat: in order to verify the ability

of integrated representation learning to integrate multi-view embedding information, we

retained other modules except integrated representation learning. (4) HGCL_IR: we only

removed view-aware attention mechanism to explore whether paying attention to the impor-

tance of different views can effectively improve model prediction performance.

Table 3 shows the prediction performance of different variants evaluated by 5-fold cross-

validation five times on MDAv2.0 and MDAv3.2 datasets. From Table 3, we can see that the

prediction performance of HGCN_AMIR was significantly better than that of GCN_AMIR.

This result demonstrated that compared with GCN, HGCN can better capture complex high-

order relations in heterogeneous graphs, thereby learning high-quality embedding representa-

tions. Moreover, after using integrated representation learning, HGCLAMIR obtained better

prediction performance than HGCLAM_concat, which suggested that integrated representa-

tion learning can learn richer embedding information and integrate it reasonably. Similarly,

after using view-aware attention mechanism, HGCLAMIR also achieved better prediction per-

formance than HGCL_IR, which showed that the introduction of view-aware attention mecha-

nism can improve prediction performance by adaptively weighting the embedded

representations of different views. In addition, compared with HGCLAMIR, the prediction

performance of HGCN_AMIR had a certain decline, indicating that contrastive learning can

Table 2. The prediction performance of all models based on an independent dataset.

Model MDAv2.0 MDAv3.2

AUC AUPR F1 AUC AUPR F1

IMCMDA 0.820052 0.833042 0.758093 0.858128 0.861453 0.794376

PBMDA 0.912210 0.911953 0.840912 0.934865 0.931506 0.866340

GRGMF 0.929045 0.937174 0.862512 0.943598 0.949517 0.883890

NIMCGCN 0.926954 0.923480 0.855727 0.950184 0.948709 0.887152

MMGCN 0.907686 0.924860 0.852278 0.931711 0.944657 0.884877

MvKFN-MDA 0.927787 0.924527 0.855139 0.954336 0.951087 0.892343

GCAEMDA 0.923456 0.925235 0.855872 0.922735 0.925077 0.853783

MSGCL 0.902129 0.906020 0.845174 0.930606 0.933127 0.880590

ERMDA 0.931979 0.927496 0.861035 0.954571 0.949297 0.883530

AMHMDA 0.909000 0.910900 0.823900 0.943100 0.935600 0.863900

HGCLAMIR 0.935995 0.937769 0.872038 0.956750 0.953737 0.894457

https://doi.org/10.1371/journal.pcbi.1011927.t002

Table 3. The prediction performance of ablation experiment evaluated by 5-fold cross-validation five times.

AUC AUPR F1

MDAv2.0 GCN_AMIR 0.938786 0.938487 0.870857

HGCN_AMIR 0.943115 0.942972 0.878551

HGCLAM_concat 0.940708 0.939349 0.873361

HGCL_IR 0.942953 0.942833 0.877939

HGCLAMIR 0.945284 0.945074 0.879973

MDAv3.2 GCN_AMIR 0.958718 0.956102 0.895865

HGCN_AMIR 0.961492 0.958568 0.901617

HGCLAM_concat 0.960346 0.958133 0.899518

HGCL_IR 0.961823 0.959096 0.901406

HGCLAMIR 0.962600 0.959563 0.902512

https://doi.org/10.1371/journal.pcbi.1011927.t003
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enhance the learning ability of embedded representation of HGCN, thereby contributing to

improving model prediction performance.

Case studies

To further verify the accuracy of HGCLAMIR in predicting the associations between miRNAs

and specific diseases, we performed case studies on two important tumor diseases, namely

breast neoplasms and lung neoplasms, based on the MDAv2.0 dataset. More specifically, we

utilized negative miRNA-disease associations and experimentally verified positive miRNA-dis-

ease associations to construct training samples, which excluded the specific disease for case

studies. Then, the associations between miRNAs and the specific disease were used to con-

struct testing samples. Finally, we trained HGCLAMIR model on training samples, and used

the trained model to predict the associations between miRNAs and the specific disease. In

addition, we ranked the predicted results and selected the top prediction scores as the candi-

dates. Meanwhile, we verified the top 50 prediction results by finding supporting evidence

according to the lasted HMDD v4.0 [51] and dbDEMC [52].

