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AbstractAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:
Drug-resistant parasitic nematodes pose a grave threat to plants, animals, and humans. An

innovative paradigm for treating parasitic nematodes is emphasized in this opinion. This

approach relies on repurposing methuosis (a death characterized by accumulation of large

vacuoles) inducing anticancer drugs as anthelmintics. We review drugs/chemicals that have

shown to kill nematodes or cancerous cells by inducing multiple vacuoles that eventually

coalesce and rupture. This perspective additionally offers a succinct summary on Struc-

ture–Activity Relationship (SAR) of methuosis-inducing small molecules. This strategy

holds promise for the development of broad-spectrum anthelmintics, shedding light on

shared molecular mechanisms between cancer and nematodes in response to these induc-

ers, thereby potentially transforming both therapeutic domains.

A battle against parasitic nematodes

A nematode’s dynamic adaptability and simple body structure make it remarkably resilient to

harsh environmental conditions. Disease and death caused by parasitic nematodes in humans,

livestock, and plants are enormous [1]. In recent years, pathogenic nematodes have evolved to

adapt to many lifestyles and have shown remarkable ability to expand their host range [2].

Consequently, they are becoming more resilient to environmental conditions, host responses,

and anthelmintics. Three decades after its discovery, ivermectin and its derivatives are still

widely used to control and eradicate nematodes [3]. Ivermectin derivatives, for instance, func-

tion by preferentially paralyzing the nematodes, making them inert and unable to reproduce

[4]. However, a few parasitic nematodes have already developed resistance to ivermectin, and

resistance to these anthelmintic treatments is likely to emerge in the future [5]. Furthermore, it

is possible for resistance genes to disseminate within clades. Hence, research ought to concen-

trate on screening anthelmintics that kill and destroy them or repurpose drugs that have

cleared clinical trials. Here, we discuss a new therapeutic approach that involves repurposing

anticancer drugs that could potentially kill nematodes via methuosis, a process of nematode

and cell death marked by accumulation of vacuoles [6].
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Methuosis—A death by vacuolation

Methuotic death in nematodes is characterized by formation of multiple tiny vacuoles, their

subsequent fusion to form giant vacuoles, and the rupture of the cuticle layer [6]. Originally,

methuosis was regarded as a nonapoptotic cell death phenotype derived from the Greek word

“methuo” (to drink to intoxication) [7,8]. Methuosis and drugs that induce methuosis are

extensively researched in cancer biology [9]. Multiple pathways have been reportedly associ-

ated with methuosis, with researchers actively engaged in bridging the existing knowledge

gaps. The most studied pathways in cancer cells include the macropinosomes trafficking path-

way governed by Ras cell signaling pathway [10]. The most striking characteristic of cells that

undergo methuosis is the accumulation of large cytoplasmic vacuoles that are formed by the

fusion of macropinosomes. Succinctly, following H-Ras overactivation, the cell develops a

lamellipodia, or ruffle, which allows nutrients and fluid tracers to descend inside and form

macropinocytic sinks. Further, macropinocytic sinks coalesce into macropinosomes through a

cascade of GTPase activation. A typical scenario involves mature macropinosomes being recy-

cled while some, expressing the late endosomal markers (Rab7 and LAMP1), fuse with endocy-

tic pathway organelles such as endosomes and lysosomes, undergoing a sequential process of

cell lysis and nutrient release [11]. During cancerous growth, macropinosomes fail to recruit

early endosomal proteins, preventing them from fusing with lysosomes and recycling. Instead,

they merge to form giant vacuoles that rupture and cause cell death by methuosis (Fig 1). In

the last few years, several small molecules have been reported to induce methuosis in a variety

of cancer cell lines (Table 1), while a few others were effectual in inducing vacuoles and

methuotic death in nematode models (Fig 2). The text that follows will focus on these com-

pounds that induce methuosis and provide a quick overview of the Structure–Activity Rela-

tionship (SAR) and mechanistic study with the aim to encourage repurposing anticancer

drugs for anthelmintic therapy.

Vacuolar phenotypes and carboxyl functional groups

Vacuoles are the visual hallmark of methuosis in nematodes [6]. Vacuolar death was first spot-

ted in plant parasitic nematode Meloidogyne incognita or the root-knot nematode, following

treatment with carboxylic acids. Acetic acid, lactic acid, and their mixtures induced vacuolation

in M. incognita juveniles [12]. Mixtures of organic acids consisting of acetic acid, lactic acid,

malic acid, and succinic acid in Lactobacillus brevis WiKim0069 culture filtrates also induce vac-

uoles in M. incognita [13]. More pronounced phenotypes were observed when M. incognita J2

was treated with oxalic acid, a dicarboxylic acid [14]. Secondary metabolites from Fusarium oxy-
sporum strain Fo162 that consisted of gibepyrone D, indole-3-acetic acid, and 4-hydroxyben-

zoic acid also induced vacuoles in M. incognita J2 [15]. Based on the SAR analysis, we speculate

that the presence of carboxyl functional group as a key for the vacuolar phenotypes (Fig 2A).

