

PEARLS

Repurposing methuosis-inducing anticancer drugs for anthelmintic therapy

Satish Kumar Rajasekharan¹✉*, Vinothkannan Ravichandran²✉, Bharath Reddy Boya³, Anirudh Jayachandran¹, Jintae Lee³*

1 Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, India, **2** Centre for Drug Discovery and Development (CD3), Amity Institute of Biotechnology, Amity University Maharashtra, Bhatan, Panvel, Mumbai, Maharashtra, India, **3** School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea

✉ These authors contributed equally to this work.

* satishkr2@srmist.edu.in (SKR); jtle@ynu.ac.kr (JL)

OPEN ACCESS

Citation: Rajasekharan SK, Ravichandran V, Boya BR, Jayachandran A, Lee J (2024) Repurposing methuosis-inducing anticancer drugs for anthelmintic therapy. PLoS Pathog 20(9): e1012475. <https://doi.org/10.1371/journal.ppat.1012475>

Editor: Laura J. Knoll, University of Wisconsin Medical School, UNITED STATES OF AMERICA

Published: September 5, 2024

Copyright: © 2024 Rajasekharan et al. This is an open access article distributed under the terms of the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

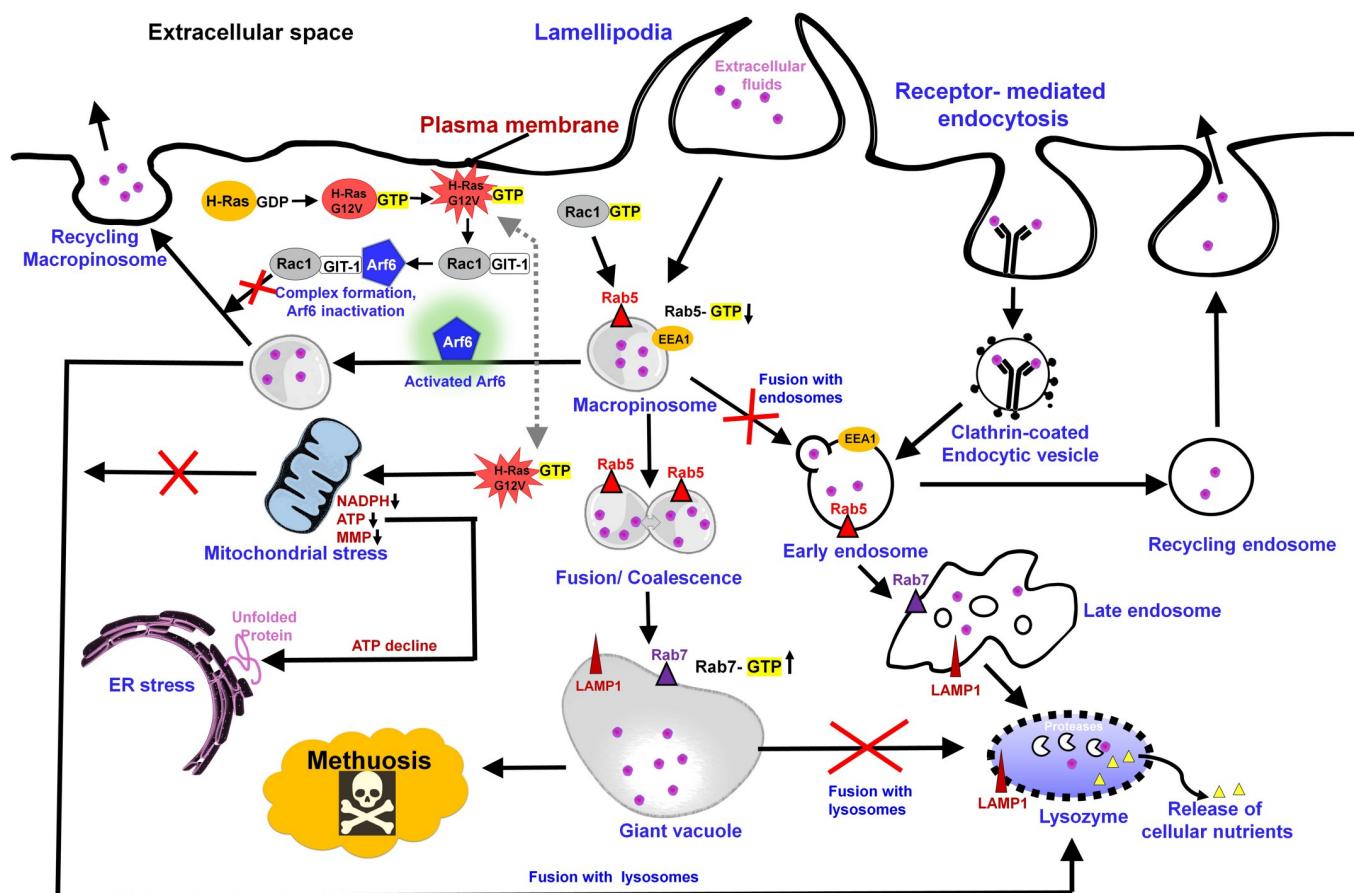
Funding: The authors acknowledge the support from the management of SRMIST, Kattankulathur, Tamil Nadu, India. A part of the research was supported by the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (2021R1A2C1008368) to JL and by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (RS-2024-00450423) to JL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Abstract

Drug-resistant parasitic nematodes pose a grave threat to plants, animals, and humans. An innovative paradigm for treating parasitic nematodes is emphasized in this opinion. This approach relies on repurposing methuosis (a death characterized by accumulation of large vacuoles) inducing anticancer drugs as anthelmintics. We review drugs/chemicals that have shown to kill nematodes or cancerous cells by inducing multiple vacuoles that eventually coalesce and rupture. This perspective additionally offers a succinct summary on Structure–Activity Relationship (SAR) of methuosis-inducing small molecules. This strategy holds promise for the development of broad-spectrum anthelmintics, shedding light on shared molecular mechanisms between cancer and nematodes in response to these inducers, thereby potentially transforming both therapeutic domains.

