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Abstract

The digitalization of financial markets has shifted trading from voice to electronic
channels, with Multi-Dealer-to-Client (MD2C) platforms now enabling clients to
request quotes (RfQs) for financial instruments like bonds from multiple dealers
simultaneously. In this competitive landscape, dealers cannot see each other’s
prices, making a rigorous analysis of the negotiation process crucial to ensure their
profitability. This article introduces a novel general framework for analyzing the RfQ
process using probabilistic graphical models and causal inference. Within this frame-
work, we explore different inferential questions that are relevant for dealers participat-
ing in MD2C platforms, such as the computation of optimal prices, estimating poten-
tial revenues and the identification of clients that might be interested in trading the
dealer’s axes. We then move into analyzing two different approaches for model spec-
ification: a generative model built on the work of (Fermanian, Guéant, & Pu, 2017);
and discriminative models utilizing machine learning techniques. Our results show
that generative models can match the predictive accuracy of leading discriminative
algorithms such as LightGBM (ROC-AUC: 0.742 vs. 0.743) while simultaneously
enforcing critical business requirements, notably spread monotonicity.

1 Introduction

Modern financial markets are increasingly mediated by electronic platforms that auto-
mate the negotiation and execution of trades. While highly liquid instruments such
as equities are typically traded on order-driven venues using continuous double auc-
tions and limit order books, these mechanisms are less effective for instruments that
are not as actively traded, such as corporate and government bonds. Unlike equi-
ties, where a company issues a single line of stock, bond issuers may maintain hun-
dreds of distinct securities with varying maturities, coupons, and seniorities. This pro-
liferation of instruments fragments liquidity and reduces the probability of matching
counterparties through centralized order books.

To address these limitations, quote-driven protocols—particularly the Request-for-
Quote (RfQ) mechanism—are commonly used. In this setting, Multi-Dealer-to-Client
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(MD2C) platforms have emerged as the dominant architecture for institutional bond
trading. These platforms allow clients to simultaneously solicit quotes from multiple
dealers and, within a short response window, choose whether to trade at the best
available price [1]. The process is partially observable: the winning dealer is informed
of the second-best quote (the “cover price”), while the other dealers receive feed-
back on their ranking and whether a trade occurred. In some cases, the other dealers
cannot even know if the trade occurred (a missed RfQ) or not (a passed RfQ). This
structure fosters competition but creates a highly strategic environment for pricing, in
which dealers must optimize quotes under uncertainty about competitors’ prices and
client preferences.

For dealers, RfQ pricing entails balancing the probability of winning a trade with
expected profitability and inventory risk. Quoting too aggressively may increase hit
probability but reduce margins or expose the dealer to adverse selection and post-
trade market movements. Additionally, dealers seek to extract commercial insights
from the process, such as identifying clients who may be receptive to trading their
axes—pre-existing positions the dealer wishes to buy or sell. However, optimizing
these decisions from historical data is challenging due to confounding factors. Pric-
ing policies are often shaped by client segmentation or product-specific rules, mean-
ing that the historical relationship between quotes and outcomes may not reflect the
causal effect of intervening on prices or initiating commercial actions.

To address the first research question of this study—namely, assessing the poten-
tial impact of confounding factors in the historical datasets used by dealers for
decision-making—this paper introduces a unified framework based on probabilis-
tic graphical models [2—4] and causal inference [5,6]. Graphical models allow us to
explicitly encode the dependencies among variables involved in the RfQ workflow,
including observed and latent factors. Causal inference techniques then enable the
analysis of interventions—such as setting specific quotes or initiating outreach to
clients—in a manner that accounts for confounding biases and supports counterfac-
tual reasoning. In particular, we focus on three high-impact dealer use cases: (i) opti-
mal pricing to maximize expected profits or satisfy commercial targets, (ii) revenue
potential estimation under fixed pricing policies, and (iii) identifying likely matches
between axes and client demand.

Our work thus continues a recent trend in which causal inference methods are
being popularized across economics and finance, although their use in financial
markets—traditionally dominated by correlation-based analyses—remains at an early
stage. Early applications in empirical economics have focused on identifying causal
effects in macroeconomic and policy contexts. For example, Baiardi and Naghi [7]
revisited classical empirical financial economics studies using Double Machine
Learning [8], a methodology that integrates causal inference with modern machine
learning to estimate structural relationships more reliably. Similarly, [9] have exam-
ined the causal impact of interest rate changes on fixed income funds through Double
ML estimation, illustrating the growing use of causal ML to evaluate policy transmis-
sion mechanisms. More recently, causal methods have been applied directly to finan-
cial markets: Oliveira et al. [10] have proposed causality-inspired forecasting models
that remain robust under distributional shifts, demonstrating improved performance
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in volatile investment environments. Extending this line of research, Lopez de Prado and Zoonekynd [11] advocate for a
causal investing paradigm grounded in counterfactual reasoning and experimental design, framing causal inference as a
foundation for more reliable discovery of investment factors and strategies.

The second primary research question of this study concerns the comparative effectiveness of different modeling
paradigms for representing the RfQ negotiation process. Specifically, we aim to assess the relative advantages of genera-
tive models that incorporate the internal mechanics of dealer—client interactions versus discriminative models that directly
learn predictive mappings from data. To this end, we develop two complementary strategies to instantiate the graphical
model.

The generative model, inspired by the work of Fermanian, Guéant, and Pu [12], explicitly represents the negotiation
mechanism underlying RfQ interactions. This approach naturally enforces economically consistent behaviors—such as
price monotonicity, whereby clients prefer more favorable quotes—and seamlessly integrates post-trade information like
the cover price. In contrast, discriminative models, such as logistic regression and gradient-boosted decision trees [13],
directly estimate outcome probabilities conditional on observed RfQ features. These models offer greater flexibility and
scalability but may struggle to encode economic constraints or effectively leverage post-trade feedback. Comparing these
two approaches enables us to evaluate the trade-off between structural interpretability and predictive performance within
the causal inference framework.

To evaluate these approaches, we benchmark their performance on a proprietary dataset of BBVA's RfQ activity in
European Government Bonds (EGBs). We frame the core estimation problem as a binary classification task—predicting
trade outcomes conditional on quotes and market context—and assess each model’s ability to support decision-making
tasks under a causal perspective. While the analysis focuses on EGBs, the methodology is general and should apply to
any asset class traded via the RfQ protocol.

The remainder of the paper is structured as follows. Sect 2 introduces the probabilistic graphical model underlying the
RfQ process. Sects 3 and 4 apply causal inference techniques to evaluate key business interventions within M2DC mar-
kets, focusing on optimal pricing, revenue estimation, and axe matching. Sect 5 details both generative and discrimina-
tive modeling strategies, with emphasis on practical considerations for estimation and inference. Sect 6 compares these
approaches in the context of a specific inference task—the hit probability model—using predictive performance metrics.
Finally, Sect 7 summarizes the main findings and outlines directions for future research.

2 A causal graphical model for the RfQ process

We model the full RfQ process as a graphical model depicted in Fig 1. This model captures key components of the RfQ
process, making it well-suited for pricing analysis as well as other commercial applications, such as client targeting for axe
recommendations and estimating a dealer’s expected profitability following a transaction.

The model is composed of the following elements. Some of them are known pre-trade, others post-trade depending on
the result of the RfQ, and some are just simply non-observable (latent) variables:

RfQ: A Request for Quote sent by a client to a set of dealers via a MD2C platform. This is a binary random variable that
specifies the arrival or not of an RfQ. RfQs have features that we model generically with the variable RF in the model, for
instance the time t of the RfQ, the side s (buy or sell), the volume v and the number of dealers n in competition, which the
client can select when sending the RfQ (actual platforms tend to cap this to a maximum). We consider the side from the
perspective of the dealer, i.e. a buy RfQ means that the dealer buys and the client sells, and a sell RfQ means that the
dealer sells and the client buys. The initiation of an RfQ may be driven by exogenous client factors—such as the specific
trading strategy being pursued by the client—which lie outside the scope of our model. However, in some cases, it may
also result from a commercial intervention by the dealer’s sales force, which we represent with the variable call. Addi-
tional factors that may influence a client’s decision to request a quote, and which we explicitly incorporate into the model,
include:
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Fig 1. Causal graphical model for the RfQ process. Green nodes correspond to observable variables, whereas blue ones are latent variables. A
detailed description of each of the variables is provided in the main text.

https://doi.org/10.1371/journal.pone.0341369.9001

+ Price discovery (PD): The client wants to find out what is the fair price of the instrument but is not willing to trade. This
is a latent variable since the dealer does not know the intention of the client when the RfQ is submitted.

