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Abstract

Serum uric acid (UA) is linked to non-alcoholic fatty liver disease (NAFLD), but its role
in hypertensive populations remains unclear. This cross-sectional study investigated
their association in 1,058 patients with hypertension. Multivariate logistic regression
analysis confirmed that UA was independently correlated with NAFLD, whether as a
continuous variable or a categorical variable. According to the fully adjusted model,
the risk of NAFLD increased by 0.2%, 347.2% and 91.7% for each unit increase

in UA, Log, ,UA and LnUA, respectively (P<0.05). Multivariate stratified analysis
revealed that UA increased the risk of NAFLD in specific subgroups, including males,
individuals aged 70-79 years, non-smokers, those without diabetes, and obese indi-
viduals (P <0.05). Receiver operating characteristic (ROC) analysis indicated that UA
could not only predict the occurrence of NAFLD but also improve the predictive value
of the baseline model for NAFLD (UA, AUC: 0.588; baseline model, AUC: 0.770;
baseline model+UA, AUC: 0.772). In conclusion, UA is significantly associated with
NAFLD in patients with hypertension and may serve as a predictive risk indicator.

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent metabolic disorder
that is currently recognized as the most common chronic liver disease worldwide and
poses a significant global health challenge [1]. This condition follows a progressive
course, potentially advancing from hepatic steatosis to fibrosis, cirrhosis, and ulti-
mately hepatocellular carcinoma. In addition to its impact on the liver, NAFLD exerts
substantial systemic effects, contributing to the development and progression of
various extrahepatic complications [2]. Accumulating evidence indicates that obesity,
dyslipidemia, and diabetes are key risk factors for NAFLD, particularly among indi-
viduals with nocturnal hypertension [3]. Studies have consistently shown a signifi-
cantly greater prevalence of NAFLD in hypertensive individuals than in normotensive
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individuals [4,5]. This strong association underscores the urgent need to identify
risk factors for NAFLD among patients with hypertension. Understanding modifiable
determinants of NAFLD in this population can inform targeted preventive interven-
tions and enhance integrated, multidisciplinary management strategies.

NAFLD is characterized by lipotoxic liver injury triggered by metabolic dysregulation
[6]. Current research indicates that serum UA, as a metabolic biomarker, plays multiple
roles in the pathogenesis of NAFLD, involving key pathways such as metabolic dys-
function, oxidative stress, the inflammatory response, and insulin resistance [7]. Clinical
studies also suggest that UA may serve as a clinically meaningful predictor of NAFLD.
Zhou et al. conducted a large cohort study involving 2,049 participants and revealed
that the incidence of NAFLD increased across quartile groups (Q1 to Q4) with increas-
ing UA levels, at 5.27%, 10.88%, 15.03%, and 19.18%, respectively [8]. Furthermore,
a systematic review and meta-analysis by Sun et al. synthesizing 36 cross-sectional
studies, 13 cohort studies, and 1 case—control study revealed a positive correlation
between UA and NAFLD. Compared with individuals with lower UA levels, those with
higher UA levels had approximately 1.88 times greater risk of NAFLD [9]. Another
study in diabetic populations confirmed a significant association between uric acid and
NAFLD. The likelihood of NAFLD progressively increased from the second quartile to
the fourth quartile of UA levels. Even after adjusting for confounding factors such as
age, sex, body mass index (BMI), and other metabolic components, the probability of
NAFLD remained significantly elevated in the fourth quartile [10].

However, a comprehensive review of the literature revealed that the clinical utility
of UA for NAFLD risk assessment in hypertensive populations remains understudied.
Therefore, this study aimed to determine whether elevated UA levels are significantly
associated with increased NAFLD risk in hypertensive patients and to examine the
consistency of this association across different demographic subgroups. Our findings
may provide new insights and an evidence-based framework for the risk stratification
of NAFLD in patients with hypertension.