A battle against parasitic nematodes

A nematode's dynamic adaptability and simple body structure make it remarkably resilient to harsh environmental conditions. Disease and death caused by parasitic nematodes in humans, livestock, and plants are enormous [1]. In recent years, pathogenic nematodes have evolved to adapt to many lifestyles and have shown remarkable ability to expand their host range [2]. Consequently, they are becoming more resilient to environmental conditions, host responses, and anthelmintics. Three decades after its discovery, ivermectin and its derivatives are still widely used to control and eradicate nematodes [3]. Ivermectin derivatives, for instance, function by preferentially paralyzing the nematodes, making them inert and unable to reproduce [4]. However, a few parasitic nematodes have already developed resistance to ivermectin, and resistance to these anthelmintic treatments is likely to emerge in the future [5]. Furthermore, it is possible for resistance genes to disseminate within clades. Hence, research ought to concentrate on screening anthelmintics that kill and destroy them or repurpose drugs that have cleared clinical trials. Here, we discuss a new therapeutic approach that involves repurposing anticancer drugs that could potentially kill nematodes via methuosis, a process of nematode and cell death marked by accumulation of vacuoles [6].


Competing interests: The authors have declared that no competing interests exist.

Methuosis—A death by vacuolation

Methuotic death in nematodes is characterized by formation of multiple tiny vacuoles, their subsequent fusion to form giant vacuoles, and the rupture of the cuticle layer [6]. Originally, methuosis was regarded as a nonapoptotic cell death phenotype derived from the Greek word “methuo” (to drink to intoxication) [7,8]. Methuosis and drugs that induce methuosis are extensively researched in cancer biology [9]. Multiple pathways have been reportedly associated with methuosis, with researchers actively engaged in bridging the existing knowledge gaps. The most studied pathways in cancer cells include the macropinosomes trafficking pathway governed by Ras cell signaling pathway [10]. The most striking characteristic of cells that undergo methuosis is the accumulation of large cytoplasmic vacuoles that are formed by the fusion of macropinosomes. Succinctly, following H-Ras overactivation, the cell develops a lamellipodia, or ruffle, which allows nutrients and fluid tracers to descend inside and form macropinocytic sinks. Further, macropinocytic sinks coalesce into macropinosomes through a cascade of GTPase activation. A typical scenario involves mature macropinosomes being recycled while some, expressing the late endosomal markers (Rab7 and LAMP1), fuse with endocytic pathway organelles such as endosomes and lysosomes, undergoing a sequential process of cell lysis and nutrient release [11]. During cancerous growth, macropinosomes fail to recruit early endosomal proteins, preventing them from fusing with lysosomes and recycling. Instead, they merge to form giant vacuoles that rupture and cause cell death by methuosis (Fig 1). In the last few years, several small molecules have been reported to induce methuosis in a variety of cancer cell lines (Table 1), while a few others were effectual in inducing vacuoles and methuotic death in nematode models (Fig 2). The text that follows will focus on these compounds that induce methuosis and provide a quick overview of the Structure–Activity Relationship (SAR) and mechanistic study with the aim to encourage repurposing anticancer drugs for anthelmintic therapy.

Vacuolar phenotypes and carboxyl functional groups

Vacuoles are the visual hallmark of methuosis in nematodes [6]. Vacuolar death was first spotted in plant parasitic nematode *Meloidogyne incognita* or the root-knot nematode, following treatment with carboxylic acids. Acetic acid, lactic acid, and their mixtures induced vacuolation in *M. incognita* juveniles [12]. Mixtures of organic acids consisting of acetic acid, lactic acid, malic acid, and succinic acid in *Lactobacillus brevis* WiKim0069 culture filtrates also induce vacuoles in *M. incognita* [13]. More pronounced phenotypes were observed when *M. incognita* J2 was treated with oxalic acid, a dicarboxylic acid [14]. Secondary metabolites from *Fusarium oxy-sporum* strain Fo162 that consisted of gibepyrone D, indole-3-acetic acid, and 4-hydroxybenzoic acid also induced vacuoles in *M. incognita* J2 [15]. Based on the SAR analysis, we speculate that the presence of carboxyl functional group as a key for the vacuolar phenotypes (Fig 2A). Carbonyl groups (C = O) and hydroxyl groups (O–H) make up the carboxyl group. The design and development of drugs relies heavily on compounds that contain carboxylic acids moieties [16]. Worldwide, more than 450 drugs with carboxylic acid moieties are marketed [17]. In most cases, carboxylic acid–containing drugs often trigger idiosyncratic reactions and cause idiosyncratic effects. There remains a lack of clear understanding regarding the mechanism of action. It is possible that vacuolation and methuosis contribute to disruption of cellular function, eventually causing death in nematodes. Two of the anticancer drugs containing carboxyl group, namely, ursolic acid (C17) and silmitasertib (CX-4945), induced methuosis in HeLa and colon cancer cell lines, respectively [18,19]. C17 specifically induced death by hyperstimulation of macropinocytosis, while CX-4945 triggered methuosis-like cell death accompanied by catastrophic vacuolation. Due to the presence of the carboxyl group, it is conceivable that both

Fig 1. Molecular pathways that lead to methuosis in cancer cells. Briefly, Lamellipodia, or ruffles, allow nutrients and liquid tracer to enter cells, forming macropinocytic sinks, which coalesce into macropinosomes. The merger of macropinosomes produces giant vacuoles, which rupture and cause the death of cells by methuosis (refer text for details).