+ Client information asymmetry (1A): If the client has relevant information about the short-term directionality of the mar-
ket [14,15]. There are different reasons why a client could have information asymmetry. From a causal graph structure,
we differentiate between two: 1) the client trading activity represents a potential source of market impact, but the RfQ
submitted to the dealer often reveals only a subset of the total order. In this case, the information asymmetry impacts
the market, which we model as a price drift (1) variable, and the direct causal effect: IA — u, 2) the client has insider
information or advanced analytics models that are relevant for predicting market directionality, again modeled as a price
drift variable. In this case, though, there is not a direct link between IA and drift, since the client uses an estimation of
the drift, but does not know the actual drift after trading. Since the first case is more general, we will consider it in the
rest of the paper, keeping in mind that extra simplifications of the graphical model can be achieved in the second sit-
uation. Notice that information asymmetry is closely related to adverse selection effects, a central concern in market
microstructure. Recent advances, such as [16], provide new evidence and models for understanding toxic flow and its
implications for dealer profitability.
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+ Axe: The dealer makes public an interest in offering a discounted trade (it could be a bid or an ask), which makes the
client more inclined to request a quote.

+ Client features (CF): The client identity itself, but also more general characteristics that might reflect common patterns
of behavior between clients, e.g. industry, geography or ratings. For instance, we expect to find a different behavior from
a hedge fund than a central bank, although trading behavior might sometimes be more influenced by the specific trader
than the institution.

* Bond features (BF): The bond identifier itself, but also financial characteristics like coupon, yield, maturity, sensitivity
to interest rates (for bonds the DVO01 or Dollar Value of 01) or variables linked to liquidity conditions like market bid-ask
spreads, volatility and the average number of dealers quoting RfQs in this bond.

Notice that RfQ features might be dependent on the client requesting the quote or the instrument being priced, and the
model incorporates these dependencies with direct causal arrows in the graphical model.
RfQ status (RS): The final status of the RfQ, which can be grouped in three relevant cases.

+ Hit: When the client trades with the dealer. There are two final status that yield this result:
Done: The dealer proposed the best price, with the rest of the dealers quoting worse prices.
Tied Done: There was at least other dealer quoting the same price, but the platform mechanism did not assign the
trade to these other dealers.

* Missed: When the client trades with other dealer. The relevant status grouped in this case are:
Tied Traded Away: When the dealer loses the RfQ but the price quoted matched the one from the best dealer.
Covered: When the dealer loses the RfQ but quoted the second best price among all dealers.
Other Traded Away: When the dealer loses the RfQ and quoted a price worst than the two best ones.

» Passed: When the client does not trade with any dealer. The reason could be that the prices she received were not

good enough or that she was just doing price discovery.

The drivers of the RfQ status are, in our model:

« Naturally, the client’s interest in trading, which translates into a Request for Quote (RfQ) being sent to the dealers
using a multi-dealer-to-client platform.

« If the client is requesting the quote for the sole reason of price discovery (PD), in which case the only result with non-
zero probability is passed (also known as walked away).

» The half-spread (8) quoted by the dealer. Although dealers quote prices to clients, we will make the hypothesis that
client decisions on trading are driven by the spread with respect to a reference mid-price P,,, for example a platform’s
composite price: P = P, + sd, where s = 1 when the dealer sells (ask) and s = —1 when the dealer buys (bid).

» The spreads quoted by the dealers in competition, §,... As mentioned, the client can select a number of deal-
ers n to submit the RfQ. Naturally, as the number of competing dealers increases, so does the likelihood that one of
them will offer a more favorable price. Notice that most times n is known to every dealer quoting a price, but the prices
quoted by other dealers are not known pre-trade. Only when a dealer wins the RfQ and trades with the client does the
platform publish the second best price quoted, the cover price. The second best dealer knows that it quoted the cover
price, since she receives the final status covered. However, she does not know from the platform the price quoted by
the dealer trading with the client. This information can be known in some cases post-trade with delay via proprietary
repositories like Trax, or public ones like TRACE in the USA or MiFID 2’'s APAs in Europe.

» The client’s reservation spread, §,.5: the maximum spread with respect to the mid-price that the client is willing to buy
or sell, i.e. 8,5 = (Pres — Pm)/S Where s is the side defined as in the half-spread. If every dealer quotes a worse price
than &, the final status will be passed. This is a latent variable that needs to be inferred from the historical behavior of
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clients. The drivers of this variable are naturally the client features CF, the bond features BF and the RfQ features RF.
Here, we also include specifically the information asymmetry of the client /A, since we expect that having such informa-
tion will make the client more willing to trade with any dealer. A similar effect is expected from the market volatility o:
for example, a client might be more willing to liquidate a position when volatility is higher, to avoid potential price risk.

Revenue (R): The profitability of the trade. There are different measures of revenue used by dealers:

* Instantaneous flow value (Ry): A simple revenue per-trade metric is the instantaneous flow-value, which measures the
profitability directly as the one captured by the spread Ry = v§ at transaction time. The problem of this measure is that it
does not take into account the profits or losses incurred until an opposite trade is closed.

* Round-trip revenue (R,): An issue with instantaneous flow value is that it does not take into account the profit or losses
incurred until an opposite trade is done. Such measure requires to identify a round-trip of trading (buy and sell, or vice-
versa) and compute R = sV(P;, — P) = v6;, — V6; + sV(Pp, ;. — Pp ), where t indicates the time when the RfQ was
closed. If we use a simple model for price dynamics, namely a Brownian motion, then P, ;. — P, = u(t; — ) + o(W;, —
W;), where u is the drift, o the volatility, {; is the round-trip time, and W; is a Wiener process, so that its time difference
follows a normal distribution W; —W; ~ N(0, t;—f). The integrated Wiener process accounts in our model for the influence
of market external factors (MXF) in revenues. As discussed above, we also introduced a potential causal dependency
between the client information asymmetry (IA) and the drift, to capture situations in which the client trading’s activity pro-
duces a market impact. A point to note is that u and o represent the actual post-trade realized drift and volatility, which
are not known a priori by either the client or the dealers. These are latent variables that can only be inferred from post-
trade data. In our model, however, we treat volatility as a relatively predictable quantity [17]; therefore, we assume that
pre-trade and post-trade volatility are effectively the same variable. This volatility can potentially influence both the deal-
ers’ pricing policies, § and d4q46r, and the client’s reservation price, .. Drift, on the other hand, is widely recognized as
much harder to forecast, and we regard any attempt at prediction as unreliable unless the client possesses asymmetric
information, as previously discussed. Consequently, the post-trade drift does not affect the dealers’ pricing decisions.

» End of day flow value (R7): Since round-trips of buying and selling might involve large time scales for illiquid bonds,
dealers also tend to compute revenues at a given time-horizon, e.g. end of day, by using market mid-prices to value
inventories. In this case, hence, the revenue is computed as Ry = vé; + sv(Py, 1 — Pp, ), where T is the end of day time.
Liquidity penalties can sometimes be included in this formulation to penalize unrealized mark-to-market profits, reflecting
the potential cost of carrying illiquid assets.

» Short-term flow value (Ry,,): Another common revenue measure is using a fixed time window h after trading, which will
depend on the liquidity of the bond but is typically on the scale of seconds or minutes. Revenues are then computed as
well with respect to the mid-price at this time, namely Ry, , = v&;+ SV(Pp, t+n — Pm,). This approach can be helpful to iden-
tify clients trading with information asymmetry, since the impact of such information in the profitability of the dealer will
be easier to identify in a short-term horizon, before it gets overridden by market external factors (MXF).

Notice that we have not taken into account potential hedging activity of the dealer when measuring revenues. The model
can be extended to cover those cases, by incorporating the cost and market dynamics of hedging instruments.

A relevant non-trivial dependence in our graphical model refers to the determinants of pricing policies, both the dealer’s
one, §, and those of the dealers in competition §4.4,- Since the client identity is known by the dealers quoting in MD2C
platforms, their pricing policies tend to incorporate specific features of clients, as well as drivers of the demand and price
sensitivity of clients, for example bond features like liquidity conditions or relative value, and RfQ features like the number
of dealers in competition. In the model, such dependence is reflected in causal arrows from BF and CF, as well to RF, to §
and d4eqer- Finally, if the dealer has an axe in the bond, pricing will be also accommodated to skew prices in favor of trad-
ing, hence the arrow axe — §. As we will see, these causal relationships are critical for accurately predicting the effects of
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interventions, particularly in pricing. Ignoring them can bias optimal pricing models, as these variables introduce spurious
dependencies between the quoted price and the RfQ outcome. In the language of Causal Inference, they are known as
confounders [5,6].