Carbonyl groups (C = O) and hydroxyl groups (O–H) make up the carboxyl group. The design

and development of drugs relies heavily on compounds that contain carboxylic acids moieties

[16]. Worldwide, more than 450 drugs with carboxylic acid moieties are marketed [17]. In most

cases, carboxylic acid–containing drugs often trigger idiosyncratic reactions and cause idio-

pathic effects. There remains a lack of clear understanding regarding the mechanism of action.

It is possible that vacuolation and methuosis contribute to disruption of cellular function, even-

tually causing death in nematodes. Two of the anticancer drugs containing carboxyl group,

namely, ursolic acid (C17) and silmitasertib (CX-4945), induced methuosis in HeLa and colon

cancer cell lines, respectively [18,19]. C17 specifically induced death by hyperstimulation of

macropinocytosis, while CX-4945 triggered methuosis-like cell death accompanied by cata-

strophic vacuolation. Due to the presence of the carboxyl group, it is conceivable that both
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chemicals may induce similar vacuolation in nematodes, akin to their effect on cancer cells. In

general, it would be interesting to repurpose small molecule inhibitors with carboxylic acid

groups among the 450 FDA drug candidates for use as anthelmintics as well.

Halogenated organic compounds and methuosis

The majority of anthelmintics contain one or more halogen substitutes [6]. We demonstrated

that 5-iodoindole and 7-iodoindole selectively killed nematodes by triggering vacuolar pheno-

types [6]. Iodine in the indole ring is the key factor in triggering methuosis, whereas fluorine

(in 7-fluro 5-iodoindole) mitigates methuosis as an iodine antagonist (Fig 2B) [20]. Nematodes

undergoing methuosis revealed several hallmarks and intriguing phenotypes. Small vacuoles

formed inside the nematode’s body, which merged into larger ones and eventually ruptured,

thereby killing the nematode. There was also evidence of cuticle damage, central voiding, and

internal organ disruption in the nematodes and their eggs (Fig 2C).

Interestingly, many halogenated anticancer agents were found to have potential to induce

methuosis and methuosis-like cell death (Table 1). It was first reported that a chalcone deriva-

tive named 3-(5-Methoxy-2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MIPP),

along with its 5-brominated derivative (BMIPP), to trigger methuosis in glioblastoma cells [7].

They also found that MIPP possesses the ability to induce methuosis in various other cell lines,

Fig 1. Molecular pathways that lead to methuosis in cancer cells. Briefly, Lamellipodia, or ruffles, allow nutrients and liquid tracer to enter cells, forming

macropinocytic sinks, which coalesce into macropinosomes. The merger of macropinosomes produces giant vacuoles, which rupture and cause the death of

cells by methuosis (refer text for details).

https://doi.org/10.1371/journal.ppat.1012475.g001
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Table 1. Methuosis-inducing anticancer chemicals/agents that can be effectively repurposed for anthelmintic therapy.

Anticancer agents Functional

group (s)

Relevent function Cancer cell lines Death phenotype Reference

Isobavachalcone -Cl, -CO, -OH V-ATPase, AKT Myeloid cell lines (NB4, U937) Methuosis-like cell

death

[29]

Vacquinol-1 -Cl, -OH Antitumor immune response Human and rat glioblastoma models,

RG2 and NS1

Macropinocytosis

inducer

[21]

Tubeimoside 1 -OH, -CH3,

-CO, -O-

,-COO-

Inactivation of VEGF-A/

VEGFR2/ERK signaling

SW480, CRC, NSCLC Macropinocytosis

hyperstimulation

[30]

Ursolic acid derivatives (C17) -CN, -COOH,

-CH3

Anticancer activity HeLa cells Macropinocytosis

hyperstimulation

[18]

Indolyl-Pyridinyl-Propenone -CH3, -CO, -O-

, -OH

PIKFYVE inhibitor HCT116, U251 glioblastoma Methuosis,

microtubule

disruption

[31]

Indole-based chalcones (MIPP,

MOMIPP)

-CO, -CH3, -O- Inhibition of endosomal

trafficking, targeting Rab5 and

Rab7

U251 glioblastoma, breast cancer cell Methuosis [32]

Platycarya strobilacea Sieb. Et Zucc

(PSZ) (Extract)

n/a Rac1 overexpression Human nasopharyngeal carcinoma

cells (CNE1 and CNE2 cells)

Methuosis [33]

