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Abstract

Mycobacterium tuberculosis (Mtb) disrupts anti-microbial pathways of macrophages, cells that normally kill bacteria. Over 40
years ago, D’Arcy Hart showed that Mtb avoids delivery to lysosomes, but the molecular mechanisms that allow Mtb to
elude lysosomal degradation are poorly understood. Specialized secretion systems are often used by bacterial pathogens to
translocate effectors that target the host, and Mtb encodes type VII secretion systems (TSSSs) that enable mycobacteria to
secrete proteins across their complex cell envelope; however, their cellular targets are unknown. Here, we describe a
systematic strategy to identify bacterial virulence factors by looking for interactions between the Mtb secretome and host
proteins using a high throughput, high stringency, yeast two-hybrid (Y2H) platform. Using this approach we identified an
interaction between EsxH, which is secreted by the Esx-3 TSSS, and human hepatocyte growth factor-regulated tyrosine
kinase substrate (Hgs/Hrs), a component of the endosomal sorting complex required for transport (ESCRT). ESCRT has a
well-described role in directing proteins destined for lysosomal degradation into intraluminal vesicles (ILVs) of multivesicular
bodies (MVBs), ensuring degradation of the sorted cargo upon MVB-lysosome fusion. Here, we show that ESCRT is required
to deliver Mtb to the lysosome and to restrict intracellular bacterial growth. Further, EsxH, in complex with EsxG, disrupts
ESCRT function and impairs phagosome maturation. Thus, we demonstrate a role for a TSSS and the host ESCRT machinery
in one of the central features of tuberculosis pathogenesis.
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Introduction

An important virulence property of Mycobacterium tuberculosis

(Mtb)- the causative agent of the disease tuberculosis- is its ability

to avoid delivery to the lysosome. It has long been appreciated that

Mtb alters phagosome maturation, such that internalized bacteria

are not transported to the lysosome but instead reside in an early

endosome-like compartment [1,2]. The Mtb-induced block in

phagosome-lysosome fusion has been attributed to a wide array of

lipid and protein effectors [3,4] but the mechanism remains poorly

understood. More recently, the ability of Mtb to permeabilize the

phagosomal membrane, which allows bacterial products and in

some cases intact bacteria to access the cytosol, has been described

[5–9]. The TSSS Esx-1 and its secreted effectors, EsxA/ESAT-6

and EsxB/CFP-10, are critical for this process. Esx-1 has been

investigated intensively because its absence in the vaccine strain

Mycobacterium bovis-BCG (BCG) largely accounts for attenuation

of that strain [8–10]. Mtb encodes five loci resembling Esx-1

(Esx-1-Esx-5), as well as 11 tandem pairs of proteins similar to EsxA

and EsxB (EsxA-EsxW), but their cellular targets, if any, are

unknown [11]. Esx-3 plays a role in iron acquisition in Mtb, as well

as in a non-pathogenic strain, Mycobacterium smegmatis (Msmeg)

[12,13]. Esx-3 is a focus of vaccine efforts because it secretes EsxG/

TB9.8 and EsxH/TB10.4, which are highly antigenic [14,15], and

because introduction of the Mtb ESX-3 locus into an Msmeg strain

lacking the endogenous ESX-3 region generates highly protective

immunity [16]. The ESX-5 locus is required for transport of proteins

with conserved proline-glutamic acid (PE) and proline-proline-

glutamic acid (PPE) motifs [17,18] and modulates macrophage

responses [19]. Thus, TSSSs and their putative effectors appear to

be important in virulence and modulating host cells, however, their

mechanism of action and molecular targets are unclear.
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Here, we show that EsxG and EsxH from Mtb, but not the

Msmeg homologs, target the host factor, Hrs. Hrs is a component

of the ESCRT machinery, a group of four protein complexes

(ESCRT-0 to ESCRT-III) composed of cytosolic components that

are sequentially recruited to the endosomal membrane. The

ESCRT machinery has a well-described role in directing cargo

destined for degradation into intraluminal vesicles of multivesic-

ular bodies (MVBs) that fuse with lysosomes [20,21]. We show that

ESCRT is also required to deliver Mtb to the lysosome and to

restrict intracellular bacterial growth. EsxH, in complex with

EsxG, is able to disrupt ESCRT function and impair phagosome

maturation.

Results

High throughput identification of Mtb secretome-human
host interactions

We used a systematic strategy to identify secreted bacterial

virulence factors by looking for interactions with host proteins

using a high throughput, high stringency, yeast two-hybrid (Y2H)

platform [22]. First, we curated the literature to define the Mtb

secretome. Thirty-eight publications predicted 718 secreted

proteins based on presence in culture filtrate (CF), ability to cause

secretion of an assayable protein, bioinformatic criteria, or detailed

study (see Text S1 for additional details). In order to prioritize

open reading frames (ORFs) for screening, we imposed a number

of criteria, such as excluding proteins with multiple transmem-

brane spanning domains (see Text S1 for additional details). In

addition, since the starting list of putative secreted proteins might

contain proteins that are not actually secreted, we attempted to

eliminate ORFs that were likely to be inaccurately classified as

secreted. One way in which this can happen is if cytoplasmic

proteins appear in CF due to bacterial lysis. In order to minimize

the contribution of such proteins, we did not include ORFs that

were annotated in Tuberculist (http://tuberculist.epfl.ch/) as

being involved in lipid metabolism, information pathways (which

contains proteins involved in replication, transcription and

translation), or intermediary metabolism and respiration, since

most of these are likely involved in basic, intrinsic bacterial

processes, and hence, many may be misclassified. To avoid

removing true secreted proteins, ORFs were not de-prioritized if

they had a possible signal sequence or there were data supporting

their role during infection. In doing so, we removed many proteins

that were found in CF in a single study, and hence may be

misclassified (see Text S1 for details). From the final list, 339

sequence validated secretome ORFs were provided by Pathogen

Functional Genomic Resource Center (PFGRC; Dataset S1).

Because many secreted proteins play an intrinsic role in the

bacterial lifecycle, we anticipated that only a small fraction would

interact with human proteins. Thus, to estimate a false positive hit

rate of our system, we included sixty ORFs that are not likely to be

secreted to serve as controls (see Text S1 for details; Dataset S2).