3 Causal interventions and predictions in the graphical model

Arguably, the primary application of models in a business context is to support and optimize decision-making. This gener-
ally results in specific business actions (or interventions, using the Causal Inference terminology), namely setting prices,
launching marketing campaigns, recommending products, and so on [18]. As established over the past few decades by
the field of Causal Inference [5,6], traditional probability theory is not well suited to address interventional questions. This
is because it relies on estimating historical correlations, which may not hold when the objective is to assess the potential
impact of an action or intervention on business metrics. To address such questions, we must turn to the formalism of do-
calculus [5,6] to determine whether the effect of an intervention can be identified from historical data. If not, it becomes
necessary to design experiments—specifically, randomized controlled trials (RCTs), commonly implemented as A/B
tests—to empirically measure the impact of the intervention [19]). In this context, graphical models play a central role in
applying causal inference to practical problems, as they can significantly simplify the underlying mathematical analysis.
In the following, we examine several relevant interventions on the graphical model of the RfQ process introduced in the
previous section.

Optimal pricing

In the context of MD2C platforms, dealers must develop pricing strategies to respond to client RfQs, aiming to maximize
business profitability while potentially achieving key commercial targets, for instance minimum hit-and-miss ratios (share
of RfQs executed with a specific dealer out of all RfQs that resulted in a trade, i.e., excluding RfQs where the client opted
not to trade). The simplest optimal strategies aim to maximize the expected revenue of each trade independently, with-
out accounting for the risk associated with holding inventory until it is offset by a subsequent trade. More sophisticated
approaches, however, consider not only the current RfQ but also potential future requests. In what follows, we analyze
some of these strategies through the lens of causal interventions on the graphical model:

Instantaneous flow value optimization: As the name suggests, this strategy aims to set the spread that maximizes
expected revenue, defined in this case as the instantaneous flow value. Since revenues are inherently uncertain prior
to execution—here, essentially due to the uncertainty surrounding the client’s decision to trade—the dealer must rely on
available information to predict expected outcomes: RfQ features like side and volume, client features, bond features,
etc. As we will discuss in a later section, proper conditioning is essential for successful optimization, due to the underlying
causal relationships among the variables. For now, however, we consider a generic setting in which all information used
by the dealer for estimating revenues is included in a conditioning set Z;:

Sopt = argmaxsE[Ry|do(6), RfQ, Z;] = argmaxs[E[vS1,¢/do(5), RfQ, 2] @)

Here, t denotes the time of the RfQ, and § represents the half-spread quoted relative to the mid-price. In this formu-
lation, we assume that the mid-price is an exogenous variable, mutually agreed upon by both the client and the dealer.
As such, it does not influence the outcome of the RfQ and can therefore be factored out of the analysis. We have also
used the simplified notation 1z5_pit = 11it- The do-operator indicates an intervention on the spread—that is, we are not
merely concerned with the historical conditional distribution of RfQs won given the spreads, but rather with the interven-
tional distribution. This distinction is crucial, as it requires a causal, rather than purely associative, relationship between
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the variables. The optimal pricing formula is easily derived. Let us write:
E[vd1y,i¢|do(8), RfQ, Z;] = véP(hit|do(6), RfQ, Z;) = véf(5) (2)

where P(hit|do(8), RfQ, Z;) = f(d) is called the hit probability, i.e. the probability that the client will trade the RfQ with the
dealer, given the price quoted and the context of the RfQ. Hence:

_ Sap)
F(Bop)

aopt =

which is an implicit formula for the optimal spread for a general functional form for f(5).

A central insight from Causal Inference theory [5] is that unbiased estimation of the hit probability model critically
depends on selecting an appropriate conditioning set. In many cases, a minimal subset of variables can be identified that
ensures the validity of traditional probabilistic estimation methods while preserving causal interpretability. Importantly,
including all available features indiscriminately can introduce spurious correlations, distorting the estimation of causal
effects.

This issue is particularly relevant when the hit probability model is used to inform optimal pricing decisions. In such
cases, dealers must isolate the causal effect of their intervention—specifically, the setting of the spread—on the outcome
of the RfQ. This requires controlling for confounding variables that influence both the spread and the RfQ outcome, but
are not part of the causal pathway. The distinction between standard conditional probabilities and those involving the do-
operator hinges precisely on this point. As will be discussed in the next section, tools from Causal Inference—particularly
the back-door criterion [5]—provide a principled way to identify the minimal set of variables required for valid causal effect
estimation.

In the context of the hit probability model, this minimal conditioning set includes the volatility o (which, as previously
noted, we treat as observable in our framework), along with the RfQ features (RF), bond features (BF), and client features
(CF). When using this conditioning set, we can write:

P(hit|do(6), RfQ, o, RF, BF, CF) = P(hit|8, RfQ, o, RF, BF, CF) (4)

Intuitively, the key issue is that dealers do not quote spreads based solely on external, context-independent drivers.
Instead, they actively incorporate information from the market environment, the RfQ itself, the characteristics of the instru-
ment, the identity of the client, and the competitive landscape, among others, when setting prices. This practice introduces
correlations between historical spreads and RfQ outcomes that may not reflect causal relationships and, therefore, may
be irrelevant when determining optimal spreads aimed at maximizing expected revenues.

While a minimal set of variables is required to estimate the hit probability model accurately, this does not imply that the
dealer must adopt price segmentation strategies. Nonetheless, when feasible, such strategies can yield higher revenues
than global pricing strategies, as extensively discussed in classical microeconomics and marketing literature [18,20]. If the
conditioning set includes fewer variables than necessary, the back-door criterion can still be applied by integrating over
the distribution of the omitted variables.

Utility maximization and transactional risk: This simple strategy can be enriched by introducing a risk-return trade-
off, namely the transactional risk [21], by maximizing the expected utility of the flow value. Transactional risk arises from
the trade-off between low margin, frequent transaction strategies and high margin, less frequent transaction ones, the lat-
ter having larger margins per trade but more risk of a less uncertain stream of revenues. In the language of interventions,
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this reads:

Sopt = argmaxsE[U(vd1,)|do(d), RfQ, Z;] = (5)
argmax s (U(vo)f() + U(0)(1 — (5))) (6)

where U(-) is a utility function. The optimal pricing formula is again an implicit one on the spread, namely:

1 (8opt)

U’(Véopt) = _V—f(5opt)

(U(v8p) — U(D)) (7)

Using the popular exponential utility function U(x) = 1 — exp (—yx), the result simplifies to:

Sopt = yiv log (1 - yv;((i‘:‘:t)) 8)
where y is called the risk-aversion parameter. We see again how the hit probability model is central to this optimal pricing
strategy. The risk-averse dealer (y > 0) will sacrifice profits per trade to increase the number of trades, the balance being
determined by the hit probability model.

Multi-RfQ optimization: In practice, as discussed in Sect 2, a dealer that wants to remain profitable needs to consider
revenues of the full round-trip of buying and selling the bond. This translates into adding to the spread a compensation for
the risk of holding the inventory until a matching opposite trade is closed. Such inventory risk complicates the problem in
many ways: 1) there is uncertainty on when such RfQ will arrive, 2) other RfQs might arrive for this instrument in the same
side or for different volumes, and the dealer might be interested in trading them in between. Therefore, the optimal pricing
strategy for the current RfQ should incorporate these potential future scenarios in order to correctly price the risk. Such
optimal pricing strategies require the use of stochastic optimal control theory; see [21,22] for a more detailed analysis.