Jaspine B -OH, -NH2,

-C14

Ceramide synthase inhibitor HGC-27 gastric cancer Vacuolation related to

methuosis

[34]

F14512 -CO, -NH2,

-OH, -OCH3

Topoisomerase II inhibitor A549 nonsmall cell lung cancer cells Electron-lucent

(methuosis-like)

[35]

DZ-514 -Br, -CO, -O- Activation of ROS-MKK4-p38

axis

Breast cancer Methuosis [22]

Pyrimidinediamine derivatives

(JH530)

-Br, -CO, -O-,

-S-

Antitumor activitiy Breast cancer Methuosis [36]

Tubeimoside-2 OH, -CH3, -O-,

-COO-

MKK4-p38α Axis Hepatocarcinoma cells Methuosis [37]

Spiropachysine A -CO, CH3 Ras/Rac1 signal pathways Hepatocellular carcinoma

proliferation

Methuosis [38]

Maduramicin OH, -CH3,

-OCH3, -O-

,-COOH, NH3

Activation H-Ras-Rac1

signaling pathway

Myocardial cell H9c2 Methuosis [39]

Silmitasertib (CX-4945) -Cl, -COOH Rac-1 activation HepG2 cells Methuosis [40]

Epimedokoreanin C -OH, -CO,

-CH3

Regulation of Rac1 and Arf6 Lung cancer NCI-H292 and A549

cells

Methuosis-like cell

death

[41]

Nutlin-3a -Cl, -CO,

-OCH3,—CH3

Inhibited the KRAS-PI3K/Akt-

mTOR pathway

KRAS mutant NSCLC (nonsmall cell

lung cancer) cells

Methuosis-like cell

death

L22 -NH2, -CH3 Interaction with PIKfyve kinase HeLa and MDA-MB-231 cells Methuosis [36]

C13 (azaindole-based compounds) -CO, -CF3,

-CH3

- MDA-MB-231, A375, HCT116, and

MCF-7

Methuosis [42]

DMBP (methyl 2,4-dihydroxy-3-

(3-methyl-2-butenyl)-

6-phenethylbenzoate)

-OH, -COO-,

-CH3

Inhibited autophagic flux in

cancer cells by inhibiting the

function of VPS41

A549 and Panc-1 cell viability Methuosis [43]

Compounds 20 and 22 -CO, -NH2 H-Ras activation - Methuosis [44]

Microbial-derived amphiphilic CLP

bacillomycin Lb (B-Lb)

-COOH, -OH,

-CO, -NH2,

-CH3

Triggered by cytoplasmic

vacuolation through

macropinocytosis

MDA-MB-231-Luc and MCF-7 cells Methuosis-like cell

death

[45]

2-Amino-14,16-dimethyloctadecan-

3-ol

-OH, -NH2,

-CH3

Disturbs later stages of

endolysosomal process

HepG2 Vacuolation, partial

macropinocytosis

induction

[46]

HZX-02-059 -CF3, -CO,

-CH3

PIKfyve and tubulin dual-target

inhibitor

DHL cell lines WILL-2, LR, TMD8 Methuosis and cell

cycle arrest

[47]

(Continued)
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showing that these compounds have broad-spectrum activity. Vacquinol-1 (Vac), a quinolone

derivative, was also reported to induce rapid methuosis-like cell death in glioblastoma cells

[21]. The possible mode of action of Vac-induced methuosis is based on the ATP-inducible

and carvacrol-sensitive ion channel TRPM7. Other compounds like meridianin A-G, an indole

alkaloid, induced vacuolation by reducing the levels of Dickkopf-related protein-3 (DKK-3), a

known negative regulator of macropinocytosis. CX-4945 (silmitasertib), a potent ATP-com-

petitive inhibitor of CK2, with the unusual structural feature of having a free carboxylic acid

and chlorine, could induce vacuolization in the cytoplasm of cholangiocarcinoma cells [19]. It

is noteworthy to mention that CX-4945 was approved by the FDA for cholangiocarcinoma

(bile duct cancer) in 2017 with an orphan drug designation [19]. DZ-514, a derivative of N-

phenyl-4-pyrimidine diamine, induced time-dependent vacuolation in cancer cells, partially

facilitated through the activation of the ROS-MKK4-p38 signaling pathway.

Exploring the potential of these small molecule inhibitors containing halogen groups that

induce methuosis against nematodes as broad-spectrum nematicides would be intriguing. Our

research, alongside studies on 5-iodoindole, Vacquinol-1, and DZ-514, respectively, indicates

that these methuosis inducers have promising prospects for in vivo applications as well [22,23].