<https://doi.org/10.1371/journal.ppat.1012475.g001>

chemicals may induce similar vacuolation in nematodes, akin to their effect on cancer cells. In general, it would be interesting to repurpose small molecule inhibitors with carboxylic acid groups among the 450 FDA drug candidates for use as anthelmintics as well.

Halogenated organic compounds and methuosis

The majority of anthelmintics contain one or more halogen substitutes [6]. We demonstrated that 5-iodoindole and 7-iodoindole selectively killed nematodes by triggering vacuolar phenotypes [6]. Iodine in the indole ring is the key factor in triggering methuosis, whereas fluorine (in 7-fluoro 5-iodoindole) mitigates methuosis as an iodine antagonist (Fig 2B) [20]. Nematodes undergoing methuosis revealed several hallmarks and intriguing phenotypes. Small vacuoles formed inside the nematode's body, which merged into larger ones and eventually ruptured, thereby killing the nematode. There was also evidence of cuticle damage, central voiding, and internal organ disruption in the nematodes and their eggs (Fig 2C).

Interestingly, many halogenated anticancer agents were found to have potential to induce methuosis and methuosis-like cell death (Table 1). It was first reported that a chalcone derivative named 3-(5-Methoxy-2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MIPP), along with its 5-brominated derivative (BMIPP), to trigger methuosis in glioblastoma cells [7]. They also found that MIPP possesses the ability to induce methuosis in various other cell lines,

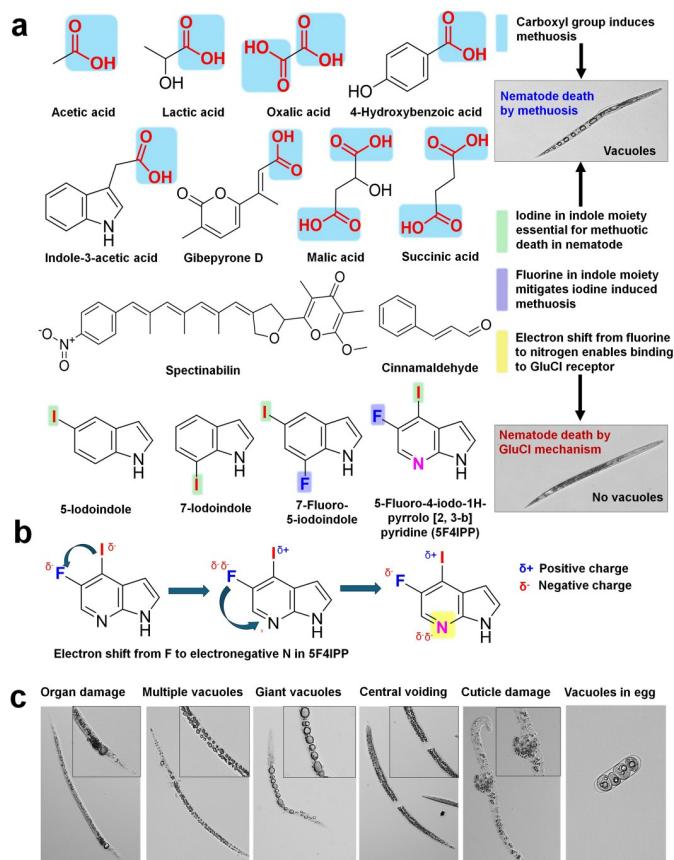
Table 1. Methuosis-inducing anticancer chemicals/agents that can be effectively repurposed for anthelmintic therapy.