2. Methods
2.1 Study population

In this single-center, cross-sectional, retrospective study, 1592 individuals aged
40-79 years who received health examinations were enrolled from Wuhan Union
Hospital. The inclusion criteria for patients were as follows: (1) clear diagnosis of
hypertension [11] and (2) availability of diagnostic information for NAFLD. The exclu-
sion criteria were as follows: (1) individuals who reported a history of known liver
disease, including viral, autoimmune and drug-induced liver disease; (2) individuals
with a diagnosis of acute illness, renal insufficiency (estimated glomerular filtration
rate <60 mL/min/1.73m3), or active cancer (defined as self-reported history of cancer
diagnosed or treated in the past 6 months); (3) individuals with oral or injectable ste-
roids and those with missing biochemical measurements or medical history interview
records; and (4) excessive alcohol consumption (defined as > 210 grams/week for
men and > 140 grams/week for women). Ultimately, 1058 individuals were included
in this study. This study utilized anonymized data obtained from publicly accessible
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Dryad databases (https://doi.org/10.5061/dryad.7d7wm3809) [12]. We accessed and downloaded the dataset for research
purposes in February 21, 2025. All data were de-identified prior to public release. The authors had no access to infor-
mation that could identify individual participants during or after the data collection. The original research protocol was
approved by the Institutional Review Board of Tongji Medical College, Huazhong University of Science and Technology
(S155). As this retrospective analysis involved exclusively deidentified, preexisting data in the public domain, additional
ethical approval was not required per institutional guidelines and prevailing ethical standards. Furthermore, the study
design complied with all relevant provisions of the Declaration of Helsinki. Given the retrospective nature of the investi-
gation and complete anonymization of all patient data, the ethics committee granted a waiver of informed consent. All the
data were handled in strict accordance with institutional data protection policies and privacy regulations.

2.2 Data collection and definition

The data included in this study primarily included demographic information, anthropometric measurements, medical
history, and serum markers. Each participant completed a questionnaire to gather self-reported data regarding sex, age,
tobacco use, alcohol use and medical and medication history. Age was categorized into four groups: 40—49 years, 50-59
years, 60—69 years and 70-79 years. Tobacco use was defined as either a current smoker or former smoker, while alcohol
use was defined as a current drinker or former drinker. Diabetes was defined on the basis of participants’ self-reported
history of diabetes or their use of hypoglycemic medications. Similarly, hypertension was identified through a self-reported
history of hypertension or the use of oral antihypertensive drugs. BMI was calculated as weight in kilograms divided by
height in meters squared (kg/m?), with a BMI of 2 24 classified as overweight or obese [13]. The serum markers measured
included total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cho-
lesterol (LDL-C), alanine aminotransferase (ALT), aspartate aminotransferase (AST), UA and fasting blood glucose (FBG).

UA was the exposure factor in this study. Owing to the nonnormal distribution of UA levels, base-10 logarithmic (Log, )
and natural logarithmic (Ln) transformations were applied to normalize the data. Additionally, based on the quartiles of
UA, the data were divided into Q1 (n=265), Q2 (n=265), Q3 (n=264) and Q4 (n=264), with Q1<313.2 pmol/L, 313.2
pmol/L<Q2<372.1 ymol/L, 372.1 ymol/L<Q3<434.5 ymol/L, and Q4>434.5 pmol/L.

2.3 Assessment of NAFLD

The participants underwent conventional abdominal ultrasound examinations performed by trained technicians via a
Philips 1U22 system (Philips Healthcare, Inc.). NAFLD diagnosis was based on the distinctive ultrasonic features of diffuse
hepatic steatosis, characterized by (1) anterior beam enhancement with increased echogenicity, (2) progressive poste-
rior beam attenuation, and (3) reduced clarity of hepatic structures. Additionally, cases of hepatic steatosis attributable to
excessive alcohol consumption (daily intake >20 g for females, > 30 g for males) and other known causes of hepatic ste-
atosis (e.g., hepatitis B virus [HBV] and hepatitis C virus [HCV] seropositivity, autoimmune and drug-induced liver disease)
were excluded. The remaining cases of hepatic steatosis were classified as NAFLD, according to the guidelines for the
diagnosis and management of NAFLD published by the Chinese Society of Hepatology [14].

2.4 Statistical analysis

In this study, all the statistical analyses were conducted via SPSS version 26.0. First, a normality test was performed on
all continuous variables via the Shapiro—Wilk test. Continuous variables that conformed to a normal distribution are repre-
sented as the mean * standard deviation, whereas those that did not conform to a normal distribution are represented as
the median (quartile). For continuous variables following a normal distribution, one-way analysis of variance (ANOVA) was
employed to assess differences among the four groups. For continuous variables that did not follow a normal distribution,
the Kruskal-Wallis test was used to evaluate differences among the four groups. Categorical variables are expressed in
terms of frequency (percentage), and differences between groups were tested via the chi-square test. The risk factors for