In order to evaluate their performance in Y2H protein-protein

interaction (PPI) mapping, we tested the 399 Mtb ORFs expressed

as Gal4-DNA binding domain (DB) fusions for pair wise

interactions with the same 399 Mtb ORFs expressed as Gal4-

activation domain (AD) fusions. From the ,160,000 combinations

queried, we found 14 unique PPIs (Table S1). The rate of

interactions is as high as in human ORFeome mapping [22],

exceeding the stochastic false positive rate of the Y2H platform by

fifteen-fold [23]. Half of the interactions were between proteins

belonging to the WXG100 family (EsxA-EsxW). These proteins

are approximately 100 amino acids in length and have a

characteristic hairpin bend formed by a Trp-Xaa-Gly (W-X-G)

motif. Mtb encodes 11 tandem pairs of such proteins, which are

thought to function as secreted heterodimers. Heterodimer

formation is proposed to be limited to interactions between

genome pairs or very closely related family members [24,25], and

the interactions we detected by Y2H exhibit this specificity. Six of

the remaining seven PPIs involved homotypic interactions; for

example, bacterioferritin (BfrB) was found to interact with itself,

consistent with the proposal that it assembles into 24-subunit

oligomers [26].

After ensuring the high performance of Mtb ORFs in Y2H PPI

mapping, we looked for interactions between the Mtb secretome

and ,12,000 human ORFs, testing approximately 4 million

interactions. From the secretome collection, we identified 99 PPIs

between 53 Mtb proteins and 63 human proteins (Dataset S3).

The number of Mtb proteins exhibiting an interaction with a

human protein was approximately two-fold higher for the

secretome collection compared to the non-secreted control set

(53 out of 339 versus 5 out of 60). We analyzed the collection to

determine whether PPIs were enriched for subsets of Mtb proteins

(Table S2). We observed that the sixteen Esx proteins included in

the collection were significantly more likely to interact with human

ORFs than were controls (p = 0.0087). The finding that Esx

proteins were enriched for interactions may reflect that this group

of proteins plays an important role in virulence, or could mean

that these proteins, which usually form a heterodimer, are prone to

aberrant interactions when they are expressed without their

binding partner.

It is difficult to gauge the success of the screen based upon

known interaction between Mtb proteins and cytosolic human

protein because so few are known. Included in our screening set

were, PtpA, which has been shown to interact with Vps33B and

the H subunit of the human v-ATPase [27,28], LpdC, which

interacts with coronin 1 [29], and NdkA, which interacts with

Rab5 and Rab7 [30]. We did not identify these known

interactions, however, the screen was not performed to saturation

and the Y2H platform can detect ,20% of well-validated

interacting pairs [31]. We did identify an interaction between

PtpA and Ligand of Numb protein X (LNX1), a RING finger-type

Author Summary

Mycobacterium tuberculosis (Mtb) causes the disease
tuberculosis, one of the world’s most deadly infections.
The host immune system can’t eradicate Mtb because it
grows within macrophages, cells that normally kill bacteria.
One of the intracellular survival strategies of Mtb is to
avoid delivery to lysosomes, a phenomenon described
over 40 years ago, but for which the mechanism and
molecular details remain incomplete. Mtb possess special-
ized secretion systems (Type VII secretion systems; TSSS)
that transfer particular proteins out of the bacteria, but
how these proteins promote infection is not well under-
stood. In this study, we used a high stringency yeast two-
hybrid system to identify interactions between secreted
effectors from Mtb and human host factors. We identified
ninety-nine such interactions and focused our attention on
the interaction between EsxH, secreted by Esx-3, a TSSS of
Mtb, and Hrs, a component of the host ESCRT machinery.
We provide evidence that Mtb EsxH directly targets host
Hrs to disrupt delivery of bacteria to lysosomes. Thus, this
study demonstrates the role of a TSSS effector and the
ESCRT machinery in what is one of the central features of
tuberculosis pathogenesis, thereby providing molecular
insight into why humans can’t clear Mtb infection.

Mtb Effector EsxH Inhibits ESCRT Activity
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E3 ligase that contains 4 PDZ domains and plays a scaffolding role

in diverse cellular pathways. Several other secretome ORFs also

interacted with LNX1, suggesting that LNX1 might be modulated

by Mtb, or LNX1 might regulate the function or stability of

certain Mtb effectors.

When we examined hit rates based upon the functional category

of the Mtb ORFs, the category with the greatest enrichment was

cell wall and cell processes, which contains the Esx family

members. The intermediary metabolism and respiration category

exhibited a hit rate similar to the control collection, consistent with

the idea that most of these ORFs do not function in host

interactions as their annotation suggests. Interestingly, one of the

two proteins that did exhibit an interaction in this category is

Zmp1, a zinc metalloprotease which has been shown to inhibit the

inflammasome and impair phagosome maturation but whose

cellular target is unknown [32]. Zmp1 interacted with KCTD6, a

BTB/POZ domain containing protein that can function as a

Cullin3 (Cul3) adaptor [33]. Cul3 has recently been shown to be

a regulator of endo-lysosomal trafficking, suggesting that Zmp1

may impair phagosome maturation by acting on KCTD6-Cul3

[34].

To evaluate the human targets of the Mtb proteins, we searched

the STRING database (http://string.embl.de/) for each of the

proteins’ functional associations. The STRING database predicts

protein-protein interactions based upon physical and functional

associations, such as available high-throughput data, co-expres-

sion, genomic context, and text mining of available literature.

Using a medium confidence value to define protein-protein

interactions, there were significantly more interactions (n = 16)

observed for the human targets than would be predicted by chance

(p = 8.3610212). We identified proteins involved in host immunity

to bacterial infection, such as Ndp52 [35,36], Tax1pb1 [37], and

STAT3 [38], however, human targets of the Mtb proteins were

not significantly enriched for annotated pathways in the Kyoto

Encyclopedia of Genes and Genomes (KEGG) when corrected for

multiple testing, which may reflect the limited number of human

targets found.

ESCRT is required for restricting intracellular growth and
trafficking of slow growing mycobacteria

We focused on the interaction between EsxH and Hrs because

TSSSs, which secrete Esx proteins, are clearly important in

virulence but the function of their secreted effectors is largely

unknown. In addition, our existing data supported the idea that

the ESCRT machinery is important in controlling bacterial

replication. Hrs, which plays a central role in the assembly of the

initial ESCRT components on endosomes, is recruited to

mycobacterial phagosomes [39], and we had previously shown

in an RNAi screen in Drosophila that ESCRT restricts the

intracellular growth of rapidly growing mycobacteria [40,41].