Table 4 shows the prediction and verification results of miRNAs related to breast neo-

plasms. From Table 4, we can see that 49 of the top 50 predicted breast neoplasms-related miR-

NAs were successfully confirmed by HMDD v4.0 and dbDEMC databases, whereas the

miRNAs that were not confirmed by the relevant databases were marked as “unconfirmed”.

Similarly, the prediction and verification results of lung neoplasms-related miRNAs are shown

in S2 Table. The 48 of the top 50 predicted lung neoplasms-related miRNAs were verified with

the above two databases. At the same time, we also observed that these miRNAs with higher

similarity were predicted to be associated with the same specific disease. For example, hsa-

mir-130a and hsa-mir-130b with high similarity are closely related to the occurrence and

development of breast cancer [53, 54], which further confirmed the necessity of integrating

biological similarity networks.

To further validate the biological significance of the potential miRNA-disease associations

uncovered by the HGCLAMIR model, we performed enrichment analysis on gene sets consist-

ing of specific miRNA target genes and survival analysis for disease-related candidate miRNAs.

First, we obtained the target genes of miRNA from miRTarBase [55] and used Metascape [56]

to explore which biological processes and pathway information are closely related to these tar-

get gene sets. From Fig 6A, it can be seen that the target gene set related to hsa-mir-371a was

significantly enriched in several terms closely related to breast cancer, including Transcrip-

tional activity of SMAD2/SMAD3:SMAD4 heterotrimer, pathways in cancer, mitotic cell cycle

process, and Signaling by Rho GTPases. For example, Transcriptional activity of SMAD2/

SMAD3:SMAD4 heterotrimer involved in the degradation of SKI/SKIL, thus causing malig-

nant transformation in breast cancer [57]. The deregulation of cell cycle is a hallmark of cancer

including breast cancer, which allows for limitless cell division [58, 59]. Studies have shown

that Rho GTPases and their signaling components are overexpressed and/or are hyperactive in

breast cancer, and that Rho GTPases are required for breast cancer cell metastasis in vivo [60].

Furthermore, we obtained many term information such as biological processes and pathways

through the above enrichment analysis. To further capture the relationship between these

terms, we performed cluster analysis using Metascape and selected the term with the best p-

value to represent the cluster. As shown in S5 Fig, we found that several terms related to breast

cancer were all statistically significant (p<0.01) and clustered together. Finally, we conducted

survival analysis utilizing the miRpower-Kaplan-Meier plotter web-tool [61] to demonstrate

the impact of hsa-mir-371a expression levels on the overall survival time of breast cancer

patients. From Fig 6B, we observed that the expression level of hsa-mir-371a significantly
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affects the survival time of breast cancer patients, which further indicated that hsa-mir-371a

may be involved in the development of breast cancer. To sum up, the results of the above bio-

logical analysis suggested that hsa-mir-371a may lead to the occurrence and development of

breast cancer.

Discussion and conclusion

Computational methods serve as effective complementary tools to traditional wet experiments

in identifying potential miRNA-disease associations, which could improve our understanding

of disease pathogenesis and accelerate the discovery of important biomarkers. In this study, we

developed an HGCLAMIR model of hypergraph contrastive learning with view-aware atten-

tion mechanism and integrated multi-view representation for miRNA-disease association pre-

diction. HGCLAMIR utilized hypergraph convolutional network to capture high-order

complex relations in heterogeneous networks. To improve and enhance the embedded repre-

sentation learning ability of HGCN, we combined HGCN with contrastive learning to learn

higher quality embedding representations. Furthermore, view-aware attention mechanism

was introduced to further improve prediction performance by adaptively weighting the

embedding representations of different views. In addition, integrated representation learning

was implemented to integrate the embedding representations of different views to obtain more

Table 4. Top 50 breast neoplasms-related miRNAs predicted by HGCLAMIR based on the MDAv2.0 dataset. Note that the number in evidence means PubMed

Unique Identifier (PMID).