PLOS One | https://doi.org/10.1371/journal.pone.0341949  January 29, 2026 3/13



https://doi.org/10.5061/dryad.7d7wm3809

PLO\Sﬁ\\.- One

NAFLD were evaluated through univariate logistic regression analysis, and variables with a P value less than 0.05 were
selected for multivariate logistic regression analysis. Three adjustment models were established: Model 1 adjusted for
age only; Model 2 adjusted for age, sex, tobacco use, alcohol use, diabetes, BMI and overweight or obesity; and Model 3
adjusted for age, sex, tobacco use, alcohol use, diabetes, BMI, overweight or obesity, TG, TC, LDL-C, HDL-C, FBG, ALT
and AST. Subgroup analyses were subsequently conducted to evaluate the multivariate stratified association between

UA levels and NAFLD in patients with hypertension. Finally, receiver operating characteristic (ROC) curve analysis was
performed to assess the predictive value of UA and the baseline model for NAFLD. All tests were two-sided, and a P value
of less than 0.05 was considered statistically significant.

2.5 Model validation and robustness analyses

To ensure the reliability and robustness of the findings from the multivariable logistic regression model, we performed
comprehensive validation and diagnostic procedures.

Internal Validation via Bootstrap Resampling: The stability of coefficient estimates was evaluated using bootstrap res-
ampling (1,000 replicates). The 95% confidence intervals for reporting were directly generated from the percentile-based
empirical distribution of the bootstrapped coefficients.

Model Diagnostics:

Multicollinearity: Variance Inflation Factors (VIFs) were calculated for all continuous independent variables by running a
linear regression model. A VIF value > 10 was considered indicative of severe multicollinearity.

Goodness-of-fit: The calibration of the final logistic model was assessed using the Hosmer-Lemeshow test.

Sensitivity Analysis for Outliers and Influential Points: To evaluate whether our conclusions were unduly influenced by
extreme observations, we identified potential outliers and influential points based on the following criteria: absolute
standardized residuals >2.5, Cook’s distance>0.1, and leverage values>2*(k+1)/n (where k is the number of predic-
tors, and n is the sample size). A sensitivity analysis was then conducted by refitting the primary multivariable model
after excluding the identified observations.

3. Results
3.1 Clinical characteristics according to UA quartile groups

As shown in Table 1, the variables of sex, age, tobacco use, alcohol use, overweight or obesity, NAFLD, BMI, TG, TC,
LDL-C, HDL-C and ALT levels were significantly different among the UA quartile groups (P <0.05). Specifically, the Q4
group had a greater number of individuals who were drinkers and patients with NAFLD, as well as higher BMls, TG, TC,
LDL-C and ALT levels.

3.2 The correlation between UA and NAFLD

As shown in Table 2, the univariate logistic regression analysis indicated that sex, age, tobacco use, alcohol consumption,
diabetes status, overweight or obesity status, BMI, FBG, TG, TC, LDL-C, HDL-C, ALT, AST, and UA were significantly
associated with the risk of NAFLD (P <0.05).

As shown in Table 3, the multivariate logistic regression analysis indicated that in Model 1, which was adjusted solely
for age, UA was significantly associated with the risk of NAFLD, regardless of whether it was treated as a continuous
or categorical variable (P<0.05). In Model 2, which was adjusted for age, sex, tobacco use, alcohol consumption, dia-
betes status, BMI, and overweight or obesity status, higher levels of UA continued to be significantly associated with an
increased risk of NAFLD (P <0.05). In Model 3, UA remained significantly associated with the risk of NAFLD, and for each
one-unit increase in UA, Log10UA, and LnUA, the risk of NAFLD increased by 0.2%, 347.2%, and 91.7%, respectively
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Table 1. Clinical characteristics of study participants according to uric acid quartile groups.