Control of bacterial replication appears to be particularly sensitive

to ESCRT perturbation, because, in addition, when we screened

,6500 siRNA pools in RAW 264.7 (RAW) macrophages for their

ability to confer enhanced intracellular growth of Msmeg, we

found that the two strongest hits were Rab7, known to be involved

in late endosome-lysosome fusion, and Tsg101, an ESCRT-I

component that is recruited to endosomes by Hrs (data not

shown). Hrs was also identified in this screen, although previously

we had found no effect with Hrs silencing, which we now attribute

to insufficient protein depletion [41]. In the RAW cell RNAi

screen that identified Hrs, we used Ambion Silencer siRNA pools,

whereas previously we used a Dharmacon siGENOME pool to

deplete Hrs [41]. To clarify the discrepancy, we tested a third pool

(Dharmacon ON-TARGETplus), which, like the Ambion pool,

conferred enhanced growth to Msmeg. We tested the individual

Dharmacon ON-TARGETplus siRNAs and found that 2 of 4

targeting Hrs resulted in depletion of Hrs protein, enhanced the

growth of Msmeg, and altered trafficking, whereas the other two

had no effect (Figure S1 and data not shown). Thus, one possibility

is that Mtb secretes EsxH, which binds Hrs and impairs ESCRT

function, thereby promoting intracellular bacterial growth. To

determine whether ESCRT restricts growth of Mtb, we depleted

Hrs and Tsg101 and examined the intracellular growth of Mtb in

RAW macrophages. We found no significant effect of silencing on

bacterial uptake (data not shown), however when we assessed

bacterial colony forming units (CFU) two day post-infection, we

observed enhanced intracellular survival of Mtb in cells depleted of

Hrs or Tsg101, similar to what was seen with Rab7 silencing

(Figure 1A). Intracellular growth of BCG in bone marrow-derived

macrophages (BMDMs) was even more strongly effected (Figure

S2). Thus, Hrs restricts growth of slow growing and virulent

mycobacteria.

ESCRT targets certain cell surface receptors and biosynthetic

cargo to lysosomes [42]. Thus, ESCRT might restrict intracellular

bacterial growth by governing bacterial trafficking and/or

lysosomal content. We examined the localization of Mtb relative

to Transferrin Receptor (TfR), a marker of early and recycling

endosomes, and LAMP1, a marker of late endosomes and

lysosomes using automated image analysis (Figures S3A, S3B).

In cells depleted of Tsg101, Hrs, or Rab7, we observed diminished

co-localization between Mtb and LAMP1 and a concomitant

increase in co-localization of Mtb with TfR compared to control

cells 24 hours post-infection (hpi) (Figure 1B), suggesting decreased

Mtb delivery to degradative compartments. Similarly, in cells

infected with BCG there was diminished co-localization with

LysoTracker, which accumulates in the acidic environment of the

lysosome, and enhanced co-localization with TfR (Figure 1B).

Thus, Hrs and Tsg101, like Rab7, are required for bacterial

trafficking. To verify that bacterial viability correlates with low

LAMP1 and LysoTracker co-localization and with high TfR co-

localization, we compared the cellular localization of viable

bacteria to total bacteria. We identified metabolically active

BCG 24 hpi based upon their ability to induce expression of GFP

from a tetracycline-inducible promoter (BCG-tet-GFP) and

compared their intracellular localization to the BCG strain that

constitutively express GFP (BCG-GFP). Whereas there was a wide

range in intensities of associated LAMP1 and LysoTracker with

BCG-GFP, metabolically active bacteria were found almost

exclusively in phagosomes with minimal acidification, little co-

localization with LAMP1, and enhanced TfR co-localization at

48 hpi (Figure S3C). Thus, impaired bacterial trafficking to a late

endosomal or lysosomal compartment underlies the failure to

control mycobacterial replication in ESCRT-depleted cells,

although altered lysosomal content may also contribute.

The Mtb EsxG EsxH heterodimer binds Hrs
Pathogenic mycobacteria arrest phagosome maturation in

evolutionarily diverse cells. Supporting the idea that EsxH might

play a role in inhibition of bacterial degradation, we observed that

EsxH interacts with human, mouse, and zebrafish orthologs of

Hrs, suggesting that it recognizes a conserved structural feature of

Hrs (Figure 2A). Orthologs of EsxH are found widely in

mycobacteria, including in the non-pathogen Msmeg. If EsxH

prevents phagosome-lysosome fusion by impairing Hrs function,

we anticipate that would be a feature specific to EsxH from

pathogenic mycobacteria. To test this, we cloned the EsxH

ortholog from Msmeg (MSMEG_0621; EsxHMs), which encodes a

protein 75% identical to EsxH from Mtb (hereafter referred to as

Mtb Effector EsxH Inhibits ESCRT Activity
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EsxHMt). Although EsxHMs interacted with EsxGMt, demonstrat-

ing that the protein was functional in the Y2H assay, it interacted

poorly with Hrs (Figure 2A), consistent with the notion that the

interaction of EsxHMt with Hrs contributes to virulence.

EsxHMt forms a heterodimer with EsxGMt, composed of a four-

helix bundle with flexible N- and C-terminal arms from both

proteins that coordinate zinc and contribute to a cleft that has

been predicted to mediate a PPI [43]. To determine whether Hrs

interacts with the heterodimer, we used a fusion protein in which

EsxGMt and EsxHMt were expressed as a single polypeptide that

preserves the folded structure of the native heterodimer [44]. This

fusion protein interacted with Hrs (Figure 2B). Deletion of the first

five amino acids of EsxHMt (EsxGMt-EsxHMt-DN5) weakened its

interaction with Hrs (Figure 2B). These data show that Hrs can

interact with EsxHMt when it is complexed to EsxGMt and suggest

that the conformation of the amino terminal arm of EsxHMt is

important. To further test whether the structure of the N- and C-

termini are important, we mutated His-14, His-70, and His-76

Glu-77. These residues contribute to zinc binding, and His-76 is

also part of the predicted cleft. We mutated them to Ala, with the

exception of His-70, which we changed to Arg because this is

found in EsxHMs. While H14A and H70R did not have a

detectable effect, when His-76 and Glu-77 were both changed to

Ala, the interaction between EsxHMt and Hrs was impaired,

although EsxHMt H76A-E77A still interacted with EsxGMt

(Figure 2A). To verify that EsxHMt binds Hrs, we purified the

EsxGMt EsxHMt heterodimer from E. coli [44] and Hrs from

baculovirus [45]. Hrs bound EsxGMt EsxHMt in a saturable

manner, exhibiting stoichiometric binding with a Kd of ,5 mM

(Figure 2C and 2D). We conclude that Hrs interacts with the

EsxGMt EsxHMt heterodimer, and the interaction likely involves

the N- and C-terminal arms of EsxHMt.

EsxGMt and EsxHMt disrupt ESCRT function in mammalian
cells

To determine whether EsxHMt interacts with Hrs and alters

ESCRT function in mammalian cells, we expressed EsxHMt–

FLAG in HEK293 cells. EsxHMt was not detectable unless we co-

expressed EsxGMt. (Figure 3A, compare lanes 1 and 3; see Figure

S4 for quantification); its abundance was also increased slightly by

overexpression of Hrs (compare lane 19 with 29 and lane 5 with 6).