Repurposing drugs: An unexplored panacea

Parasitologists, especially those in veterinary medicine, face a growing challenge of anthelmin-

tic resistance [24]. Repurposing existing drugs as anthelmintics reduces the clinical trial bur-

dens since drug screening is cumbersome, exorbitant, and time-consuming. The market offers

a wide range of drugs that have passed clinical trials and are considered safe for use on plants,

animals, and humans. Repurposing of an existing old drug/chemical offers possibilities of

Table 1. (Continued)

Anticancer agents Functional

group (s)

Relevent function Cancer cell lines Death phenotype Reference

Ezetimibe -F, -CO, -OH NPC1L1 inhibitor Human cancer cell line Du145/

Du145TXR and MCF-7/MCF-7ADR

cells

Methuosis [48]

Glycosylated antitumor ether lipids

(GAELs)

n/a n/a Epithelial cancer cell lines and BT474

cancer stem cells; MDA-MB-231,

JIMT-1, and DU-145; MDA-MB-468,

Hs578t, and MDA-MB-453 cell lines

Methuosis [49]

Methanphetamine -CH3 Ras and Rac1 activation SH-SY5Y neuroblastoma cells Hyperstimulation of

macropinocytosis

[50]

BAPT compounds -S Endolysosomal trafficking

defects that prevent recycling of

lysosomes and cause lysosome-

to-nucleus signaling defect

HCT-116 colon cancer cell line Dual action

Methuophagy

[51]

5-((4-(pyridin-3-yl)pyrimidin-2-yl)

amino)-1H-Indole-

2-Carbohydrazide derivatives

(Compound 12A)

-CO, -CH3 MAPK/JNK signalling pathway HepG2, HeLa, MDA-MB-231, MCF-

7, MCF-10A, LO2 cells

Methuosis [52]

Bacoside A -OH, -CH3,

-O-

Excessive phosphorylation of

calcium/calmodulin-dependent

protein kinase IIA (CaMKIIA/

CaMK2A) enzyme

GBM patient-derived glioblastoma

cells

Hyperstimulation of

macropinocytosis

[53]

Meridianin C -Br, -NH2 Reducing the cellular level of

Dickkopf-related protein-3

(DKK-3)

YD-10B human tongue cancer cells Methuosis-like cell

death

[54]

WJ-644A Br-, -OCH3 Activation of unfolded protein

response(UPR)

Human prostate cancer cell lines,

DU145, PC3M, PC3, 22RV1,

LNCAP, VCAP

Methuosis [55]

https://doi.org/10.1371/journal.ppat.1012475.t001
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inexpensive, readily available solutions with extensive safety profiles. Although the repurpos-

ing approach is being pursued in many directions, we focalize on anticancer drugs that trigger

vacuolation and cause methuosis-like death. While it would be challenging to establish a direct

correlation in the mode of action of these drugs between nematodes and mammalian cells,

there’s a flicker of hope that they could induce vacuolar death in nematodes. Furthermore, sev-

eral recent studies suggest anthelmintic drugs may function as effective cancer therapeutics

[25]. This is most likely owing to the fact that some helminths (intestinal parasitic helminths)

can cause cancer and multiply rapidly in immunocompromised patients undergoing cancer

chemotherapy [26–28]. The coexistence of cancer and helminth infections can be a circum-

stance necessitating drugs like methuosis inducers, which can mitigate both conditions. Cur-

rently, compounds like CX-4945 and MOMIPP are in various stages of clinical trials [19] but

may be able to treat helminthic infections in the future. It may not be so farfetched to develop

a panacea approach to these diseases. The repurposing of cancer drugs as anthelmintics and

vice versa may be possible while simultaneously treating both conditions.

Concluding remarks and future perspectives

In total, we discuss the biological effects and SAR analysis of small molecule methuosis induc-

ers that may spur parasite death by causing methuosis. Methuosis-based therapeutic

Fig 2. Organic acids with mono- or dicarboxy groups and indole derivatives with iodine or fluorine that cause

vacuoles in nematodes (a), electronegative interactions between iodine and fluorine in 5F4IPP may be responsible for

better glutamate-gated chloride channel (GluCl) receptor interactions and suppressed methuosis (b), and death

phenotypes in pinewood nematode treated with 5-iodoindole (c).

https://doi.org/10.1371/journal.ppat.1012475.g002
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approaches have not been adopted against parasitic nematodes, so information on the topic is

very limited. As we gain greater knowledge of the mechanisms of vacuolization in parasitic

nematodes, we will be able to create more realistic perceptions of how parasites behave and

respond to their environment. Repurposing strategies will encourage employing multiomics

methodologies to explore the impact and mechanism of action of these methuosis-inducing

anticancer agents against parasitic nematodes. Overall, this approach will likely pave the way

for broad-spectrum anthelmintic and anticancer agents in the future as well as reveal the bio-

logical similarity between cancer cells and nematode cells in responding to these inducers.
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