Variable Total Q1 Q2 Q3 Q4 P value
N 1058 265 265 264 264
Gender, n (%) <0.001
Female 238 (22.5) 125 (47.2) 66 (24.9) 24 (9.1) 23 (8.7)
Male 820 (77.5) 140 (52.8) 199 (75.1) 240 (90.9) 241 (91.3)
Age, n (%) 0.006
40-49 years 176 (16.6) 34 (12.8) 41 (15.5) 49 (18.6) 52 (19.7)
50-59 years 443 (41.9) 94 (35.5) 118 (44.5) 105 (39.8) 126 (47.7)
60-69 years 296 (28.0) 93 (35.1) 70 (26.4) 78 (29.5) 55 (20.8)
70-79 years 143 (13.5) 44 (16.6) 36 (13.6) 32 (12.1) 31 (11.7)
Tobacco use, n (%) <0.001
Yes 390 (36.9) 65 (24.5) 103 (38.9) 114 (43.2) 108 (40.9)
No 668 (63.1) 200 (75.5) 162 (61.1) 150 (56.8) 156 (59.1)
Alcohol use, n (%) <0.001
Yes 374 (35.3) 57 (21.5) 96 (36.2) 110 (41.7) 111 (42.0)
No 684 (64.7) 208 (78.5) 169 (63.8) 154 (58.3) 153 (58.0)
Diabetes, n (%) 0.652
Yes 418 (39.5) 103 (38.9) 111 (41.9) 107 (40.5) 97 (36.7)
No 640 (60.5) 162 (61.1) 154 (58.1) 157 (59.5) 167 (63.3)
Overweight or <0.001
obesity, n (%)
Yes 798 (75.4) 174 (65.7) 200 (75.5) 209 (79.2) 215 (81.4)
No 260 (24.6) 91 (34.3) 65 (24.5) 55 (20.8) 49 (18.6)
NAFLD, n (%) <0.001
Yes 704 (66.5) 149 (56.2) 181 (68.3) 172 (65.2) 202 (76.5)
No 354 (33.5) 116 (43.8) 84 (31.7) 92 (34.8) 62 (23.5)
BMI, kg/m? 25.60 (24.00, 27.60) 25.10 (23.50, 27.10) | 25.50 (24.00, 27.50) | 26.00 (24.10, 28.10) | 26.10 (24.50, 28.08) |<0.001
SBP, mmHg 136.00 (126.00, 146.00) | 138.00 (128.00, 148.00) | 136.00 (126.00, 146.00) | 136.00 (124.00, 145.75) | 134.00 (125.00, 142.00) | 0.087
DBP, mmHg 85.00 (78.00, 92.00) 84.00 (77.50, 91.00) | 84.00 (76.00, 92.00) | 86.00 (78.00, 92.75) | 85.00 (78.00, 93.00) 0.655
FBG, mmol/L 5.20 (4.76, 5.90) 5.27 (4.79, 6.10) 5.20 (4.73, 5.91) 5.20 (4.70, 5.90) 5.23 (4.80, 5.90) 0.557
TG, mmol/L 1.52 (1.03, 2.29) 1.22 (0.87,1.85) 1.46 (1.04, 2.11) 1.54 (1.03, 2.22) 1.93 (1.28, 2.90) <0.001
TC, mmol/L 4.30 (3.57, 5.09) 4.37 (3.64, 5.13) 4.06 (3.42, 4.85) 4.16 (3.36, 4.90) 4.51 (3.84, 5.26) <0.001
LDL-C, mmol/L 2.51(1.89, 3.15) 2.57 (1.95, 3.20) 2.30 (1.79, 3.03) 2.48 (1.73, 3.07) 2.72 (2.09, 3.33) 0.001
HDL-C, mmol/L 1.05 (0.87, 1.24) 1.15 (0.95,1.38) 1.06 (0.88, 1.26) 1.02 (0.87, 1.16) 0.98 (0.83, 1.12) <0.001
ALT, U/L 23.00 (16.00, 32.00) 21.00 (14.00, 30.00) | 22.00 (16.00, 30.00) | 23.00 (17.00, 32.00) | 24.00 (17.00, 35.00) 0.003
AST, U/L 21.00 (18.00, 27.00) 21.00 (17.00, 26.00) | 21.00 (18.00, 26.75) | 22.00 (18.00, 28.00) | 21.00 (18.00, 27.00) 0.688
UA, pmol/L 372.10 (313.20, 434.50) | 269.30 (241.30, 293.90) | 345.80 (330.35, 359.10) | 399.50 (386.53, 416.40) | 487.65 (456.00, 533.70) |<0.001
Log,,UA 2.56+0.11 2.42+0.06 2.54+0.02 2.60+0.02 2.70+0.05 <0.001
LnUA 5.90+0.26 5.57+0.15 5.84+0.05 5.99+0.04 6.21+0.11 <0.001

NAFLD, non-alcoholic fatty liver disease; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting blood glu-
cose; TG, triglycerides; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; ALT, alanine amino-
transferase; AST, aspartate aminotransferase; UA, uric acid. Q1<313.2 pmol/L, 313.2 ymol/L<Q2<372.1 pmol/L, 372.1 ymol/L<Q3 <434.5 pmol/L, and

Q4>434.5 pmol/L.

https://doi.org/10.1371/journal.pone.0341949.t001
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Table 2. Binary Logistic regression analysis of NAFLD.