When expressed alone, EsxHMt could be stabilized by MG132,

likely because it is not properly folded without EsxGMt and hence

is subject to proteasome-mediated degradation (Figure 3A com-

pare lanes 1 and 5). To determine if there was an interaction

between EsxGMt-EsxHMt and Hrs, we performed co-immunopre-

cipitation experiments in cells co-transfected with EsxGMt,

EsxHMt, and Hrs-myc. Hrs was immunoprecipitated with an

antibody directed against the myc-tag, and we found that EsxHMt

was co-immunoprecipitated (Figure 3B). No EsxHMt was co-

immunoprecipitated when an isotype control antibody was used,

and as expected, EsxHMs and EsxHMt-H76A E77A were impaired

in the interaction with Hrs (Figure 3B and 3C). Interestingly, the

co-immunoprecipitation of EsxHMt and Hrs could only be

detected when cells were pre-treated with MG132. Thus, one

possibility is that the EsxGMt-EsxHMt heterodimer is polyubiqui-

tinated and degraded by the proteasome. In the presence of

MG132, the polyubiquitinated species might accumulate, allowing

us to detect an interaction between Hrs and an ubiquitinated

species of EsxHMt, since Hrs contains an ubiquitin interacting

motif (UIM) domain. Arguing against this possibility, when

EsxGMt was co-expressed with EsxHMt, there was little, if any,

effect of MG132 on EsxHMt protein levels (Figure 3A, compare

lanes 3 and 7, Figure S4, and Figure S5). In addition, when we

examined mono- and polyubiquitinated proteins using the FK2

antibody, inhibition of the proteasome with MG132 caused the

accumulation of high molecular weight proteins as anticipated.

However, there was no difference seen in the quantity or mobility

of EsxHMt (Figure S5). Further, when we mapped the region of

Hrs required for the interaction with EsxGMt-EsxHMt in the Y2H

assay, the UIM domain was not required. Amino acids 398–630,

which contain a coiled-coil region, were sufficient to mediate the

interaction (Figure 2E). We verified that the C-terminal half of Hrs

was sufficient to mediate an interaction by co-immunoprecipita-

tion (Fig. 3D). In summary, these data show that EsxGMt stabilizes

EsxHMt in the mammalian cytosol and that the heterodimer can

bind the C-terminus of Hrs.

To test the hypothesis that the EsxHMt interaction with Hrs

disrupts ESCRT, we examined the effect of EsxGMt EsxHMt on

epidermal growth factor (EGF) and epidermal growth factor

receptor (EGFR) degradation (all performed without MG132

treatment). Upon binding ligand, EGFR is internalized and

transferred into ILVs by ESCRT so that it can be degraded upon

MVB-lysosome fusion. To determine whether EsxHMt interferes

with this process, we transfected EsxGMt and EsxHMt or vector

control into HEK293 cells and examined EGFR levels 90 min

after EGF treatment. We found that EGFR levels decreased in

control cells. In cells co-expressing EsxGMt and EsxHMt there was

a 63+/28% (n = 3) increase in the fraction of EGFR that

remained undegraded (Figure 3E), similar to what has been seen

with Hrs depletion [46]. In contrast, co-expression of EsxGMs and

EsxHMs had no detectable effect on EGFR degradation

(Figure 3E). We observed similar results when we used fluorescent

EGF to examine trafficking in A549 cells using fluorescence

microscopy. As expected, cells depleted of Hrs showed enhanced

EGF fluorescence due to impaired degradation. We observed a

similar decreased degradation in cells expressing EsxGMt and

EsxHMt (Figure 3F and G). In contrast, expression of EsxGMs

EsxHMs or EsxGMt EsxHMt-H76A-E77A had little effect on EGF

degradation (Figure 3G and 3H). Thus, EsxHMt, in complex with

EsxGMt, is sufficient to inhibit EGF and EGFR degradation, an

activity that correlates with its binding to Hrs. EsxHMs, from the

non-pathogenic species, does not have this property.

EsxGMt and EsxHMt arrest phagosome maturation
Because Esx-3 is essential for Mtb growth, we examined the

effect of overexpressing EsxHMt on bacterial trafficking. First, we

wanted to determine whether EsxGMt EsxHMt could confer a

block in maturation to phagosomes containing Msmeg. However,

when we expressed EsxGMt EsxHMt--FLAG under control of the

Figure 1. ESCRT is required to traffic Mtb to the lysosome. (A) RAW264.7 cells were treated with control siRNA (Con), individual siRNAs
targeting Hrs (#9 or #12), or siRNA pools targeting Tsg101 or Rab7 and infected with Mtb. Bacterial colony forming units (CFU) were enumerated 2 d
post-infection and are normalized to the average number of CFU in control wells from three independent experiments. Results reflect the mean +/2
SEM. *p = 0.018; ***p = 0.0002; ****p,0.0001, unpaired Student’s t-test. (B) Composite images and quantification of Mtb-GFP or BCG-GFP (in green)
and RAW cell LAMP1, TfR, or LysoTracker (in red) at 24 hpi. Regions indicated by yellow circles are shown in higher magnification in adjacent panels.
In graphs, data points are the mean fluorescence intensity (MFI) around at least 100 phagosomes for each condition; bars show mean +/2 SEM. Data
are representative of at least three experiments; p,0.0001 for all siRNAs compared to controls.
doi:10.1371/journal.ppat.1003734.g001

Mtb Effector EsxH Inhibits ESCRT Activity
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Figure 2. EsxHMt binds Hrs. (A) Gal4 DNA-binding domain (DB) fusions of EsxHMt, EsxHMs, or mutant EsxHMt were tested for Y2H interactions with
Gal4 activation-domain (AD) fusions of EsxGMt, human (Hs), mouse (Mm), or zebrafish (Dr) Hrs. (B) Y2H interaction between indicated DB and AD
constructs. Hrs is human. EsxGMt-EsxHMt-DB did not interact with EsxGMt-AD or EsxHMt-AD, presumably because of the intramolecular interaction in
the DB construct. (C) Increasing amounts of Hrs were incubated with a constant amount of immobilized EsxGMt-EsxHMt and bound fraction examined

Mtb Effector EsxH Inhibits ESCRT Activity
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hsp60 promoter in Msmeg, it was not secreted (Figure S6). It was

secreted by Mtb (Figure 4A), and when we examined whether

overexpression of EsxGMt and EsxHMt-FLAG could enhance

phagosome maturation arrest of Mtb, we found less co-

localization between Mtb and LAMP1 and enhanced co-

localization with TfR with the strain overexpressing EsxHMt-

FLAG, compared to a strain transformed with vector control

(Figure 4B–E). The defect in lysosomal trafficking was similar to

siRNA-mediated silencing of Hrs, Tsg101, and Rab7, and the

combination of EsxGMt EsxHMt overexpression and ESCRT-

silencing resulted in lower LAMP1 co-localization than either

manipulation alone (Figure 4B). An Mtb strain that expressed

EsxGMt EsxHMt- H76A-E77A did not exhibit altered trafficking,

but the mutant protein also failed to be secreted (Figure 4A, 4F).