Anticancer agents	Functional group (s)	Relevant function	Cancer cell lines	Death phenotype	Reference
Isobavachalcone	-Cl, -CO, -OH	V-ATPase, AKT	Myeloid cell lines (NB4, U937)	Methuosis-like cell death	[29]
Vacquinol-1	-Cl, -OH	Antitumor immune response	Human and rat glioblastoma models, RG2 and NS1	Macropinocytosis inducer	[21]
Tubeimoside 1	-OH, -CH ₃ , -CO, -O-, -COO-	Inactivation of VEGF-A/VEGFR2/ERK signaling	SW480, CRC, NSCLC	Macropinocytosis hyperstimulation	[30]
Ursolic acid derivatives (C17)	-CN, -COOH, -CH ₃	Anticancer activity	HeLa cells	Macropinocytosis hyperstimulation	[18]
Indolyl-Pyridinyl-Propenone	-CH ₃ , -CO, -O-, -OH	PIKFYVE inhibitor	HCT116, U251 glioblastoma	Methuosis, microtubule disruption	[31]
Indole-based chalcones (MIPP, MOMIPP)	-CO, -CH ₃ , -O-	Inhibition of endosomal trafficking, targeting Rab5 and Rab7	U251 glioblastoma, breast cancer cell	Methuosis	[32]
<i>Platycarya strobilacea</i> Sieb. Et Zucc (PSZ) (Extract)	n/a	Rac1 overexpression	Human nasopharyngeal carcinoma cells (CNE1 and CNE2 cells)	Methuosis	[33]
Jaspine B	-OH, -NH ₂ , -C ₁₄	Ceramide synthase inhibitor	HGC-27 gastric cancer	Vacuolation related to methuosis	[34]
F14512	-CO, -NH ₂ , -OH, -OCH ₃	Topoisomerase II inhibitor	A549 nonsmall cell lung cancer cells	Electron-lucent (methuosis-like)	[35]
DZ-514	-Br, -CO, -O-	Activation of ROS-MKK4-p38 axis	Breast cancer	Methuosis	[22]
Pyrimidinediamine derivatives (JH530)	-Br, -CO, -O-, -S-	Antitumor activity	Breast cancer	Methuosis	[36]
Tubeimoside-2	OH, -CH ₃ , -O-, -COO-	MKK4-p38 α Axis	Hepatocarcinoma cells	Methuosis	[37]
Spiropachysine A	-CO, CH ₃	Ras/Rac1 signal pathways	Hepatocellular carcinoma proliferation	Methuosis	[38]
Maduramicin	OH, -CH ₃ , -OCH ₃ , -O-, -COOH, NH ₃	Activation H-Ras-Rac1 signaling pathway	Myocardial cell H9c2	Methuosis	[39]
Silmitasertib (CX-4945)	-Cl, -COOH	Rac-1 activation	HepG2 cells	Methuosis	[40]
Epimedokoreanin C	-OH, -CO, -CH ₃	Regulation of Rac1 and Arf6	Lung cancer NCI-H292 and A549 cells	Methuosis-like cell death	[41]
Nutlin-3a	-Cl, -CO, -OCH ₃ , -CH ₃	Inhibited the KRAS-PI3K/Akt-mTOR pathway	KRAS mutant NSCLC (nonsmall cell lung cancer) cells	Methuosis-like cell death	
L22	-NH ₂ , -CH ₃	Interaction with PIKfyve kinase	HeLa and MDA-MB-231 cells	Methuosis	[36]
C13 (azaindole-based compounds)	-CO, -CF ₃ , -CH ₃	-	MDA-MB-231, A375, HCT116, and MCF-7	Methuosis	[42]
DMBP (methyl 2,4-dihydroxy-3-(3-methyl-2-butenyl)-6-phenethylbenzoate)	-OH, -COO-, -CH ₃	Inhibited autophagic flux in cancer cells by inhibiting the function of VPS41	A549 and Panc-1 cell viability	Methuosis	[43]
Compounds 20 and 22	-CO, -NH ₂	H-Ras activation	-	Methuosis	[44]
Microbial-derived amphiphilic CLP bacillomycin Lb (B-Lb)	-COOH, -OH, -CO, -NH ₂ , -CH ₃	Triggered by cytoplasmic vacuolation through macropinocytosis	MDA-MB-231-Luc and MCF-7 cells	Methuosis-like cell death	[45]
2-Amino-14,16-dimethyloctadecan-3-ol	-OH, -NH ₂ , -CH ₃	Disturbs later stages of endolysosomal process	HepG2	Vacuolation, partial macropinocytosis induction	[46]
HZX-02-059	-CF ₃ , -CO, -CH ₃	PIKfyve and tubulin dual-target inhibitor	DHL cell lines WILL-2, LR, TMD8	Methuosis and cell cycle arrest	[47]

(Continued)

Table 1. (Continued)

Anticancer agents	Functional group (s)	Relevant function	Cancer cell lines	Death phenotype	Reference
Ezetimibe	-F, -CO, -OH	NPC1L1 inhibitor	Human cancer cell line Du145/ Du145TXR and MCF-7/MCF-7ADR cells	Methuosis	[48]
Glycosylated antitumor ether lipids (GAELs)	n/a	n/a	Epithelial cancer cell lines and BT474 cancer stem cells; MDA-MB-231, JIMT-1, and DU-145; MDA-MB-468, Hs578t, and MDA-MB-453 cell lines	Methuosis	[49]
Methamphetamine	-CH ₃	Ras and Rac1 activation	SH-SY5Y neuroblastoma cells	Hyperstimulation of macropinocytosis	[50]
BAPT compounds	-S	Endolysosomal trafficking defects that prevent recycling of lysosomes and cause lysosome-to-nucleus signaling defect	HCT-116 colon cancer cell line	Dual action Methuophagy	[51]
5-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)-1H-Indole-2-Carbohydrazide derivatives (Compound 12A)	-CO, -CH ₃	MAPK/JNK signalling pathway	HepG2, HeLa, MDA-MB-231, MCF-7, MCF-10A, LO2 cells	Methuosis	[52]
Bacoside A	-OH, -CH ₃ , -O-	Excessive phosphorylation of calcium/calmodulin-dependent protein kinase IIA (CaMKIIA/CaMK2A) enzyme	GBM patient-derived glioblastoma cells	Hyperstimulation of macropinocytosis	[53]
Meridianin C	-Br, -NH ₂	Reducing the cellular level of Dickkopf-related protein-3 (DKK-3)	YD-10B human tongue cancer cells	Methuosis-like cell death	[54]
WJ-644A	Br, -OCH ₃	Activation of unfolded protein response(UPR)	Human prostate cancer cell lines, DU145, PC3M, PC3, 22RV1, LNCAP, VCAP	Methuosis	[55]