At the heart of these models is the hit probability model. The general formulation of the problem, though, does not have
a closed-form solution unless specific limits are taken. For instance, let us discuss the first-order approximation in order
arrival (or equivalently, as shown in [21], the limit t - T) derived by Avellaneda - Stoikov in their seminal paper [22]. Inter-
estingly, this limit can be reproduced within our graphical model by considering a dealer that chooses the spread that
maximizes revenues per trade using end of day market mid-prices to value the inventory. In terms of the exponential utility
model, the optimization reads:

Sopt = argmax sk [— exp(—yRy)|do(6), RfQ, Z;] (9)

where we have assumed that the dealer had a position g before receiving the RfQ, and no other RfQs are received in the
interim. In this case, the revenues at the end of the day can be parametrized as a function of the spread charged and the
mid-price movement until the market closes, namely: Ry =1,4(vd + (@ + sV)(Pp,7 — Pmy) + (1 = 14i0q(Ppmr — Pmyp)- To
compute this expected value is convenient to condition on the RfQ status (RS):

E [—exp(—yRy)|do(6), RfQ, 2] =
E [—exp(—y (V& + (q + SV)(Py,.7 — Pmy)))|do(8), hit, RfQ, Z4] x
P(hit|do(8), RfQ, Z;) +
E [— exp(—=yq(Ppm.1 — Pp.p))|do(8), no hit, RfQ, 2] x
(1 — P(hit|do(8), RfQ, Z;)) (10)
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where the hit probability model naturally shows up again. Their estimation, as before, requires conditioning on at least

o, BF, CF, and RF. In this computation, though, the utility of revenues on hit is still a random variable which depends,
according to our model, on the evolution of the mid-price. We model such dependence using a Brownian Motion model
whose drift is contingent on the information asymmetry of the client requesting the RfQ. Such conditioning is also neces-
sary in order to evaluate what we will refer to as revenues on hit model with historical data: as it will be detailed in the next
section, to satisfy the back-door criterion and remove the do-operator from the expected value, the conditioning set must
include at least the volatility o, the RfQ features RF, and either the latent variable /A or the drift u. Being latent variables,
this necessarily means integrating over their distribution.

For simplicity, we choose Z; to include BF and CF as well, since the extra variables don’t open new back-door spuri-
ous paths for the revenues on hit, allowing us to use a single information set for both the hit probability model and the rev-
enues on hit model. We can now proceed to evaluate the model. Let us first assume that the dealer does not expect infor-
mational advantage in this RfQ, and there is no other expectation of short-term directionality of the market. We can then
use P, r — Py ~ N(O, a?(T — 1)) and compute the optimal spread:

f(Sopt) ) (1)

4 1
Oop = 19%(T =0 (s0-+ 5) + 7 log (1 R

In this limit, the result reproduces the Avellaneda - Stoikov approximation [22].

We can extend this model to the case in which the dealer also has a view on the informational advantage of the client.
A simple model that captures the influence of the information asymmetry into the market dynamics is: ft1,5=¢. This means
that if IA=1, then P, 1 — Py, ~ N(a(T — 1), o?(T — 1)). The conditioning set to compute revenues in this case does not
change, as discussed in the next section. Working out again the utility maximization problem (Eq 10), the optimal spread
has an extra additive correction that compensates for the information asymmetry risk:

§A = 1 log P|Ae_Y(q+siv)’z(T_t) +H(1 — pia)
*oyv Pin€~79AT=0 + H(1 — pia)

(12)

where pjx = P(IA = 1|CF). To arrive at this expression, we have additionally considered the following simple model, which
captures the influence of the information asymmetry in the hit probability: P(hit|s, RfQ, IA = 1, Z;) = HP(hit|s, RfQ, Z;) =
Hf(8), with H a constant in the range 0 < H < 1/f(5).

The resulting spread correction is akin to the one analyzed by Glosten and Milgrom [23] in a discrete time setup. As pja
increases, the dealer compensates the potential information asymmetry risk with a larger spread. In the limit pjs — 1, the
client has to pay the full expected drift 2(T—1). Interestingly, the required compensation decreases as H increases, indicat-
ing that the hit probability model has correctly identified that the informed client is more likely to trade at the same spread
than the uninformed one. This, in turn, reduces the need for an explicit spread protection term, 5}{?“.

In the limiting case of the multi-RfQ problem—equivalent to analyzing a single RfQ with a future liquidation time—
inventory risk introduces an additive correction to the transactional risk term that is independent of the hit probability
model. Intuitively, however, once we account for potential future RfQs, inventory risk becomes sensitive to the pricing
strategy employed, which itself depends on the hit probability model to capture the client’s responsiveness to quoted
spreads. While a full causal analysis of the multi-RfQ setting lies beyond the scope of this work, we expect that the dis-
cussion surrounding the necessary conditioning set for estimating the hit probability and revenues-on-hit models remains
applicable. In this multi-RfQ context, revenues are naturally linked across quotes, rather than isolated to single events.
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This is particularly relevant because many derivations in the optimal market-making literature—see, for example, [21,
24,25]—assume simplified forms of the hit probability model, often modeling it as an exponential function of the spread:

f(6) = pg exp(—ad),

where o characterizes the client’s price sensitivity. However, as we have shown, when these models are applied to opti-
mal pricing—which constitutes a causal intervention—they can introduce bias if the estimation ignores spurious correla-
tions present in historical data, which arise from the pricing strategies dealers have already employed. Thus, extending
the causal inference framework to rigorously address the multi-RfQ problem remains an open and important challenge,
warranting dedicated analysis.

RfQ revenue potential

We define the RfQ revenue potential as:
P(R > 0|do(8), RfQ, Z;) (13)

The revenue of an RfQ can adopt any of the definitions discussed in previous sections. While it is a quantity closely
related to price optimization, our focus here is on characterizing RfQs by their probability of being profitable—framing the
problem as a classification task in Machine Learning terms. Revenue potential serves as a valuable indicator for deal-
ers, enabling quick alerts in situations where the current pricing strategy is associated with a low likelihood of profitability,
thereby suggesting a potential need for repricing.

To compute this expression, we use the sum and product probability rules to introduce the RfQ status variable (RS),
and use the fact that R > 0 only when the dealer trades the RfQ, i.e. RS = hit:

P(R > 0|do(8), RfQ, Z;) = P(hit|do(8), RfQ, Z)P(R > 0|do(8), hit, RfQ, Z;) (14)

The first term is again the hit probability model, discussed in the previous section. The second term is closely related to
the revenues-on-hit model also introduced in the previous section, though it now appears framed as a classification prob-
lem: P(R > 0|do(6), hit, RfQ, Z;). The discussion on how to estimate it from historical data applies equally in this context.
As discussed in Sect 4, we need to include, at a minimum, the volatility o, the RfQ features RF, and the information asym-
metry state /A in the conditioning set (or, alternatively to /A, the drift ). Since /A is a latent variable, its inclusion requires
integration over its distribution. With this conditioning set, the back-door criterion is satisfied, ensuring that the estimation
specifically captures the direct effect of the spread on the potential revenues.

This conditioning set is smaller than the one required for the hit probability model. Therefore, we can either estimate
the full model using the most restrictive (i.e., largest) conditioning set, or alternatively, integrate over the distribution of
the variables that are not included but are still necessary for valid estimation. Let us focus here on the former case, which
means adding CF and BF to the conditioning set:

P(R > 0]do(5), hit, RfQ, o, BF, CF, RF) =

Z P(R> 0|8, hit, IA, o, RF)P(IA|hit, RfQ, CF) (15)
IA=0,1

Here, we have removed the do-operator on the right-hand side, as all back-door paths have been blocked, and we
have applied the conditional independence structure of the graphical model to simplify the two probabilities involved [2,4].
Let us now use a metric that evaluates revenues at a later time T > ¢, i.e. Ry = v§; + sv(P,, 1 — Py, ). We also use the
simple model introduced before for the influence of IA into the mid-price, i.e. u(IA) = t1,4=¢, and the Brownian motion for
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the price dynamics, P, 7= Py ¢+ f1,4=1(T — ) + oV T—1tZ, with Z~ N(0, 1). We can compute P(Ry > 0|8, hit, A, o, RF)
individually for each information asymmetry state, namely:

1— (et i s= 1

P(R; > 0|8, hit, 1A, o, RF) = ot mlAsz_g—)

oy T—t

16
if s=—1 (18)

where s is the side, and ®(z) = P(Z < z) is the cumulative distribution of a standard normal random variable.

Axe matcher

When dealers hold excess exposure in certain bonds, they may be willing to offer more aggressive prices in order to lig-
uidate those positions. In market jargon, such positions are referred to as axes. A common question in this context is how
to identify clients who are likely to be interested in trading on those axes. This is precisely the objective of the axe matcher
model, which, within the framework of our graphical model, can be formulated as follows:

P(hit|do(call = 1),do(8),axe = 1, CF, BF, Z;) 17)

That is, we are assuming in this case that the dealer is performing interventions on two variables: 1) call, indicating that
a client is contacted by the dealer to raise interest in trading an axe; and 2) the spread § quoted to maximize profits, con-
ditional on the bond being axed. The model is, by definition, conditioned to bond and client features, since the axe refers
to a specific bond and a specific client is called. Using common features to characterize both variables can improve over-
all estimation performance and help address gaps in historical data. Since the actual RfQ is not submitted prior to call-
ing the client, the RfQ features RF are not known in advance—except for the side, as axes are one-sided by construc-
tion. Therefore, the conditional distribution of RF must be used, and integration must be performed over this distribution.
It is important to note that, because the dealer is primarily interested in identifying clients for whom the commercial action
(call) has the greatest impact, the axe matcher model must, in practice, evaluate the average causal effect (ACE) [5]:

ACE = P(hit|do(call = 1),do(8),axe =1, CF, BF, Z;) —
P(hit|do(call = 0),do(8),axe = 1, CF, BF, Z;) (18)

This allows the dealer to avoid spending valuable commercial resources on clients who would likely trade the axe even
without any intervention. In practice, both objectives must be balanced: selecting clients who exhibit both a sufficiently
high on-call hit probability and a high average causal effect (ACE).