Mtb did secrete EsxGMs EsxHMs-FLAG, which, unlike EsxGMt

EsxHMt-FLAG, did not block LAMP1 co-localization (Figure 4A

and 4F). We conclude that EsxGMt EsxHMt, but not EsxGMs

EsxHMs, can prevent lysosomal trafficking during infection, most

likely reflecting the ability of EsxHMt to bind Hrs and impair

ESCRT activity.

Discussion

We used high throughput Y2H interactome mapping to identify

interactions between secreted Mtb proteins and human proteins,

identifying 99 new potential interactions. We made use of a large

body of literature that has attempted to catalogue the secretome of

Mtb. Our study is subject to the uncertainty around the definition

of the Mtb secretome. For example, proteins can be in the culture

filtrate due to bacterial lysis, rather than secretion, and bioinfor-

matics predictions may be inaccurate. In addition, many secreted

proteins play an intrinsic role in the bacterial lifecycle and are

unlikely to make a biologically meaningful interaction with host

proteins. Thus, to estimate a false positive hit rate of our system,

we included a non-secreted control collection. We found

approximately two-fold enrichment in the rate of interactions

comparing the secretome collection to the control collection,

suggesting that true interactions were identified, but that there also

may be a relatively high rate of ‘‘pseudo-interactions,’’ which may

be valid biophysically but never occur in vivo because the involved

proteins are separated spatially or temporally. In addition, the

interactome list is by no means complete. We did not screen the

entire putative secretome, but rather imposed criteria to try to

arrive at a set that was enriched for true secreted proteins likely to

play a role in virulence. In addition, the screen was not performed

to saturation, and only a fraction of verifiable interactions can be

detected by a single method to detect PPIs [31]. Therefore, the list

is not comprehensive and likely contains false-positives, but given

the paucity of data on host-pathogen interactions in Mtb, it has

likely significantly expanded the known Mtb-human protein-

protein interactome. It represents a resource for investigators

working on Mtb; the confirmation and significance of such

interactions will require further validation.

Interactome mapping provides an unbiased strategy to identify

host-pathogen interactions for pathogens in which genetic

strategies are limited, and it can be complemented by depletion

studies in host cells. Such physical interaction mapping can

identify redundant or essential factors that may be missed using

genetic approaches. For example, in the case of EsxHMt, its

importance may have been unrecognized in previous genetic

approaches to identify Mtb virulence factors because of redun-

dancy within this large gene family, the existence of additional

mechanisms to modulate phagosome maturation, and the

essentiality of the Esx-3 system.

This Y2H screen and our previous genome-wide RNAi screen

in Drosophila pointed to the importance of the ESCRT machinery

in mycobacterial pathogenesis. Here, we show that the ESCRT

machinery is important in restricting the intracellular growth of

pathogenic mycobacteria, which likely reflects a role of ESCRT in

trafficking bacteria to the lysosome, although the effects of ESCRT

on endo-lysosomal content and signaling pathways may also play a

role. In addition, by modulating the ESCRT machinery, Mtb

might alter antigen presentation or exosome formation [42,47].

Further work is required to understand exactly how EsxHMt

impairs ESCRT function. We envision that EsxHMt inhibits

ESCRT on or near the mycobacterial phagosome, where its local

concentration would be highest, as opposed to globally disrupting

ESCRT. The C-terminal half of Hrs, which we showed binds

EsxHMt, has previously been shown to be involved in the

interactions with Tsg101 [48,49], STAM [50], and SNAP-25

[45]. Thus, one possibility is that EsxHMt interferes with these

associations. The relatively low affinity measured in vitro between

EsxHMt and Hrs (,5 mM) may be sufficient to disrupt Hrs

interactions with other host proteins, as the interactions of Hrs

with many of its binding partners are of low affinity [45,48,51,52].

For example, HIV Gag recruits Tsg101 to sites of viral budding by

binding the Tsg101 UEV domain with an even lower affinity

(KD,21–50 mM) [48,53]. There may also be a particular form of

Hrs or EsxHMt that exist in vivo in macrophages that exhibits

higher affinity. For example, Hrs interacts with the endosomal

membrane, engages in numerous protein-protein interactions, and

is modified by phosphorylation and ubiquitination, none of which

occur when the affinity is measured with recombinant protein.

Interestingly MG132, which is known to alter ESCRT activity

[54,55], enhanced our ability to detect an interaction between

EsxGMt-EsxHMt and Hrs in co-immunoprecipitation experiments

in HEK293 cells. One explanation for the requirement of MG132

to detect the Hrs-EsxHMt interaction by co-immunoprecipitation

may be related to the observation that MG132 impairs ESCRT-

dependent trafficking [54,55]. Thus, it is possible that MG132

stabilizes the interaction between EsxHMt and Hrs by altering

ESCRT, although other potential mechanisms could be envi-

sioned. Even in the absence of MG132, EsxGMt-EsxHMt inhibits

ESCRT function. Therefore, we speculate that EsxHMt preferen-

tially binds to a form of Hrs that exists transiently in cells, a form

that is stabilized by MG132. Once bound to Hrs, EsxHMt could

interact with other host proteins that modify Hrs or ESCRT

components.

Hrs is one of several host factors that Mtb likely target to create

a protected niche [3,4]. Lipoamide dehydrogenase (LpdC) is

thought to prevent phagosome-lysosome maturation by retaining

the host factor, coronin 1 [29,56]. PtpA, a secreted tyrosine

phosphatase, may directly exclude the vacuolar-H+ATPase during

infection, impairing acidification and phagosome maturation

[27,28,57], while nucleoside diphosphate kinase A (NdkA) targets

Rab7 activation [30,58]. In addition, there is less phosphatidyli-

nositol 3-phosphate on the mycobacterial phagosome than latex

bead phagosomes, which may reflect the activity of the secreted

lipid phosphatase, SapM [59,60]. This leads to impaired

recruitment of Hrs [39]. Thus, Hrs activity could be inhibited

by Coomassie blue. (D) Average binding (n = 3) was fitted with the Hill function, revealing a Hill coefficient of ,1.7 and a KD of 5.4 mM. (E) EsxGMt-
EsxHMt-DB was tested in the Y2H for interactions with human Hrs-AD deletion constructs. The domain structure of Hrs is indicated.
doi:10.1371/journal.ppat.1003734.g002
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Figure 3. EsxGMt and EsxHMt interact with Hrs and disrupt ESCRT function in mammalian cells. (A) EsxHMt-FLAG, EsxGMt-His, and Hrs-myc
expressed in HEK293 cells. DMSO or MG132 were added 3 h prior to protein harvest and samples were analyzed by western blotting. Lanes 19 and 29