Variable OR 95% CI P value
Gender

Female Ref

Male 1.652 1.228-2.223 0.001
Age

40-49 years Ref

50-59 years 0.664 0.444-0.994 0.047

60-69 years 0.485 0.318-0.738 0.001

70-79 years 0.420 0.259-0.680 <0.001
Tobacco use 1.493 1.138-1.959 0.004
Alcohol use 1.466 1.115-1.929 0.006
Diabetes 2177 1.652-2.869 <0.001
Overweight or obesity 3.883 2.898-5.203 <0.001
BMI 1.364 1.283-1.449 <0.001
SBP 1.000 0.992-1.008 0.996
DBP 1.006 0.995-1.018 0.282
FBG 1.354 1.210-1.515 <0.001
TG 1.815 1.550-2.124 <0.001
TC 1.240 1.099-1.399 <0.001
LDL-C 1.162 1.007-1.340 0.040
HDL-C 0.272 0.173-0.426 <0.001
ALT 1.044 1.031-1.056 <0.001
AST 1.037 1.020-1.055 <0.001
UA 1.004 1.002-1.005 <0.001
Log, ,UA 18.655 5.739-60.642 <0.001
LnUA 3.564 2.136-5.946 <0.001
UA as a categorical variable

Q1 Ref

Q2 1.678 1.177-2.392 0.004

Q3 1.456 1.025-2.067 0.036

Q4 2.536 1.745-3.687 <0.001

P for trend <0.001

NAFLD, non-alcoholic fatty liver disease; BMI, body mass index; SBP, systolic blood pressure; DBP,
diastolic blood pressure; FBG, fasting blood glucose; TG, triglycerides; TC, total cholesterol; LDL-C,
low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; ALT, alanine aminotrans-
ferase; AST, aspartate aminotransferase; UA, uric acid.

https://doi.org/10.1371/journal.pone.0341949.t002

(OR =1.002, 95% CI: 1.000-1.004, P=0.027; OR =4.472, 95% CI: 1.135-17.624, P=0.032; OR = 1.917, 95% CI:
1.057-3.477, P=0.032; respectively). Furthermore, the risk of NAFLD in the Q2 and Q4 groups was 1.513 and 1.643
times greater than that in the Q1 group, respectively (OR = 1.513, 95% CI: 1.006-2.274, P=0.046; OR = 1.643, 95% ClI:
1.043-2.589, P=0.032; respectively).

3.3 Multivariate stratified analysis of the association between UA and NAFLD

As shown in Table 4, among males, the risk of NAFLD in the Q4 group was 1.782 times greater than that in the Q1 group.
Additionally, for each one-unit increase in UA, the risk of NAFLD increased by 0.2% (P <0.05). In the population aged
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Table 3. Correlation between UA and NAFLD.

Model 1 Model 2 Model 3
OR 95% ClI P value OR 95% ClI P value OR 95% ClI P value
Continuous variables
UA 1.003 1.002-1.005 <0.001 1.003 1.001-1.004 0.001 1.002 1.000-1.004 0.027
Log,,UA 14.639 4.435-48.323 <0.001 8.480 2.310-31.121 0.001 4.472 1.135-17.624 0.032
LnUA 3.208 1.910-5.388 <0.001 2.530 1.439-4.451 0.001 1.917 1.057-3.477 0.032
Categorical variables
Q1 Ref Ref Ref
Q2 1.618 1.131-2.314 0.008 1.480 1.009-2.170 0.045 1.513 1.006-2.274 0.046
Q3 1.387 0.974-1.976 0.070 1.102 0.752-1.615 0.619 1.072 0.699-1.643 0.751
Q4 2.369 1.622-3.460 <0.001 2.009 1.341-3.010 0.001 1.643 1.043-2.589 0.032
P for trend <0.001 0.003 0.049

Model 1: Adjusted for gender and age; Model 2: Adjusted for gender, age, tobacco use, alcohol use, diabetes, BMI, overweight or obesity; Model 3:
Adjusted for gender, age, tobacco use, alcohol use, diabetes, BMI, overweight or obesity, TG, TC, LDL-C, HDL-C, FBG, ALT and AST.