Let us focus on Eq 17, since the discussion can be directly extended to the ACE. First, notice that according to our
graphical model, we can decompose this probability in two parts: 1) the decision of the client to request a quote given the
commercial action, and 2) the decision to trade when a price is quoted. Here, the channel of the RfQ could be a MD2C
platform as before, or directly requested on a Single Dealer to Client (SD2C) platform, which in our model is equivalent to
having a number of dealers n = 0. This allows us to write:

P(hit|do(call = 1),do(8),axe =1, CF, BF, Z;) =
P(hit|do(call = 1), do(8), RfQ, axe = 1, CF, BF, Z;) X
P(RfQ|do(call = 1),do(5), axe = 1, CF, BF, Z;) (19)
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Factoring the axe matcher into these two probabilities provides a more tractable formulation. Since, in our model, there
is no direct causal effect between the client's demand (captured by the RfQ variable) and the spread §, assuming the exis-
tence of a conditioning set Z; that blocks all the spurious correlations between these variables—without inducing new
ones— allows us to simplify the second probability. A similar argument holds for the RfQ status (RS) with respect to the
commercial action variable call in the first probability. Under these assumptions, the overall axe matcher expression can
be rewritten as:

P(hit|do(call = 1),do(8),axe =1, CF,BF, Z;) =
P(hit|do(8), RfQ,axe = 1, CF, BF, Z;) X
P(RfQ|do(call = 1),axe = 1, CF, BF, Z;) (20)

Rewriting the second factor of Eq 18 in a similar manner, the ACE reads:

ACE = P(hit|do(6), RfQ, axe = 1, CF, BF, Z;) X
(P(RfQ|do(call = 1),axe =1, CF, BF, Zy)—
P(RfQ|do(call = 0),axe =1, CF, BF, Z,)) (21)

The first term can be directly linked to the hit probability model, since conditioning on RfQ allows us to remove any
influence from the variable axe: at this point, the client’s decision to trade is assumed to depend solely on the pricing,
regardless of whether the dealer is axed or not. To estimate this model using historical data, as previously discussed, we
must include the volatility o and the RfQ features RF—such as the requested volume and the number of competing deal-
ers n—in the conditioning set. However, since these variables are not known in advance in the context of the axe matcher
problem, we must integrate over their conditional probability distribution to properly account for their effect.

The second term is referred to in marketing literature as the uplift model [18], and it enables us to isolate the causal
effect of the intervention (i.e., the commercial action of calling the client) on the client's demand. From the perspective of
causal inference, this quantity can be directly estimated from historical data: conditioning on axe removes the spurious
correlations between RfQ and call. Therefore, in this case, the minimal conditioning set is empty, and we can write:

P(RfQ|do(call), axe, CF, BF) = P(RfQ|call, axe, CF, BF) (22)
These probabilities can be further simplified using the structure of the graphical model and Bayes’ theorem:

P(RfQ|call, axe, CF, BF) =
= %P(cal”axe, RfQ)P(axe|RfQ)P(RfQ|CF, BF) (23)

where Z is a normalization constant, and we have used conditional independence properties of the graph to write
P(calljaxe, RfQ, CF, BF) = P(call|axe, RfQ) and P(axe|RfQ, CF, BF) = P(axe|RfQ). There are three relevant inferences in
this model:

+ The term P(calljaxe, RfQ) which analyzes the proportion of RfQs on axes that happened after a commercial action (e.g.
a call to the client). Therefore, this term captures the effectiveness of commercial campaigns in terms of conversions to
RfQs.

» The term P(axe|RfQ) which estimates the distribution of axed RfQs.
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» The term P(RfQ|CF, BF) estimates the distribution of RfQs with respect to client and bond features. This term captures
the preferences of certain client segments for certain bonds. By projecting clients and bonds into common features can
be estimated using techniques based on product-client matrix, like collaborative filtering, as shown by [26] in the context
of bond trading, or Latent Dirichlet Allocation, see [27]. Since for a large number of bonds and clients, we expect to have
sparse product-client matrix, these techniques are helpful to identify potential clients interested in trading bonds that did
not necessarily trade them before in the dataset.

4 Causal analysis of the interventional probabilities
Hit probability model

The hit probability model, as discussed in the previous section, is central to the business questions examined in this work.
Our objective is to evaluate the causal quantity P(RS = hit | do(6), RfQ, Z;). Specifically, we seek to determine the mini-
mal set of variables in Z; that enables estimation of this expression from historical (i.e., observational) data. According to
Causal Inference theory [5], a sufficient—though not necessary—condition is that the set Z; satisfies the back-door crite-
rion. Given a causal graph and a pair of variables X and Y, a set of variables 2 satisfies this criterion if (i) no variable in

Z is a descendant of X, and (ii) £ blocks all back-door paths from X to Y—that is, all paths that contain an arrow pointing
into X. If such a set Z; exists, we can validly equate the interventional and observational expressions:

P(RS = hit | do(8), RfQ, Z;) = P(RS = hit | §, RfQ, Z),

allowing the right-hand side to be estimated using standard probabilistic methods. Analyzing the graphical model for the
RfQ process, we see that there are two outgoing arrows from &, corresponding to two different paths in the graph:

» The first path corresponds to the direct causal path to RS under analysis.

» The second path reaches RS via the revenues R: § — R < RS. However, the arrow from RS to R reflects the reverse
causal direction, meaning this path does not induce an additional causal effect of the spread § on RS. In this structure,
R acts as a collider (i.e., a variable on which two arrows converge), and unless R is included in the conditioning set, the
path remains blocked and does not introduce spurious associations between § and RS. Therefore, we explicitly exclude
R from the conditioning set.

There are multiple back-door paths, though, that introduce spurious correlations via incoming arrows to the spread, unless
properly blocked:

» The path via axe, which is a confounder (i.e., it emits arrows to both variables on the path): § « axe - RfQ — RS. This
path is blocked since we are conditioning on RfQ, i.e. on having received an RfQ for which the dealer will provide a
quote.

» The paths involving the client features CF and bond features BF act as sources of confounding between § and RS
through different mechanisms. Some paths are mediated by the variable RfQ, but their spurious influence is already
blocked by the conditioning on RfQ. Other paths are mediated by latent variables such as the client reservation spread
dres, the spreads offered by other dealers S4.46r, the price discovery variable PD, and the information asymmetry state
IA. An example of these paths is: § « CF — Syeqer — RS. We can block the influence of these paths by conditioning on
the observable variables BF and CF. While conditioning on the mediators themselves (i.e., variables lying on a directed
path from the treatment to the outcome, transmitting part of the causal effect) would achieve a similar blocking effect,
these variables are latent and thus cannot be directly observed. To include them in Z;, we would need to integrate over
their distribution—at the cost of introducing additional model and numerical complexity.
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» The paths introduced by the volatility o, for example the ones mediated by the dealer’s prices, e.g9. § « 0 = Syegier = RS,
or the client’s reservation price, for example § « o — §,.c — RS. Since o is a confounder in all these paths, we block
them by including the volatility in the conditioning set. The paths that pass via the revenues R are closed as far as this
variable is not included in the conditioning set, since it acts again as a collider in these paths.

» The paths via the RfQ features RF. On the one hand, the path § « RF - R « RS is blocked since R, the revenues, is
a collider with respect to any direct or indirect path connecting it to RS. By not conditioning on revenues, these paths
are blocked. Paths passing through BF, CF and RfQ are blocked due to the conditioning on those variables. Finally we
have paths connecting RfQ features to RS via latent variables like 8,5 and d4q46r, Which are open. Again, to block these
spurious influences using observable variables we can include RF in the conditioning set.

In conclusion, the minimal set of variables required for valid estimation of the hit probability model, according to our
graphical model, consists of the volatility o, the RfQ features RF, the bond features BF, and the client features CF, in addi-
tion to RfQ, which is inherently part of the model’s definition. If dealers choose to implement pricing policies based on
a reduced set of features, they must still compute conditional probabilities using this minimal set. This, in turn, requires
integrating over the distribution of the excluded variables:

P(hit|/do(8),RfQ) = > > >" | P(hit|5, RfQ, 5, RF, BF, CF)
RF BF CF

XP(RF, BF, CF|RfQ)dP(c) (24)
where we have used the conditional independence structure of the graphical model to simplify the probabilities [2,4].