are identical to 1 and 2 except that twice the amount of protein was loaded. Quantification from three independent experiments is shown in Figure
S4. (B) Immunoprecipitation (IP) of Hrs using antibody recognizing myc tag or isotype control from HEK293 cells expressing Hrs-myc and either
EsxGMt-His EsxHMt-FLAG or EsxGMs-His EsxHMs-FLAG. MG132 was used as pre-treatment. Western blot of IP and input were probed with antibodies as
indicated. (C) IP of Hrs-myc in HEK293 cells with antibody recognizing myc tag or isotype control from HEK293 cells expressing Hrs-myc, EsxGMt-His,
and either EsxHMt-FLAG or EsxHMt-H76A-E77A-FLAG. MG132 was used as pre-treatment. Western blot of IP and input were probed with antibodies as
indicated. (D) IP of C-terminal fragment of Hrs (amino acids 398–777) using antibody recognizing V5-tag or isotype control from HEK293 cells
expressing Hrs-398–777-V5, EsxGMt-His, EsxHMt-FLAG. MG132 was used as pre-treatment. Western blot of IP and input were probed with antibodies as
indicated. (E) HEK293 cells transfected with indicated plasmids were incubated with EGF for 0 or 90 min prior to western analysis. (F–H) A549 cells
transfected with plasmids or siRNAs were imaged 90 min after incubation with Alexa-488 EGF. In F, white lines indicate cell borders. (G) and (H), MFI
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on mycobacterial phagosomes by two synergistic mechanisms:

impaired recruitment and direct targeting by EsxHMt. How the

activities of these various bacterial effectors are coordinated,

whether they are required in concert or function in different cell

types or at different time points post-infection, has not been

explored. In order to evaluate the relative contribution of the

EsxHMt-Hrs interaction to trafficking and intracellular survival

during infection, we will have to identify mutations in EsxHMt that

disrupt its binding to Hrs, but that do not interfere with its

secretion from Mtb or disrupt bacterial iron acquisition.

It was surprising to us that it was possible to alter Mtb

trafficking by overexpressing EsxGMt EsxHMt, as if Mtb normally

expresses a ‘‘sub-optimal’’ amount to maximally alter phagosome

maturation. Similarly, ESCRT and Rab7 appear to be sub-

maximally inhibited, as further impairing their function by

RNAi-mediated silencing also enhances the block in phagosome-

lysosome fusion. Given that over-expression of EsxHMt by Mtb

caused a greater effect on trafficking than Hrs silencing (Fig. 4B),

EsxHMt may have additional cellular targets involved in cellular

trafficking as well. One explanation for the observation that

additional EsxHMt can further impair trafficking is that this

reflects in vitro growth conditions, whereas, during infection in vivo,

EsxHMt levels may be higher. An additional possibility is that

EsxGMt EsxHMt production is finely tuned to balance an

opposing effect that is detrimental to the bacteria. For example,

EsxGMt and EsxHMt generate prominent T cell responses,

[14,15]. In addition, we found that although the Mtb strain that

overexpresses EsxGMt EsxHMt exhibited diminished co-localiza-

tion with LAMP1 and enhanced co-localization with TfR, there

was no difference in intracellular growth for this strain relative to

control (Figure S7). Thus, overexpression of EsxGMt EsxHMt,

while promoting trafficking, might come with an opposing

intracellular fitness cost for bacteria.

In summary, our studies demonstrate that Mtb adapted Esx-3,

an ancient microbial system for iron acquisition, to alter host cell

physiology. Analogously, Esx-1, which is important for conjuga-

tion in Msmeg [61], mediates important host interactions that are

critical for virulence, including permeabilizing the mycobacterial

phagosome and altering phagosome maturation [5–9,62]. Thus,

the duplication and adaptation of TSSSs to new functions appears

to be a particularly important evolutionary path to virulence in

Mtb. The relatively low affinity between Hrs and its endogenous

binding partners may have made it particularly susceptible to

manipulation by diverse pathogens, from enveloped viruses to

Mtb. The observation that macrophage control of infection is

especially sensitive to ESCRT inhibition suggests ESCRT is a

likely target of additional pathogens as well.

Materials and Methods

Detailed methods, including description of Y2H interaction

mapping, plasmids, siRNAs, and Hill plot analysis, are provided in

Text S1.

Tissue culture conditions
RAW264.7 and HEK293 cells were grown in Dulbecco’s

Modified Eagle Medium (DMEM; Gibco), 20 mM HEPES,

2 mM L-glutamine, and 10% heat inactivated fetal bovine

serum (hiFBS; Invitrogen). BMDMs were isolated from C57BL/

6 mice as described [63] Penicillin/Streptomycin (Gibco), added

for passaging, was omitted during infections. A549 cells were

grown in RPMI 1640 Medium (Gibco), 2 mM L-glutamine, 16
Non-essential Amino Acids (Cellgro), and 10% hiFBS. Cells were

grown at 37uC with 5% CO2 atmosphere. siRNAs were

transfected with Hiperfect (Qiagen). Plasmids were transfected

into HEK293 cells with Effectene (Qiagen) and A549 cells with

Lipofectamine 2000 (Invitrogen).

Bacterial strains and growth conditions
M. tuberculosis H37Rv, M. bovis-BCG, and M. smegmatis mc2155

were grown at 37uC to log phase in Middlebrook 7H9 media with

0.05% Tween 80, BBL Middlebrook OADC Enrichment, and

0.2% glycerol. Plasmids were selected with 50 mg/ml kanamycin

or hygromycin depending upon the resistance marker. To

generate EsxGMt EsxHMt-FLAG and EsxGMs EsxHMs-FLAG for

overexpression in mycobacteria, EsxG-EsxH was amplified from

BCG (the EsxG-EsxH region is 100% identical between BCG and

Mtb) and Msmeg genomic DNA, respectively, using primers

described in Text S1. The PCR products were cloned into pSYMP

under control of the hsp60 promoter [64].

Intracellular bacterial growth assay
RAW cells were seeded one day before infection or they were

transfected with siRNAs two days prior to infection with a single

cell suspension of Mtb (MOI,2–5), obtained as previously

described [40]. The cells were extensively washed and lysed with

0.2% Triton X-100 3 hpi or 2d later and serial dilutions were

plated on 7H10 or 7H11. CFU were calculated 15 to 21 d later.