Rank miRNA Score Evidence Rank miRNA Score Evidence

1 hsa-mir-142 1.15441 25406066 26 hsa-mir-361 1.00183 36622663

2 hsa-mir-378a 1.09240 26255816 27 hsa-mir-28 1.00172 34593318

3 hsa-mir-15b 1.08877 22908280 28 hsa-mir-32 0.99690 29661250

4 hsa-mir-372 1.07984 29456685 29 hsa-mir-498 0.99468 35715772

5 hsa-mir-190a 1.07910 24009311 30 hsa-mir-508 0.99141 36161346

6 hsa-mir-150 1.07259 25907662 31 hsa-mir-216a 0.98864 32916503

7 hsa-mir-217 1.06926 36357766 32 hsa-mir-1224 0.98777 33986801

8 hsa-mir-30e 1.06789 25523096 33 hsa-mir-502 0.98282 27080302

9 hsa-mir-138 1.04343 27155849 34 hsa-mir-494 0.98012 27216190

10 hsa-mir-532 1.04181 36077054 35 hsa-mir-211 0.97953 35296964

11 hsa-mir-330 1.04007 dbDEMC 36 hsa-mir-449b 0.97269 32374522

12 hsa-mir-130b 1.03679 26152113 37 hsa-mir-491 0.97098 25725194

13 hsa-mir-106a 1.03399 25883093 38 hsa-mir-542 0.97085 24846313

14 hsa-mir-130a 1.03038 25755726 39 hsa-mir-503 0.96584 29164842

15 hsa-mir-370 1.02825 25451164 40 hsa-mir-95 0.95705 dbDEMC

16 hsa-mir-185 1.02717 24846313 41 hsa-mir-212 0.95291 26377202

17 hsa-mir-192 1.02709 26642352 42 hsa-mir-362 0.95235 33962174

18 hsa-mir-517a 1.02612 dbDEMC 43 hsa-mir-520e 0.95187 31934637

19 hsa-mir-650 1.02087 33086498 44 hsa-mir-208a 0.94627 26460550

20 hsa-mir-186 1.02065 35351581 45 hsa-mir-216b 0.94386 25078617

21 hsa-mir-92b 1.01590 29661250 46 hsa-mir-198 0.93571 26152113

22 hsa-mir-512 1.01576 34873163 47 hsa-mir-134 0.93462 36340453

23 hsa-mir-371a 1.01192 unconfirmed 48 hsa-mir-485 0.93136 25003827

24 hsa-mir-99a 1.01144 25388283 49 hsa-mir-98 0.93056 24696733

25 hsa-mir-1249 1.00591 31097355 50 hsa-mir-513b 0.92721 34738869

https://doi.org/10.1371/journal.pcbi.1011927.t004
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reasonable embedding information. The experimental results of 5-fold cross-validation five

times and independent validation showed that HGCLAMIR obtained better prediction perfor-

mance and robustness than ten baseline models. Moreover, the results of the ablation experi-

ment further demonstrated that the introduction of hypergraph convolutional network,

contrastive learning, view-aware attention mechanism and integrated representation learning

can effectively improve the prediction performance of the model. Meanwhile, the results of

case studies indicated that 49 and 48 of the top 50 predicted disease-related miRNAs were veri-

fied by using published experimental studies, which showed that the HGCLAMIR model can

accurately predict miRNA-disease associations. Furthermore, unconfirmed miRNA-disease

associations had biological significance. To sum up, these results suggested that HGCLAMIR

can be considered as an effective model for identifying potential miRNA-disease associations.

Supporting information

S1 Fig. The influence of different hyperparameters on HGCLAMIR based on the MDAv2.0

dataset under 5-fold cross-validation.

(EPS)

S2 Fig. The influence of different hyperparameters on HGCLAMIR based on the MDAv3.2

dataset under 5-fold cross-validation.

(EPS)

S3 Fig. ROC curves and PR curves performed by HGCLAMIR based on the MDAv3.2 data-

set under 5-fold cross-validation.

(EPS)

Fig 6. The biological analysis of hsa-mir-371a associated with breast neoplasms. (A) The enrichment analysis of target gene sets related to hsa-mir-371a. (B) The

survival analysis based on hsa-mir-371a expression levels.
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S4 Fig. ROC curves and PR curves performed by HGCLAMIR and ten baseline models

based on the MDAv3.2 dataset under 5-fold cross-validation.
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S5 Fig. Network of enriched terms, where nodes that share the same cluster ID are typically

close to each other.
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S1 Table. The prediction performance of all models in considering the issue of avoiding

data leakage.
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S2 Table. Top 50 lung neoplasms-related miRNAs predicted by HGCLAMIR based on the

MDAv2.0 dataset.
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