Revenues on hit model

The revenues on hit model makes inferences on revenues conditional to wining the RfQ. We have seen two related
inferences in the previous section, one estimating expected revenues and the other computing the revenue potential,
expressed as a binary condition R>0. In either case, our goal is again to find the minimum set of variables in Z; that sat-
isfies the back-door criterion, allowing us to estimate this probability using historical data. By inspecting the graphical
model, we identify the following causal paths linking revenues R with spread §:

» The direct causal path § — R, as revenues are directly linked to the spread charged with respect to the mid-price.
 The indirect causal path mediated by RfQ status (RS): § - RS — R, which is blocked since the revenue potential model
is conditioned to RS by definition.

Let us now analyze the back-door paths that introduce spurious correlations, i.e. they have arrows pointing to the inter-
vened variable, the spread §:

» Paths that pass via RS and RfQ, or latent features like dyeqer, 9res, PD and IA. They are blocked by the conditioning on
RS.

» The path via the RfQ features RF: § «— RF — R, where RF acts as a confounder. RF needs to be included in the condi-
tioning set Z; in order to block this back-door path. Conditioning on RF also blocks other back-door paths that connect §
to RF via latent features like d4qq1er aNd 1.

« Similarly, the back-door path created by the volatility o, a confounder, can be blocked by including ¢ in the conditioning
set.

» The back-door paths mediated by the drift u through the information asymmetry variable /A are particularly relevant,
as they represent mechanisms by which revenues may be influenced by clients’ informational advantage over dealers.
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These paths suggest that dealers might be adjusting their spreads to account for clients who historically exhibit signs of
informational superiority—that is, clients for whom the market tends to move favorably after execution in ways that can-
not be explained purely by chance. Some of these paths, such as § « CF — IA - u — R, can be blocked by conditioning
on observable client or bond features. However, other paths—such as § - RS « §,,s « IA - u — R—cannot be blocked
in this way. In such cases, conditioning on RS, which acts as a collider, introduces spurious correlations between § and
R. Since RS is part of the model’s definition, this collider path cannot be avoided unless we condition on either /A or u.
Both /A and u are latent variables, so conditioning on them requires integrating over their distributions in order to apply
the back-door criterion. Importantly, such conditioning also blocks the other paths, eliminating the need to include client
or bond features in the minimal conditioning set. In practice, estimating u in the presence of information asymmetry typ-
ically requires separate models for each state of /A, making /A the more natural choice for conditioning in the estimation
of the model.

The conclusion, in this case, is that we cannot estimate the revenues-on-hit model using only observational variables such
as o and RF. However, if the model explicitly includes the information asymmetry state /A, we are permitted to remove the
do-operator and compute the relevant probabilities using standard probabilistic methods, namely:

P(R > 0]|do(d), hit, RfQ, o, RF) = Z P(R > 0]5, hit, IA, o, RF)
IA=0,1

x P(IA|5, hit, RfQ, o, RF) (25)

where again, we have used the conditional independence properties of the graph to slightly simplify the probabilities in the
right hand side.

Uplift model

The uplift model in the context of the axe matcher quantifies the effect on client demand of a commercial action that rec-
ommends trading on axes, compared to clients who trade exogenously. To estimate this model, we must compute proba-
bilities of the form

P(RfQ | do(call = ¢),axe = 1, CF, BF, Z;),

where ¢ € {0, 1}. We rely on the causal graphical model to determine under what conditions this quantity can be estimated
from historical data. In this case, the analysis is straightforward: all back-door paths between call and RfQ are mediated
by the variable axe, which acts as a confounder. Conditioning on axe is sufficient to block these paths. Therefore, we can
safely choose the empty set for Z;, and write:

P(RfQ|do(call = ¢),axe = 1, CF, BF) = P(RfQ|call = ¢,axe = 1, CF, BF) (26)

5 Model specification

So far we have used Causal Inference theory to express business causal interventions in terms of probabilities that can
be estimated using historical data. When it comes to actually computing those probabilities, we need to provide a model
specification. Here, two main routes can be taken:

» Propose a generative model [3], i.e. specify the joint distribution of the random variables in the graph, which can be fac-
tored into conditional distributions of each node with respect to their parents nodes [2,4]. The model is then estimated
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using standard techniques like Maximum Likelihood Estimation (MLE), Maximum a Posteriori (MAP) or a full Bayesian
approach where we compute the posterior distribution of the parameters conditional to the historical data.

* Propose specific discriminative models for each of the conditional distributions that need to be computed, and fit them
independently to the data.

Generative models offer the advantage of parsimony, as they aim to model the joint distribution of all relevant variables.
This allows them to capture specific mechanisms underlying the data generation process, and, once estimated, they can
be used to compute any conditional probability through standard probabilistic rules. In contrast, discriminative models esti-
mate conditional distributions directly, often without assuming a common underlying generative structure. Sophisticated
Machine Learning techniques [3,13] can be applied to enhance their predictive power. However, these models are typi-
cally more opaque in their internal workings and may struggle to represent the structural mechanisms behind data gener-
ation. Nevertheless, because they are trained specifically to approximate conditional distributions, discriminative models
often outperform generative models in predictive tasks. Moreover, they benefit from advances in modern Machine Learn-
ing, including regularization techniques and ensemble methods, which help mitigate overfitting and improve out-of-sample
generalization.

A generative model of the RfQ process

We propose a generative model for the RfQ process based on the graphical model discussed in previous sections. The
model builds upon the assumptions from [12], extending it to add extra mechanisms not included in this seminal work. We
will focus on modeling the relevant conditional distributions required to compute the causal interventions discussed in this
article:

+ As itis usual in the optimal market-making literature [28,29], we model the arrival of RfQs as a Poisson process N; with
intensity 1. In particular, of interest for our model is the conditional distribution of arrival of an RfQ in a differential of time
[t,t + dt], which is the model we used for the binary variable RfQ in the graphical model, conditional to the parent nodes,
in particular the RfQ features which include the time t of the RfQ:

P(RfQ =1|BF, CF, RF, PD, IA, call, axe) =
P(N¢.qt — Ny = 1|BF, CF,RF, PD, IA, call, axe) =
E[A|BF, CF, RF, PD, IA, call, axe]dt (27)

We now use a linear model for the conditional intensity:
E[A|BF, CF, RF,PD, IA, call, axe]| =

Ao+ D AciCFi+ D ApBF; + D A kRFy + Applpprt + Aialjac
i j k

+/10all]lcallz1 + Aaxe]laxe:1 (28)
» The conditional distribution of call with respect to its parent node, axe, is modelled using a Bernoulli distribution:
P(call=1|jaxe = a) = p, (29)

where a=1{0, 1}.
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» Asin [12], we model the reservation spread of the client using a Gaussian distribution on the normalized half-spread:
dres/A, where A reflects market liquidity conditions, using for instance half the Composite Bloomberg Bond Trader
(CBBT) bid-ask spread or any other relevant benchmark spread. Since bond, client and RfQ features, as well as volatil-
ity o and information asymmetry /A, are parent nodes of the reservation price, we need to model the conditional distribu-
tion, for which a linear regression model is used, namely:

P(6,es|0, CF, BF, RF, IA) =

0
N(% |8res + breso + Z C,-es’,'CF,' + 2 dres,jBFj + Z Eres kRFx +
i i K

fres ]lIA=1 ’ o'rzes) (30)

where o, is the standard deviation of the distribution of client reservation prices.

» For the conditional distribution of the spreads quoted by other dealers, we adopt the Skew Exponential Power (SEP)
distribution, as proposed in [12], applied to the normalized dealer half-spread (d4cqer/A). To visually assess the appro-
priateness of this choice, we leverage a structural property of our model: the conditional independence of dealer quotes
given their parent features. Under this assumption, the cover price—defined as §,oye;r = Max{dgeaier,1> -+ » Odealer,ny TOr bUY-
side RfQs (and the minimum for sell-side RfQs)—follows the distribution of the maximum of n independent random vari-
ables, each drawn from the same SEP distribution conditional on parent features. Fig 2 displays this distributional fit
using the SEP assumption. Notably, despite our dataset differing from the one used in [12], the results offer further evi-
dence of the robustness of the SEP specification. To model the conditional distribution of dealer spreads with respect to
their parent nodes—which include bond, client, and RfQ features, as well as volatility—we use a linear model:

P(S4ealerlo, CF, BF, RF) =
5
Fou.02.000, (3 2|0 + bao + 3, 04,CF; + 3, daBF; + 3, €4RFy) 31)
i j K

where 6, determines the location, 6, the scale, 85 the shape and 6, the asymmetry.