Lysosomal trafficking assay
RAW cells were transfected with siRNAs for two days and

then infected with a single cell suspension of BCG or Mtb

(MOI,20) for 3 h, then washed extensively. Cells were fixed

24 hpi with 4% formaldehyde/PBS for BCG and with 1%

paraformaldehyde/PBS overnight for Mtb and immunostained

for LAMP1 (Abcam) or TfR (Invitrogen). For Lysotracker

(Invitrogen) staining, unfixed RAW cells were incubated with

200 nM Lysotracker, washed twice in PBS, and visualized.

Images were captured using the Nikon Eclipse TiE/B automated

fluorescent microscope with Photometrics HQ@ Monochrome

digital camera. 606 z-stack images were acquired, deconvoluted,

and analyzed using NIS-Elements DUO software (see Fig. S3 for

details). Contrast was not altered prior to automated image

analysis; for reproduced images, alterations were applied equally

to all samples.

Recombinant protein binding assay
His-tagged EsxGMt-EsxHMt was purified as described in Text

S1. Prior to inclusion of recombinant proteins in binding reactions

they were centrifuged at 100,0006 g for 30 min to remove

aggregated protein. To determine whether EsxGMt EsxHMt binds

to Hrs in a direct and saturable manner, 1.0 mg EsxGMt EsxHMt-

-6XHis was bound to Ni-NTA beads and incubated with

increasing amounts of purified, soluble Hrs (0,4 mg) in 20 mM

HEPES [pH, 7.4], 150 mM KCl, and 0.05% Tween-20, with

protease inhibitors (10 mM leupeptin, 1 mg/mL pepstatin, 0.3 mM

aprotinin, and 1.74 mg/mL PMSF) for 1 h at 4uC. Beads were

washed in PBST (0.1 M PBS 0.05% Tween-20) with 10 mM

imidazole. Bound Hrs was analyzed by SDS-PAGE and

of at least 800 endosomes from at least 30 cells. Black bars show mean +/2 SEM. ****p,0.0001 between indicated conditions, unpaired Student’s t-
test. No MG132 was used in experiments E–H. Data are representative of at least three independent experiments.
doi:10.1371/journal.ppat.1003734.g003
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Coomassie staining. Bands were subject to quantification with

ImageJ software (v. 1.42).

Co-immunoprecipitation and Western blotting
Cellular lysates were prepared in RIPA buffer with Halt

Protease Inhibitor Cocktail (Thermo Scientific) and 10 mM N-

ethylmaleimide (Sigma) and analyzed by western blotting. The

antibodies used for western analysis are: actin (clone C4/

MAB1501, Millipore), Hrs (M79/sc-30221, Santa Cruz Biotech-

nology), Rab7 (117, Abcam), FLAG (F7425, Sigma), EGFR

(#4267S, Cell Signaling), and FK2 (Millipore). For co-immuno-

precipitation, HEK293 cells transfected with Hrs-myc and Esx

expression plasmids were treated with 20 mM MG132 (Calbio-

chem) for 3 h prior to mechanical lysis and incubated with

Dynabeads Protein G (Novex, Life technologies) pre-bound to

isotype control antibody (sc-2025, Santa Cruz Biotechnology),

anti-myc antibody (sc-40/9E10, Santa Cruz Biotechnology), or

anti-V5 antibody (Invitrogen), and bound proteins were analyzed

by western blotting.

EGFR and EGF degradation assays
Two days after transfection, HEK293 cells were incubated in

serum-free DMEM and treated with 100 ng/ml of recombinant

human EGF (rh-EGF, R&D Systems) essentially as described

[65]. Cells were harvested immediately prior to addition of

EGF and 90 min later and EGFR analyzed by western

blotting. EGF trafficking was assessed similarly to described

[66]. Two days after transfection of A549 cells with siRNA or

DNA, cells were incubated with serum-free RPMI before

addition of 25 mg/ml Alexa Fluor 488-EGF (Invitrogen) in

EGF uptake media (RPMI, 2% BSA, 20 mM HEPES) at 4uC
for 1 h. Cells were washed to remove unbound ligand,

incubated at 37uC for 90 min, and examined by immunoflu-

orescence microscopy.

Mycobacterial secretion of EsxH
To analyze secretion of EsxHMs-FLAG or EsxHMt-FLAG from

Mtb and Msmeg, strains were grown to mid-log phase, washed

with PBS, and inoculated into Sauton’s media. In Sauton’s media,

they were grown to reach log phase (overnight in the case of

Msmeg and for two days in case of Mtb). Thereafter, mycobacteria

were pelleted by centrifugation. The supernatants were filtered

through 0.22 mM filters followed by precipitation with 12%

trichloroacetic acid. The precipitate was washed with ice-cold

acetone, air dried, and resuspended in SDS sample buffer. The

bacterial pellets were lysed by bead beating in lysis buffer (50 mM

Tris-HCl pH 7.5, 5 mM EDTA, 0.6% SDS, 10 mM NaH2PO4,

and protease inhibitor) with 0.1 mm zirconia/silica beads

(BiosSpec Products, Inc.). SDS-sample buffer was added, followed

by boiling at 95uC for 5 min. Antibody to the pyruvate

dehydrogenase E2 component sucB (Rv2215/dlaT) [67], a

cytosolic protein, was used as a loading control and to indicate

the degree of bacterial lysis.

Supporting Information

Dataset S1 Secretome collection screened.

(XLS)

Dataset S2 Control collection screened.

(XLS)

Dataset S3 Y2H interactions between Mtb secretome
and human ORFs.

(XLS)

Figure S1 siRNA-mediated depletion of Hrs and Rab7.
(A) RAW264.7 (RAW) cells were treated with 50 nM ON-

TARGETplus individual siRNAs (#9–#12) targeting Hrs or

control for 2 d. (B) RAW cells were treated with increasing

concentration of siRNA#9 targeting Hrs for 2 or 5 days. (C) A549

cells treated with 50 nM Hrs siRNAs (#12) or control for 2 d. (A)–

(C) Western blotting with antibody recognizing Hrs was used to

assess silencing. (D) RAW cells were treated with 30 nM siRNA

targeting Rab7 or control. Silencing was assessed 2 d later by

western blotting using an antibody recognizing Rab7. (E) RAW

cells treated with control siRNA (siCON) or siRNA targeting Hrs

(#9 or #12) for 2 d were examined by immunofluorescence using

antibodies against Hrs, shown in red, and ubiquitinated proteins

(FK2) in green.