<https://doi.org/10.1371/journal.ppat.1012475.t001>

showing that these compounds have broad-spectrum activity. Vacquinol-1 (Vac), a quinolone derivative, was also reported to induce rapid methuosis-like cell death in glioblastoma cells [21]. The possible mode of action of Vac-induced methuosis is based on the ATP-inducible and carvacrol-sensitive ion channel TRPM7. Other compounds like meridianin A-G, an indole alkaloid, induced vacuolation by reducing the levels of Dickkopf-related protein-3 (DKK-3), a known negative regulator of macropinocytosis. CX-4945 (silmartinertib), a potent ATP-competitive inhibitor of CK2, with the unusual structural feature of having a free carboxylic acid and chlorine, could induce vacuolization in the cytoplasm of cholangiocarcinoma cells [19]. It is noteworthy to mention that CX-4945 was approved by the FDA for cholangiocarcinoma (bile duct cancer) in 2017 with an orphan drug designation [19]. DZ-514, a derivative of N-phenyl-4-pyrimidine diamine, induced time-dependent vacuolation in cancer cells, partially facilitated through the activation of the ROS-MKK4-p38 signaling pathway.

Exploring the potential of these small molecule inhibitors containing halogen groups that induce methuosis against nematodes as broad-spectrum nematicides would be intriguing. Our research, alongside studies on 5-iodoindole, Vacquinol-1, and DZ-514, respectively, indicates that these methuosis inducers have promising prospects for in vivo applications as well [22,23].

Repurposing drugs: An unexplored panacea

Parasitologists, especially those in veterinary medicine, face a growing challenge of anthelmintic resistance [24]. Repurposing existing drugs as anthelmintics reduces the clinical trial burdens since drug screening is cumbersome, exorbitant, and time-consuming. The market offers a wide range of drugs that have passed clinical trials and are considered safe for use on plants, animals, and humans. Repurposing of an existing old drug/chemical offers possibilities of

Fig 2. Organic acids with mono- or dicarboxy groups and indole derivatives with iodine or fluorine that cause vacuoles in nematodes (a), electronegative interactions between iodine and fluorine in 5F4IPP may be responsible for better glutamate-gated chloride channel (GluCl) receptor interactions and suppressed methuosis (b), and death phenotypes in pinewood nematode treated with 5-iodoindole (c).

<https://doi.org/10.1371/journal.ppat.1012475.g002>

inexpensive, readily available solutions with extensive safety profiles. Although the repurposing approach is being pursued in many directions, we focalize on anticancer drugs that trigger vacuolation and cause methuosis-like death. While it would be challenging to establish a direct correlation in the mode of action of these drugs between nematodes and mammalian cells, there's a flicker of hope that they could induce vacuolar death in nematodes. Furthermore, several recent studies suggest anthelmintic drugs may function as effective cancer therapeutics [25]. This is most likely owing to the fact that some helminths (intestinal parasitic helminths) can cause cancer and multiply rapidly in immunocompromised patients undergoing cancer chemotherapy [26–28]. The coexistence of cancer and helminth infections can be a circumstance necessitating drugs like methuosis inducers, which can mitigate both conditions. Currently, compounds like CX-4945 and MOMIPP are in various stages of clinical trials [19] but may be able to treat helminthic infections in the future. It may not be so farfetched to develop a panacea approach to these diseases. The repurposing of cancer drugs as anthelmintics and vice versa may be possible while simultaneously treating both conditions.

Concluding remarks and future perspectives

In total, we discuss the biological effects and SAR analysis of small molecule methuosis inducers that may spur parasite death by causing methuosis. Methuosis-based therapeutic

approaches have not been adopted against parasitic nematodes, so information on the topic is very limited. As we gain greater knowledge of the mechanisms of vacuolization in parasitic nematodes, we will be able to create more realistic perceptions of how parasites behave and respond to their environment. Repurposing strategies will encourage employing multiomics methodologies to explore the impact and mechanism of action of these methuosis-inducing anticancer agents against parasitic nematodes. Overall, this approach will likely pave the way for broad-spectrum anthelmintic and anticancer agents in the future as well as reveal the biological similarity between cancer cells and nematode cells in responding to these inducers.