UA, uric acid; NAFLD, non-alcoholic fatty liver disease; BMI, body mass index; TG, triglycerides; TC, total cholesterol; LDL-C, low-density lipoprotein
cholesterol; HDL-C, high-density lipoprotein cholesterol; FBG, fasting blood glucose; ALT, alanine aminotransferase; AST, aspartate aminotransferase.
Q1<313.2 ymol/L, 313.2 pmol/L<Q2<372.1 umol/L, 372.1 ymol/L<Q3<434.5 pmol/L, and Q4 >434.5 ymol/L.

https://doi.org/10.1371/journal.pone.0341949.t003

70-79 years, the risk of NAFLD in the Q3 and Q4 groups was 2.831 and 5.376 times greater than that in the Q1 group,
respectively (P<0.05). Furthermore, for each one-unit increase in UA, Log, UA, and LnUA, the risk of NAFLD significantly
increased (P <0.05). Among non-smokers, the risk of NAFLD in the Q2 and Q4 groups was 1.662 and 1.860 times greater
than that in the Q1 group, respectively (P<0.05). For each one-unit increase in UA, Log, UA and LnUA, the risk of NAFLD
increased by 0.2%, 603.6% and 133.3%, respectively (P<0.05). Among participants with diabetes, the risk of NAFLD in
the Q2 group was 2.109 times greater than that in the Q1 group (P <0.05). Among participants without diabetes, for each
one-unit increase in UA, Log, UA, and LnUA, the risk of NAFLD increased by 0.2%, 498.1%, and 117.4%, respectively
(P<0.05). Among participants who were overweight or obese, the risk of NAFLD in the Q2 and Q4 groups was 1.734 and
0.643 times greater than that in the Q1 group, respectively (P<0.05). For each one-unit increase in UA, Log, UA, and
LnUA, the risk of NAFLD increased by 0.2%, 63.5%, and 155%, respectively (P <0.05).

3.4 The predictive value of UA and the baseline model for NAFLD

As illustrated in Fig 1A, the ROC analysis demonstrated that UA had a certain predictive value for the risk of NAFLD
(AUC: 0.588, 95% CI: 0.552—-0.624, P<0.001). Furthermore, Fig 1B also shows that both UA and the baseline model
could predict the occurrence of NAFLD, with UA increasing the predictive ability of the baseline model (UA, AUC: 0.588;
baseline model, AUC: 0.770; baseline model+UA, AUC: 0.772).

3.5 Robustness analysis and model diagnostics

As shown in Table 5, the stability of the key associations is supported by bootstrap analysis (1,000 replicates). The pos-
itive association between UA and NAFLD remained robust, with a narrow bootstrap 95% confidence interval (B=0.002,
Bootstrap 95% CI: 0.000 to 0.004) that did not include zero. The associations of other significant variables, such as BMI
and diabetes, were also stable in the bootstrap analysis.

The Hosmer-Lemeshow test indicated good calibration for the full model (x*=11.668, P=0.167). Multicollinearity diag-
nostics confirmed no severe collinearity, as all VIFs were below 10, with the VIF for UA at 1.248. Based on predefined
criteria, 55 observations were identified as potential outliers. In the sensitivity analysis performed after excluding these
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Fig 1. ROC curves of UA and the baseline model for the prediction of NAFLD. The baseline model included gender, age, tobacco use, alcohol
use, diabetes, BMI, overweight or obesity, FBG, TG, TC, LDL-C, HDL-C, ALT and AST. AUC, Area Under Curve; ROC, receiver operating character-
istic curve; UA, uric acid; NAFLD, non-alcoholic fatty liver disease; BMI, body mass index; FBG, fasting blood glucose; TG, triglycerides; TC, total
cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; ALT, alanine aminotransferase; AST, aspartate

aminotransferase.

https://doi.org/10.1371/journal.pone.0341949.9001

Table 5. Bootstrap validation of the regression model.

Variable Coefficient (B) P Bootstrap 95% ClI
BMI 0.188 0.001 0.103-0.299
Overweight or obesity -0.426 0.074 -0.891-0.064
ALT 0.031 0.002 0.015-0.054
AST -0.012 0.245 -0.043-0.010
FBG 0.096 0.166 -0.044-0.251
UA 0.002 0.019 0.000-0.004
TC 0.083 0.635 -0.761-0.698
TG 0.269 0.028 0.020-0.651
HDL-C -0.196 0.563 -0.910-0.783
LDL-C 0.062 0.758 -0.560-0.924
Tobacco use -0.168 0.382 -0.552-0.210
Alcohol use 0.045 0.799 -0.322-0.431
Diabetes -0.525 0.004 -0.926-0.157