(TIF)

Figure S2 siRNAs targeting Hrs and Rab7 enhance the
intracellular survival of BCG in BMDMs. 46104 BMDMs

were transfected with 30 nM siRNA pools targeting Hrs (ON-

TARGETplus) or Rab7 (siGENOME) 6–8 d after harvest. 3 d

later, they were infected with BCG (MOI of 2 to 5). CFU were

enumerated 2 days post-infection and are normalized to the

average number of CFU in control wells from two independent

experiments. Results reflect the mean +/2 SEM. *p,0.05;

**p,0.01, unpaired Student’s t-test.

(TIF)

Figure S3 Automated image analysis of phagosome
maturation (A) For quantifying the degree of co-localization

between bacteria and cellular markers or Lysotracker, images were

background subtracted and analyzed using the Binary Operation

Analysis within NIS Elements Software. Bacteria were selected in

the green channel. The region the software has selected that

corresponds to the bacteria is shown in red in the second panel.

That region was expanded (dilate binary) and then eroded and a

binary operation was performed to generate a ‘‘donut’’ in the

region surrounding the bacteria. The region of interest (ROI) is

shown in purple. The mean fluorescence intensity (MFI) in the

Figure 4. EsxGMt EsxHMt arrests phagosome maturation. (A) H37Rv transformed with empty vector, EsxGMt EsxHMt-FLAG, EsxGMs

EsxHMs-FLAG or EsxGMt EsxHMt- H76A-E77A-FLAG were analyzed for the presence of EsxH in the pellet and culture filtrate (CF). DlaT (Rv2215), a
cytosolic protein, was used as a loading control and to indicate the degree of bacterial lysis. (B) MFI of phagosomal LAMP1 24 hpi in RAW cells
treated with siRNAs and infected with Mtb containing EsxGMt-EsxHMt plasmid (red) or vector control (black); data points are the mean fluorescence
intensity (MFI) around at least 70 phagosomes for each condition; p,0.0001 between the two Mtb strains for all conditions, unpaired Student’s t-
test. (C) Composite images of cells infected with Mtb with autofluorescence of Mtb (blue) and LAMP1 (red). Regions indicated by yellow circles are
shown in higher magnification in adjacent panels. (D) MFI of phagosomal TfR 24 hpi in RAW cells treated with siRNAs and infected with Mtb
containing EsxGMt-EsxHMt plasmid (red) or vector control (black); data points are the mean fluorescence intensity (MFI) around at least 50
phagosomes for each condition; p,0.0001 between the two Mtb strains for all conditions, except Rab7 (p = 0.0005), unpaired Student’s t-test. (E)
Composite images of cells infected with Mtb with autofluorescence of Mtb (blue) and TfR (red). Regions indicated by yellow circles are shown in
higher magnification. (F) MFI of phagosomal LAMP1 in RAW cells infected with Mtb containing the indicated plasmids 24 hpi. Bars show mean +/2
SEM. ****p,0.0001, unpaired Student’s t-test.
doi:10.1371/journal.ppat.1003734.g004
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ROI was determined for the cellular marker. Bacteria were

analyzed from at least three fields per sample per experiment. We

confirmed that automated quantification closely paralleled manual

quantification and visual scoring by a blinded observer. (B) To

further validate the automated analysis, we verified enhanced

LAMP1 co-localization in macrophages pre-treated with IFN-c,

which promotes phagosome maturation [61]. RAW cells treated

with control siRNA (siCON) were either pre-treated with IFN-c or

solvent control 24 hours prior to infection with Mtb-GFG. In IFN-

c pre-treated macrophages there is a significant shift in LAMP1

co-localization around bacterial phagosomes 24 hpi. Data points

are the MFI of LAMP1 around bacteria; bars show mean +/2

SEM; p,0.0001. (C) Co-localization of Lamp1, Lysotracker, and

TfR with metabolically active BCG compared to co-localization

with total BCG. RAW cells were treated with control siRNA

(siCON) and infected with BCG constitutively expressing GFP

(BCG-GFP) or BCG expressing GFP under a tetracycline

inducible promoter (BCG-tet-GFP). AnTc was added 24 hpi to

induce expression of GFP. Because it takes .12 h for the strain to

become detectably GFP positive, co-localization between BCG-

tet-GFP and LAMP1, LysoTracker, or TfR was measured at

48 hpi. For the BCG-GFP strain, LAMP1 and TfR were

examined at 48 hpi and LysoTracker at 24 hpi. Data points are

the MFI around bacteria; bars show mean +/2 SEM; p value of

BCG-tet-GFP compared to BCG-GFP for LAMP1 = 0.0081, for

LysoTracker ,0.0001, for TfR = 0.0046.

(TIF)

Figure S4 Quantification of EsxHMt–FLAG in transfect-
ed HEK293 cells. EsxHMt was co-transfected with vector

control, EsxGMt, or Hrs as indicated. Prior to protein harvest,

cells were treated with DMSO or MG132. EsxHMt-FLAG levels

were quantified from at least three independent experiments using

ImageJ software. *p,0.05; **p,0.01, unpaired Student’s t-test; ns-

not significant. Whiskers reflect the minimum and maximum data

points, while the cross bars show the median.

(TIF)

Figure S5 Treatment with MG132 does not result in
higher molecular weight forms of the EsxH proteins.
HEK293 cells were transfected with plasmids as indicated. Cells

were either treated with DMSO or MG132 prior to protein

harvest. Lysates were examined for mono- and polyubiquitinated

proteins using the FK2 antibody. The EsxH proteins were

visualized using the FLAG antibody. No differences were seen in

the mobility of EsxHMt, EsxHMs, or EsxHMt-H76AE77A in the

presence of MG132.

(TIF)

Figure S6 EsxGMt EsxHMt-FLAG is not secreted by
Msmeg. Msmeg transformed with empty vector, EsxGMt

EsxHMt-FLAG, or EsxGMs EsxHMs-FLAG were analyzed for the

presence of EsxH in the pellet and culture filtrate (CF). DlaT

(Rv2215), a cytosolic protein, was used as a loading control and to

indicate the degree of bacterial lysis.

(TIF)

Figure S7 EsxGMt EsxHMt-FLAG does not alter intracel-
lular growth of Mtb. RAW cells were infected with Mtb

containing vector control, EsxGMt EsxHMt-FLAG, or EsxGMs

EsxHMs-FLAG and bacterial CFU were enumerated at 3 h, 24 h

and 48 h post-infection. No statistically significant differences were

seen at any time point. Results reflect the mean +/2 SEM.

(TIF)

Table S1 Interactions identified between Mtb proteins.
(DOCX)

Table S2 Hit rate by category of Mtb ORFs.
(DOCX)

Text S1 Supporting text. This file contains detailed methods,

including description of Y2H interaction mapping, plasmids,

siRNAs, and Hill plot analysis.

(DOCX)
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