+ For the distribution of the price discovery variable PD, conditional on its parent variables BF and CF, one could, in prin-
ciple, use Bernoulli distributions. However, this approach risks an exponential increase in the number of parameters if
a large number of features is included. To address this issue while preserving interpretability and tractability, we model
PD—a binary random variable—using a logistic regression model, namely:

P(PD =1|BF,CF) = L (32)
1+ exp (ap + >, b iCFi + Z,- cpJBFj)

A similar approach can be followed to model the information asymmetry of the client /A, whose distribution conditional to
client features CF can also be described using a Logistic regression.
+ Given the previous assumptions, the distribution of the RfQ status variable (RS) is deterministic conditional on its parent
nodes. These include: RfQ, the request-for-quote event; 5., the client’s reservation price; dyeaier, the spreads quoted
by competing dealers; §, the spread quoted by the dealer; and PD, the price discovery indicator. The discussion below
centers of the case of buy RfQs, but analogous expressions apply to the case of sell RfQs:
— RS = hit: A trade occurs when a client requests a quote (RfQ = 1), is interested in trading (PD = 0), the dealer’s
quoted spread is better than those of competitors (i.e., 6 > Spest = MaX{Ggealer, 1 - » Igealer,n}), @nd the quoted spread
is no worse than the client’s reservation price (8 > §,¢5). Within the model, we assume that tied RfQs—cases where
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the dealer’s quote matches the best competitor—are won by default. However, a random allocation mechanism

could be introduced to account for tie-breaking behavior if desired.

RS = missed: A missed trade occurs when a client requests a quote (RfQ = 1), is interested in trading (PD = 0),
the dealer’s quoted spread is worse than the best competing quote (i.e., § < dpest), and the best competitor’s quote
is still acceptable to the client (i.e., dpest = S1es)- Among missed RfQs, it is possible to further distinguish the status
cover—if this information is provided by the platform—which occurs when the dealer’s quote is the second best

among all quotes submitted.

RS = passed: There are two main scenarios that lead to a missed trade. In the first, a client requests a quote

(RfQ = 1) but is not actually interested in trading (PD = 1), using the RfQ process instead as a means of price dis-
covery. In the second scenario, the client is interested in trading (PD = 0) and requests a quote (RfQ = 1), but the

client’s reservation spread is more conservative than any of the quotes received—that is, 8,5 > Mmax{d, dpest}-

» As we discussed in the context of optimal pricing with information asymmetry, a simple model for the conditional distri-

bution of the drift i of the market after closing the RfQ is u = 11,41, where [t is a parameter of the model.

+ Finally, the distribution of the revenue R depends on the definition of revenues discussed in previous sections. If we use

the short-term flow value definition of revenue we have

where h > 0 is the time window, and MXF, the market external factors, are modeled using a Wiener process MXF =

Wiih

Ritn = Thit (V5t + SV(Pp t4h — Pm,t)) = 1pit (V; + sviuh + sva(Wip — W)

— W, ~ N0, h).

(33)

An interesting effect discussed in [12] that we have incorporated in our framework is the partial participation effect, which
reflects the empirical observation that not all dealers invited to an RfQ actually respond with a quote. We model dealer
participation by assuming that each dealer independently chooses to quote with a fixed probability pqqte, Which is identical
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across all dealers. Although this mechanism is not explicitly depicted in the graphical model, it can be readily incorporated
by adding an additional parent node to d4eqr, representing the dealer’s quoting decision and assumed to be indepen-
dent of other factors. As a result, the number of dealers who effectively submit quotes for a given RfQ follows a Binomial
distribution.

Discriminative models of the RfQ process

When modeling the conditional distributions required to estimate the effects of causal interventions, we can leverage the
extensive corpus of Machine Learning (ML) models available in the literature. These models offer flexible tools for specify-
ing conditional distributions and fitting parameters from data. Within the standard model selection framework, this process
typically involves setting aside a validation dataset for comparing alternative models and selecting the one that yields the
best out-of-sample performance according to predefined quality metrics for the predictive task at hand. However, several
important considerations arise when applying this framework to the RfQ process, which may influence both the choice of
models and the interpretation of their outputs:

+ Discriminative Machine Learning (ML) models must be trained on observable features. In the RfQ process, however,
certain features such as the cover spread are only available when the RfQ is traded by the dealer and only after the
negotiation has concluded. Even when post-trade reporting datasets are available, the relevant information (e.g., the
final traded spread) becomes accessible only after the fact. As such, these features are not available at inference
time. This creates a challenge, as some features are only partially observable. One option is to exclude these features
entirely from both training and inference, accepting the loss of potentially valuable information. Alternatively, one may
apply data imputation techniques [30], or restrict the selection of models to those capable of handling partially observed
inputs.

+ Discriminative Machine Learning (ML) models typically do not incorporate structural mechanisms of the RfQ process
that constrain the set of feasible outcomes. For instance, we expect that rational investors will be less likely to trade
when offered worse spreads, ceteris paribus. However, such monotonic behavior is not inherently enforced by most ML
models [31]. In contrast, the generative model described in the previous section naturally encodes this behavior through
the introduction of the client’s reservation spread, which acts as a structural threshold for trade execution.

6 Generative versus discriminative models for causal interventions: Empirical results

To further analyze these points, we now turn our attention to the specification of the hit probability model, given by
P(hit | 6,RfQ, o, RF, BF, CF),

which, as shown in the previous section, lies at the core of all causal interventions considered in this work.
Using the generative model, we can compute this predictive probability distribution. For a bid, for example, this reads:

P(hit | 8, RfQ, o, RF, BF, CF) = (1 — P(PD = 1 | BF, CF)) x
1
> P(IA=a| CF) f 08,65 F.os(8 | o, RF, BF, CF, a) X

a=0

n
n
l;) (k)pguotem - pquote)n_k X
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k
f f (H dadealer,i fdealer(adealer,i | o,RF, BF, CF)) X
i=1

]]'52max{5dealer,1 ----- Sdealer,k} (34)

As previously discussed, the parameters of the distributions in this model can be estimated using standard probabilis-
tic methods. For instance, [12] employs Maximum Likelihood Estimation (MLE) to fit a related version of the hit probabil-
ity model over a dataset of RfQs (the authors focus specifically on the hit probability model, without incorporating mecha-
nisms to account for information asymmetry or price discovery). One advantage of the generative approach is its ability to
handle a more granular categorization of RfQ outcomes, enabling the calculation of the likelihood for each outcome using
the structural specification described in the previous section. However, this estimation approach comes with the drawback
of requiring a custom implementation of the integrals over latent variables—both in the likelihood function and the pre-
dictive distribution. To mitigate this complexity, one can resort to the Expectation-Maximization (EM) algorithm [3], which
reduces the computational burden of integrating over latent variables. A more detailed discussion of this approach in the
context of the RfQ process will be included in [32].

We evaluate two discriminative models: a logistic regression and a tree-based model, the Light Gradient Boosting
Machine (LightGBM). Logistic regression serves as a simple benchmark that inherently respects monotonicity constraints
on the predicted probability with respect to input features—particularly the quoted spread. In contrast, LightGBM is a pow-
erful, widely used model known for its strong out-of-the-box predictive performance. Although it does not enforce mono-
tonicity, we employ it to explore the predictive frontier of the problem, assessing the potential gains in accuracy when the
monotonicity constraint is relaxed. Both of them are efficient and interpretable, making them standard candidates to imple-
ment the hit probability model [33]. A promising alternative involves neural network architectures that explicitly incorpo-
rate monotonicity constraints; see [31] for a related application in the context of derivatives pricing. These models aim to
combine the principled structure of monotonic estimators with the flexibility and representational power of neural networks.
Results from this line of research will be presented in future work [32].

To compare the generative model against its discriminative alternatives, we focus on a simplified version of the prob-
lem, following a setup similar to that of [12]:

» For simplicity, we assume that price discovery is not the motivation in the passed RfQs, but they correspond to situa-
tions where none of the quoted prices—either from the dealer under analysis or the competitors—fell within the client’s
reservation price. This allows us to fix PD = 0 across the entire dataset, effectively treating all RfQs as trade-intended
and simplifying the modeling assumptions. The task remains framed as a binary classification problem: predicting
whether a given RfQ results in won (hit) or lost (missed or passed). This formulation aligns with practical dealer needs,
as it enables estimation of trading probability without conditioning on observing actual transactions.