BMI, body mass index; ALT, alanine aminotransferase; AST, aspartate aminotransferase;
FBG, fasting blood glucose; UA, uric acid; TC, total cholesterol; TG, triglycerides; HDL-C,
high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.

https://doi.org/10.1371/journal.pone.0341949.t005

observations, the direction, magnitude, and statistical significance of the association between UA and NAFLD were
unchanged (OR = 1.003, 95% CI: 1.001-1.005, P=0.014), confirming that the primary finding is not driven by influential
points.
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4. Discussion

This cross-sectional study involving Chinese adult patients with hypertension revealed a significant association between
UA and NAFLD risk. After comprehensive adjustment for all potential confounders, each unit increase in UA was signifi-
cantly associated with an increased risk of NAFLD. To ensure the robustness of the identified association, we performed
a series of rigorous model diagnostics. First, internal validation via bootstrap resampling (1,000 replicates) demonstrated
that the association between UA and NAFLD remained precise and stable, with a narrow 95% confidence interval (0.000—
0.004) that did not include zero. Second, sensitivity analysis confirmed that this association remained consistent after
excluding potential outliers, indicating that the finding was not driven by influential observations. Finally, multicollinearity
diagnostics secured the reliability of estimating independent effects, with all variance inflation factors below the threshold
of concern. These results collectively support the high stability and reliability of the association between UA and NAFLD.
Given the routine availability and low cost of UA testing in hypertension management, the minimal observed increase in
AUC (from 0.770 to 0.772) following its addition to the model represents a cost-effective enhancement to NAFLD risk
stratification. Therefore, serum UA can be considered a robust and practically valuable independent predictor of NAFLD in
patients with hypertension.

As the end product of purine metabolism, UA is influenced by multiple factors, including dietary habits, demographic
characteristics (such as age, sex, and race/ethnicity), and genetic predispositions. Studies indicate that elevated serum UA
is an independent risk factor for cardiovascular and renal diseases, including hypertension, coronary artery disease, stroke,
heart failure, and chronic kidney disease [15,16]. Since Leonardo et al. first identified UA as an independent predictor of
NAFLD in 2002 [17], the association between UA and NAFLD has been extensively studied. Subsequent studies have
confirmed this association, demonstrating that elevated serum UA levels correlate with an increased risk of NAFLD devel-
opment and progression, thereby supporting its potential role as a predictive biomarker [18]. Wijarnpreecha et al. reported a
significant increase in NAFLD risk among individuals with hyperuricemia in a meta-analysis encompassing 25 studies [19],
further corroborating the positive correlation between hyperuricemia and NAFLD. Sun et al. conducted a systematic review
and meta-analysis encompassing 50 studies and 2,079,710 participants [9], which was consistent with our finding of a pos-
itive association between elevated serum UA levels and NAFLD risk in patients with hypertension. However, the nature of
this relationship is complex and context dependent. A Mendelian randomization analysis suggested a bidirectional associa-
tion between serum UA and NAFLD, where NAFLD may increase UA levels, but a genetic predisposition to hyperuricemia
does not increase NAFLD risk [20]. These inconsistencies may stem from methodological limitations, such as residual
confounding in genetic studies and difficulties in detecting nonlinear relationships between exposure and outcome [21]. Our
study revealed that the association between UA and NAFLD in hypertensive individuals was nonlinear. When the lowest
quartile group (Q1) was used as a reference, NAFLD risk significantly increased with increasing UA levels starting in the Q2
group. However, no significant association was observed in the Q3 group, suggesting that the risk may plateau within this
range. Finally, the strongest positive correlation was observed in the Q4 group, which presented the highest UA levels. This
pattern indicates that the effect of UA on NAFLD is not a simple dose—response relationship, as even modest elevations in
UA levels are harmful, while extremely high levels confer the greatest disease risk.