References

1. Hrckova G, Velebny S. Parasitic helminths of humans and animals: health impact and control. *Pharmacological Potential of Selected Natural Compounds in the Control of Parasitic Diseases*; 2013. pp. 29–99.
2. Sommer RJ, Streit A. Comparative genetics and genomics of nematodes: genome structure, development, and lifestyle. *Annu Rev Genet*. 2011; 45:1–20. <https://doi.org/10.1146/annurev-genet-110410-132417> PMID: 21721943
3. Campbell WC, Burg RW, Fisher MH, Dybas RA. The discovery of ivermectin and other avermectins. *Pesticide Synthesis Through Rational Approaches* 1: ACS Publications; 1984. p. 5–20.
4. Turner M, Schaeffer J. Mode of action of ivermectin. *Ivermectin and abamectin*: Springer; 1989. p. 73–88.
5. Sutherland IA, Leathwick DM. Anthelmintic resistance in nematode parasites of cattle: a global issue? *Trends Parasitol*. 2011; 27(4):176–181. <https://doi.org/10.1016/j.pt.2010.11.008> PMID: 21168366
6. Rajasekharan SK, Lee J-H, Ravichandran V, Lee J. Assessments of iodoindofores and abamectin as inducers of methuosis in pinewood nematode, *Bursaphelenchus xylophilus*. *Sci Rep*. 2017; 7(1):6803. <https://doi.org/10.1038/s41598-017-07074-2> PMID: 28754990
7. Maltese WA, Overmeyer JH. Methuosis: nonapoptotic cell death associated with vacuolization of macropinosome and endosome compartments. *Am J Pathol*. 2014; 184(6):1630–1642. <https://doi.org/10.1016/j.ajpath.2014.02.028> PMID: 24726643
8. Cai H, Liu J, Fan Q, Li X. [Methuosis: a novel type of cell death]. *Nan Fang Yi Ke Da Xue Xue Bao*. 2013; 33(12):1844–1847. Chinese. PMID: 24369259
9. Ritter M, Bresgen N, Kerschbaum HH. From pinocytosis to methuosis—fluid consumption as a risk factor for cell death. *Front Cell Dev Biol*. 2021; 9:651982. <https://doi.org/10.3389/fcell.2021.651982> PMID: 34249909
10. Ye T, Shan P, Zhang H. Progress in the discovery and development of small molecule methuosis inducers. *RSC Med Chem*. 2023; 14(8):1400–1409. <https://doi.org/10.1039/d3md00155e> PMID: 37593581
11. Mbah NE, Overmeyer JH, Maltese WA. Disruption of endolysosomal trafficking pathways in glioma cells by methuosis-inducing indole-based chalcones. *Cell Biol Toxicol*. 2017; 33:263–282. <https://doi.org/10.1007/s10565-016-9369-2> PMID: 27822587
12. Seo Y, Kim YH. Control of Meloidogyne incognita using mixtures of organic acids. *Plant Pathol J*. 2014; 30(4):450. <https://doi.org/10.5423/PPJ.NT.07.2014.0062> PMID: 25506312
13. Seo HJ, Park AR, Kim S, Yeon J, Yu NH, Ha S, et al. Biological control of root-knot nematodes by organic acid-producing *Lactobacillus brevis* wikim0069 isolated from kimchi. *Plant Pathol J*. 2019; 35(6):662. <https://doi.org/10.5423/PPJ.OA.08.2019.0225> PMID: 31832046
14. Jang JY, Choi YH, Shin TS, Kim TH, Shin K-S, Park HW, et al. Biological control of Meloidogyne incognita by *Aspergillus niger* F22 producing oxalic acid. *PLoS ONE*. 2016; 11(6):e0156230. <https://doi.org/10.1371/journal.pone.0156230> PMID: 27258452
15. Bogner CW, Kamdem RS, Sichtermann G, Matthäus C, Hölscher D, Popp J, et al. Bioactive secondary metabolites with multiple activities from a fungal endophyte. *Microb Biotechnol*. 2017; 10(1):175–188. <https://doi.org/10.1111/1751-7915.12467> PMID: 27990770
16. Bredael K, Geurs S, Clarisse D, De Bosscher K, D'hooghe M. Carboxylic acid bioisosteres in medicinal chemistry: synthesis and properties. *J Chem*. 2022; 2022:1–21.
17. Kalgutkar AS, Daniels JS. Carboxylic acids and their bioisosteres. *RSC Drug Discovery Series* 1. 2010; 1:99–167.
18. Sun L, Li B, Su X, Chen G, Li Y, Yu L, et al. An ursolic acid derived small molecule triggers cancer cell death through hyperstimulation of macropinocytosis. *J Med Chem*. 2017; 60(15):6638–6648. <https://doi.org/10.1021/acs.jmedchem.7b00592> PMID: 28678485