Furthermore, the association between UA and NAFLD appears to vary across different populations. For example, Bao
et al. reported that UA is a significant predictor of NAFLD risk in non-obese postmenopausal women [22], while Duan and
Chen et al. reported consistent positive correlations in both premenopausal and postmenopausal women in their respec-
tive studies [23,24]. Conversely, Fan et al. reported no significant association between UA and NAFLD risk in a female
cohort of diabetic patients [25]. This result aligns with our subgroup analysis of hypertensive patients, where no significant
relationship was observed between UA and NAFLD in hypertensive women, whereas a positive correlation was found
in hypertensive men. These inconsistent findings may be attributed to heterogeneity in the study populations, variations
in metabolic characteristics, or differences in the underlying pathophysiological mechanisms associated with NAFLD
development.
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Notably, as previous studies have not systematically evaluated the association between UA and NAFLD in hypertensive
cohorts, our research provides novel insights into managing NAFLD on the basis of UA levels by specifically examining
this relationship in hypertensive individuals. Our findings confirm that elevated uric acid (UA>434.5 ymol/L) is an inde-
pendent risk factor for NAFLD in hypertensive patients. Elevated UA levels may synergize with hypertension to acceler-
ate hepatic steatosis and injury by promoting insulin resistance, oxidative stress, and inflammatory responses. For such
patients, aggressive urate-lowering therapy offers dual cardiovascular protection while preventing or delaying NAFLD pro-
gression. Concurrently, these patients should be considered at high risk for NAFLD and undergo regular liver ultrasound
screening alongside fibrosis assessment (e.g., FibroTest, liver stiffness measurement, magnetic resonance elastography).
For women with hypertension, other factors (such as obesity and dyslipidemia) may be more significant drivers of NAFLD
than uric acid is. These findings contribute to a deeper understanding of NAFLD pathogenesis in high-risk populations and
provide clinical evidence for future research on strategies to prevent and manage NAFLD in hypertensive individuals.

Although the precise mechanisms by which UA contributes to NAFLD warrant further elucidation, increasing evi-
dence indicates that UA promotes hepatic steatosis and injury through four interrelated pathological processes: oxidative
stress, inflammatory activation, insulin resistance (IR), and dysregulated lipid metabolism. These mechanisms form a
self-reinforcing cycle that drives NAFLD progression. At the cellular level, UA induces metabolic dysfunction via multiple
pathways. Upon entering hepatocytes, UA promotes intracellular lipid accumulation by triggering oxidative stress and
subsequent endoplasmic reticulum (ER) stress. This activates the unfolded protein response (UPR) pathway, modulates
the expression of lipogenic proteins, and ultimately disrupts hepatic lipid homeostasis [26]. The pro-oxidant properties
of UA further exacerbate metabolic dysfunction by increasing reactive oxygen species production and promoting lipid
peroxidation. Concurrently, UA acts as a damage-associated molecular pattern (DAMP), initiating and sustaining hepatic
inflammation. Through dose-dependent activation of the nuclear factor kappa-B (NF-kB) signaling pathway, UA enhances
proinflammatory cytokine expression [27] while also promoting macrophage recruitment and NLRP3 inflammasome
assembly [28]. This inflammatory cascade leads to robust production of interleukin-1{ (IL-1), fostering a chronic inflam-
matory state that promotes hepatocyte injury and fibrosis [29,30]. The metabolic consequences of UA exposure extend to
systemic insulin sensitivity, as UA impairs insulin signaling by inhibiting the IRS1/Akt pathway [31]. Furthermore, hyper-
uricemia may adversely affect pancreatic B-cell function via urate crystal deposition in islets, thereby exacerbating insulin
resistance [32]. This metabolic disturbance generates a vicious cycle: insulin resistance promotes lipolysis in adipose
tissue, leading to increased delivery of free fatty acids to the liver [33], while compensatory hyperinsulinemia stimulates
lipogenesis in hepatocytes [34]. Subsequent lipid overload, coupled with persistent oxidative and inflammatory injury, pro-
motes the accumulation of cytotoxic metabolites and progressive liver damage [35]. Elucidating these underlying mecha-
nisms will be crucial for devising more effective strategies for prevention and treatment [36].

This study employed a sufficiently large sample size and accounted for various potential confounding variables, includ-
ing age, sex, BMI, smoking, alcohol consumption, and diabetes. However, several limitations should be noted. First, the
cross-sectional design precludes definitive conclusions regarding causality between UA and NAFLD. Second, certain
self-reported confounding factors may be susceptible to recall bias. Third, our study may not have comprehensively
accounted for other confounding variables, such as genetic predisposition, dietary intake, environmental exposure, and
occupational hazards, which could influence the observed associations.

5. Conclusions

In summary, this study identified a significant association between serum UA levels and NAFLD in a hypertensive popula-
tion. Uric acid may serve as a useful biomarker for predicting NAFLD risk in these patients. Our findings provide a reliable
basis for assessing NAFLD risk based on UA levels. Consequently, managing UA levels could have important implications
for preventing NAFLD development in hypertension, suggesting that urate-lowering therapy may represent a novel strat-
egy for NAFLD prevention and treatment in patients with hypertension.
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