19. Lertsuwan J, Lertsuwan K, Sawasdichai A, Tasnawijitwong N, Lee KY, Kitchen P, et al. CX-4945 induces methuosis in cholangiocarcinoma cell lines by a CK2-independent mechanism. *Cancer*. 2018; 10(9):283. <https://doi.org/10.3390/cancers10090283> PMID: 30142881
20. Rajasekharan SK, Lee J-H, Ravichandran V, Kim J-C, Park JG, Lee J. Nematicidal and insecticidal activities of halogenated indoles. *Sci Rep*. 2019; 9(1):2010. <https://doi.org/10.1038/s41598-019-38561-3> PMID: 30765810
21. Sander P, Mostafa H, Soboh A, Schneider JM, Pala A, Baron AK, et al. Vacquinol-1 inducible cell death in glioblastoma multiforme is counter regulated by TRPM7 activity induced by exogenous ATP. *Oncotarget*. 2017; 8(21):35124–35137. <https://doi.org/10.18632/oncotarget.16703> PMID: 28410232; PubMed Central PMCID: PMC5471040.
22. Wang L, Mi D, Hu J, Liu W, Zhang Y, Wang C, et al. A novel methuosis inducer DZ-514 possesses anti-tumor activity via activation of ROS-MKK4-p38 axis in triple negative breast cancer. *Cancer Lett*. 2023; 555:216049. <https://doi.org/10.1016/j.canlet.2022.216049> PMID: 36608865
23. Ahlstedt J, Förnvik K, Zolfaghari S, Kwak D, Hammarström LGJ, Ernfors P, et al. Evaluating vacquinol-1 in rats carrying glioblastoma models RG2 and NS1. *Oncotarget*. 2018; 9(9):8391–8399. <https://doi.org/10.18632/oncotarget.23842> PMID: 29492202
24. Kaminsky R. Drug resistance in nematodes: a paper tiger or a real problem? *Curr Opin Infect Dis*. 2003; 16(6):559–564. <https://doi.org/10.1097/0001432-200312000-00008> PMID: 14624106.
25. Hamilton G, Rath B. Repurposing of Anthelmintics as Anticancer Drugs. *Oncomedicine*. 2018; 3:1–8. <https://doi.org/10.7150/oncm.20563>
26. Fried B, Reddy A, Mayer D. Helminths in human carcinogenesis. *Cancer Lett*. 2011; 305(2):239–249. <https://doi.org/10.1016/j.canlet.2010.07.008> PMID: 20667649
27. Brindley PJ, Loukas A. Helminth infection–induced malignancy. *PLoS Pathog*. 2017; 13(7):e1006393. <https://doi.org/10.1371/journal.ppat.1006393> PMID: 28750101
28. Mayer DA, Fried B. The Role of Helminth Infections in Carcinogenesis. *Advances in Parasitology*. 65: Academic Press; 2007. p. 239–296. [https://doi.org/10.1016/S0065-308X\(07\)65004-0](https://doi.org/10.1016/S0065-308X(07)65004-0) PMID: 18063098
29. Yang L, Song L, Zhao S, Ma C, Wu D, Wu Y-L. Isobavachalcone reveals novel characteristics of methuosis-like cell death in leukemia cells. *Chem Biol Interact*. 2019; 304:131–138. <https://doi.org/10.1016/j.cbi.2019.03.011> PMID: 30890322
30. Gong X, Sun R, Gao Z, Han W, Liu Y, Zhao L, et al. Tubeimoside 1 Acts as a Chemotherapeutic Synergist via Stimulating Macropinocytosis. *Front Pharmacol*. 2018; 9:1044. <https://doi.org/10.3389/fphar.2018.01044> PMID: 30319403; PubMed Central PMCID: PMC6169148.
31. Trabbi CJ, Overmeyer JH, Alexander EM, Crissman EJ, Kvale HM, Smith MA, et al. Synthesis and biological evaluation of indolyl-pyridinyl-propenones having either methuosis or microtubule disruption activity. *J Med Chem*. 2015; 58(5):2489–2512. <https://doi.org/10.1021/jm501997q> PMID: 25654321; PubMed Central PMCID: PMC4360382.
32. Robinson MW, Overmeyer JH, Young AM, Erhardt PW, Maltese WA. Synthesis and evaluation of indole-based chalcones as inducers of methuosis, a novel type of nonapoptotic cell death. *J Med Chem*. 2012; 55(5):1940–1956. <https://doi.org/10.1021/jm201006x> PMID: 22335538; PubMed Central PMCID: PMC3314534.
33. Zhu JY, Tu W, Zeng C, Mao HX, Du QF, Cai HB. [Mechanism of Platycarya strobilacea Sieb. et Zucc extract-induced methuosis in human nasopharyngeal carcinoma CNE1 and CNE2 cells]. Nan Fang Yi Ke Da Xue Xue Bao. 2017; 37(6):827–832. <https://doi.org/10.3969/j.issn.1673-4254.2017.06.20> PMID: 28669961. Chinese.
34. Bielsa N, Casasampere M, Abad JL, Enrich C, Delgado A, Fabriàs G, et al. Methuosis contributes to Jaspine-B-induced cell death. *Int J Mol Sci*. 2022; 23(13):7257. <https://doi.org/10.3390/ijms23137257> PMID: 35806262
35. Brel V, Annereau JP, Vispe S, Kruczynski A, Bailly C, Guilbaud N. Cytotoxicity and cell death mechanisms induced by the polyamine-vectorized anti-cancer drug F14512 targeting topoisomerase II. *Biochem Pharmacol*. 2011; 82(12):1843–1852. <https://doi.org/10.1016/j.bcp.2011.08.028> PMID: 21924246.
36. Chen Y, Liu S, Wei Y, Wei H, Yuan X, Xiong B, et al. Discovery of Potent and Selective Phosphatidylinositol 3-Phosphate 5-Kinase (PIKfyve) Inhibitors as Methuosis Inducers. *J Med Chem*. 2023; 67(1):165–179. <https://doi.org/10.1021/acs.jmedchem.3c01039> PMID: 38117948
37. Gan Y, Wang C, Chen Y, Hua L, Fang H, Li S, et al. Tubeimoside-2 triggers methuosis in hepatocarcinoma cells through the MKK4–p38α axis. *Pharmaceutics*. 2023; 15(4):1093.
38. Fang Y, Zhong T, Yang L, Luo F, Li Q, Wang D, et al. Spiropachysine A suppresses hepatocellular carcinoma proliferation by inducing methuosis in vitro and in vivo. *Phytomedicine*. 2022; 102:154151. <https://doi.org/10.1016/j.phymed.2022.154151> PMID: 35584581

39. Gao X, Ji C, Wang J, Song X, Zuo R, Zhang J, et al. Maduramicin induces cardiotoxicity via Rac1 signaling-independent methuosis in H9c2 cells. *J Appl Toxicol*. 2021; 41(12):1937–1951. <https://doi.org/10.1002/jat.4175> PMID: 33890316
40. D'Amore C, Moro E, Borgo C, Itami K, Hirota T, Pinna LA, et al. “Janus” efficacy of CX-5011: CK2 inhibition and methuosis induction by independent mechanisms. *Biochim Biophys Acta Mol Cell Res*. 2020; 1867(11):118807. <https://doi.org/10.1016/j.bbamcr.2020.118807> PMID: 32745724
41. Liu X, Wang S, Zheng H, Liu Q, Shen T, Wang X, et al. Epimedokoreanin C, a prenylated flavonoid isolated from *Epimedium koreanum*, induces non-apoptotic cell death with the characteristics of methuosis in lung cancer cells. *Am J Cancer Res*. 2021; 11(7):3496.
42. Huang W, Sun X, Li Y, He Z, Li L, Deng Z, et al. Discovery and identification of small molecules as methuosis inducers with in vivo antitumor activities. *J Med Chem*. 2018; 61(12):5424–5434. <https://doi.org/10.1021/acs.jmedchem.8b00753> PMID: 29878764
43. Liu Y, Sun Y, Xu Y, Dong T, Qian L, Zheng H, et al. Targeting VPS41 induces methuosis and inhibits autophagy in cancer cells. *Cell Chem Biol*. 2023; 30(2):130–143. e5. <https://doi.org/10.1016/j.chembiol.2023.01.002> PMID: 36708709
44. Shi W, Feng Z, Chi F, Zhou J, Qiu Q, Jiang Y, et al. Structure-based discovery of receptor tyrosine kinase AXL degraders with excellent anti-tumor activity by selectively degrading AXL and inducing methuosis. *Eur J Med Chem*. 2022; 234:114253. <https://doi.org/10.1016/j.ejmech.2022.114253> PMID: 35279611
45. Lu JY, Huang WT, Zhou K, Zhao X, Yang S, Xia L, et al. Microbial lipopeptide supramolecular self-assemblies as a methuosis-like cell death inducer with in vivo antitumor activity. *Small*. 2022; 18(3):2104034. <https://doi.org/10.1002/smll.202104034> PMID: 34761865
46. Solhaug A, Torgersen ML, Holme JA, Wiik-Nilsen J, Thiede B, Eriksen GS. The Fusarium mycotoxin, 2-Amino-14,16-dimethyloctadecan-3-ol (AOD) induces vacuolization in HepG2 cells. *Toxicology*. 2020;433–434:152405. <https://doi.org/10.1016/j.tox.2020.152405> PMID: 32044396
47. Feng L, Chen K, Huang W, Jiang Y, Sun X, Zhou Y, et al. Pharmacological targeting PIKfyve and tubulin as an effective treatment strategy for double-hit lymphoma. *Cell Death Discov*. 2022; 8(1):39. <https://doi.org/10.1038/s41420-022-00833-9> PMID: 35091546
48. Zhang Z, Qin S, Chen Y, Zhou L, Yang M, Tang Y, et al. Inhibition of NPC1L1 disrupts adaptive responses of drug-tolerant persister cells to chemotherapy. *EMBO Mol Med*. 2022; 14(2):e14903. <https://doi.org/10.1522/emmm.202114903> PMID: 35023619
49. Ogunsina M, Samadder P, Idowu T, Nachtigal M, Schweizer F, Arthur G. Syntheses of l-rhamnose-linked amino glycerolipids and their cytotoxic activities against human cancer cells. *Molecules*. 2020; 25(3):566. <https://doi.org/10.3390/molecules25030566> PMID: 32012953
50. Nara A, Aki T, Funakoshi T, Uemura K. Methamphetamine induces macropinocytosis in differentiated SH-SY5Y human neuroblastoma cells. *Brain Res*. 2010; 1352:1–10. <https://doi.org/10.1016/j.brainres.2010.07.043> PMID: 20654590
51. Tiwari AK, Amawi H, Chandrabose K, Erhardt P, Trivedi P. Abstract LB-080: Discovery of an unconventional form of cell-death in colorectal cancer. *Cancer Res*. 2018; 78(13_Supplement):LB-080-LB-.
52. Wu J, Hu H, Ao M, Cui Z, Zhou X, Qin J, et al. Design, synthesis, and biological evaluation of 5-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)-1H-indole-2-carbohydrazide derivatives: the methuosis inducer 12A as a novel and selective anticancer agent. *J Enzyme Inhib Med Chem*. 2021; 36(1):1435–1452. <https://doi.org/10.1080/14756366.2021.1940992> PMID: 34229558
53. John S, Sivakumar KC, Mishra R. Bacoside A induces tumor cell death in human glioblastoma cell lines through catastrophic macropinocytosis. *Front Mol Neurosci*. 2017; 10:171. <https://doi.org/10.3389/fnmol.2017.00171> PMID: 28663722
54. Park NS, Park YK, Ramalingam M, Yadav AK, Cho HR, Hong VS, et al. Meridianin C inhibits the growth of YD-10B human tongue cancer cells through macropinocytosis and the down-regulation of Dickkopf-related protein-3. *J Cell Mol Med*. 2018; 22(12):5833–5846. <https://doi.org/10.1111/jcmm.13854> PMID: 30246484
55. Chen H, Miao Y, Bian A, Ye J, Wang J, Cong X, et al. A novel small-molecule activator of unfolded protein response suppresses castration-resistant prostate cancer growth. *Cancer Lett*. 2022; 532:215580. <https://doi.org/10.1016/j.canlet.2022.215580> PMID: 35121048