+ We assume that clients in the dataset do not possess information asymmetry, i.e., we set JA = 0. While this assumption
may not always hold in practice and may degrade the model’s predictive accuracy, it introduces the same structural bias
across both the generative and discriminative models. As such, it remains valid for benchmarking purposes.

The choice of features is critical to ensure that the results are not driven by spurious correlations. We guide our fea-
ture selection based on the findings from previous sections regarding the minimal conditioning set that satisfies the back-
door criterion. To identify a relevant subset of variables for model estimation, we combine domain-specific business knowl-
edge with a standard feature selection technique: the relative feature importance derived from a Random Forest Classi-
fier applied to the training set (see details below). The final set of selected features can be grouped into three categories.
First, we consider the variables that are explicitly modeled as nodes in the graphical model and are present in the minimal
conditioning set:
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* The normalized half-spread (8/A), introduced previously, which adjusts the dealer’s quoted spread § by a market liquid-
ity proxy—such as half the bid-ask spread of a composite benchmark like CBBT.

» The yield volatility, represented as o in the graphical model, which is calculated as the standard deviation of daily bond
yield changes over the past 30 days.

Next, our algorithm has selected the following features that are related to the characteristics and market activity of the
bond itself, corresponding to the set of variables labeled as BF in our graphical model:

« The bond DVO01, representing the bond’s sensitivity to interest rate changes, measured as the price change correspond-
ing to a 1 basis point shift in yield.

» The average days between buy-side RfQs (per ISIN), calculated as the average time between consecutive buy-side
RfQs for the same ISIN over the past 15 days.

* The average days between sell-side RfQs (per ISIN), defined analogously to the previous feature, but for sell-side RfQs.

» The average number of dealers per ISIN, computed as the 15-day average number of dealers quoting RfQs for a given
ISIN.

» The number of days to maturity of the bond.

Finally, we include features specific to the RfQ level, corresponding to the variable RF in the graphical model:

» The number of dealers in competition for the RfQ.
« The DVO01 exposure of the RfQ, which scales the bond DV01 by the notional volume v of the RfQ, providing a risk-
adjusted measure of the quote size.

In our dataset, no client-related variable—corresponding to the node CF in the graphical model—exhibited significant
predictive power. We attribute this outcome to the fact that the analysis is confined to a specific segment of high-tier insti-
tutional clients, whose behavior may be relatively homogeneous. It is also worth noting that we experimented with incor-
porating past cover price information through engineered features, such as rolling averages of the distance between the
dealer’s quoted price and the observed cover price. However, these features did not lead to significant improvements in
predictive performance. Developing more effective approaches to embed cover price information into discriminative mod-
els through feature engineering remains an open area of research. Additionally, we emphasize that the relevance and
impact of specific features may vary across datasets. As such, feature selection should be adapted to the characteristics
of the data at hand and guided by both domain knowledge and empirical validation.

We use a proprietary dataset of RfQs from BBVA, consisting of 102,437 RfQs, of which 5,738 are labeled as hits. More
details about the data are available in S1 Table. The dataset is split into training, validation, and test sets, with the test
set reserved for final model evaluation. The validation set is used for model selection and hyperparameter tuning in the
discriminative ML models. Full details of the preprocessing steps are provided in S1 Appendix. For the logistic regres-
sion model, we tune the inverse regularization strength, setting it to 100 with an L2 penalty. For the LightGBM model, the
best-performing hyperparameters identified are: column sample by tree = 1, learning rate = 0.01, minimum child samples
= 50, number of estimators = 500, number of leaves = 15, and subsample = 0.6. The generative model does not require
hyperparameter tuning and is trained using Maximum Likelihood Estimation (MLE) on the training set. Given the class
imbalance in the dataset, we apply class weighting during training for both the generative and discriminative models. In
addition, standard outlier cleaning techniques are applied to preprocess the dataset.

To evaluate the performance of our models, we employ two complementary metrics: the Area Under the Receiver
Operating Characteristic Curve (AUC-ROC) and the Balanced Brier Skill Score (BBSS), based on the Brier score [34].
The AUC-ROC is a widely used metric for classification tasks, particularly valuable when dealing with imbalanced
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datasets. It measures the model’s ability to distinguish between classes across various threshold settings, providing a
summary of the trade-off between true positive and false positive rates. Due to its robustness in skewed class distribu-
tions, we adopt the AUC as our primary metric for model selection.

We used the Balanced Brier Skill Score to assess the calibration and overall accuracy of probabilistic predictions.
Unlike the AUC, which evaluates the model’s ranking capability, the Brier score measures the mean squared error
between the predicted probabilities and the actual binary outcomes. The Balanced Brier Score (BBS) adjusts this metric
by using the empirical frequency w,,, of the majority class (lost RfQs) in the training set, namely:

N 1-o0; 0; 2
=1 W (1 = wy,)%(f; — o))
BSS = N i

iz Wi (1= wp)oi

where f; is the predicted probability for instance i, and o; € {0, 1} is the observed outcome. The Balanced Brier Skill Score
is then defined as BBSS = 1 — ——2° , where BBS,.¢, is the BBS of a simple majority class benchmark, where we predict
bench

a constant probability for all instances, equal to w,,. Notice that BBS,.,., can be computed analytically:

BBSbench = % — Wn(1 —wp)

A worst-case Balanced Brier Score (BBS) is 0.5, while a perfect model achieves a score of 0. In terms of skill, the Bal-
anced Brier Skill Score (BBSS) equals 0 when the model’s performance matches that of the benchmark, and reaches
1 for a perfect model. This metric provides a succinct summary of the information conveyed by calibration plots, which
group predicted probabilities into bins and compare the average predicted probability within each bin to the observed
frequency of positive outcomes. Such plots—and, by extension, the Brier score—are particularly informative in settings
where the predicted probabilities themselves, rather than just binary class labels, directly influence decision-making, as is
the case in the business problems analyzed in this work.

The results for AUC-ROC and BBSS in the test set for the three models considered as well as the majority class bench-
mark are shown in Table 1.

The comparative analysis of the three models reveals key insights into both predictive accuracy and the quality of prob-
ability estimates. LightGBM achieves the highest ROC-AUC at 0.743, but its advantage over the generative model (0.742)
is marginal and not practically significant. Both models substantially outperform logistic regression, which attains a lower
AUC of 0.684. These results are reinforced by inspecting the ROC curve in Fig 3.

In terms of calibration, however, the generative model exhibits a lower Balanced Brier Skill Score (BBSS) than Light-

GBM and Logistic Regression, indicating less accurate probability estimates. This trade-off is partly attributable to the

Table 1. Predictive scores: AUC-ROC and BBSS for the three models analyzed. We also show
the metrics for the benchmark model, the majority class. Both the generative model and LightGBM
achieve comparable predictive performance in terms of ROC-AUC, outperforming logistic regression.
While the generative model exhibits lower calibration performance, as indicated by a reduced BBSS,
it uniquely satisfies the key business constraint of spread monotonicity—an essential property for
applications such as optimal pricing.

Model AUC-ROC BBSS
Generative 0.742 0.238
Logistic regression 0.684 0.446
LightGBM 0.743 0.406
Majority Class 0.5 0.0

https://doi.org/10.1371/journal.pone.0341369.t001
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Fig 3. ROC curves for the three evaluated models, including the majority class baseline. The generative model performs comparably to LightGBM,
and both outperform logistic regression.

https://doi.org/10.1371/journal.pone.0341369.9g003

model’s distributional assumptions, which constrain its flexibility compared to discriminative methods. But also visual
inspection of the calibration plots shown in Fig 4 suggests that the generative model produces smooth, nearly monotone
probability estimates. However, once we evaluate calibration with class-balanced weighting, the ranking reverses. This
indicates that the generative model’s calibration errors concentrate on the minority (hit) class: it looks well-calibrated on
average, but once errors are weighted equally across classes, logistic regression and LightGBM provide more accurate
probabilities.

Despite this, the generative framework provides an important practical advantage: it inherently enforces the business-
critical constraint of spread monotonicity, ensuring that predicted hit probabilities increase as quoted spreads become
more competitive. This property, shared by construction with the Logistic Regression model, is essential for economically
consistent applications such as optimal pricing and dealer quote recommendations. As illustrated in Fig 5, in contrast to
the other two approaches, LightGBM exhibits erratic behavior in these areas, failing to reflect the expected increase in win
probability as the quoted spreads become more attractive.

Overall, these findings underscore the benefits of modeling approaches that capture the intrinsic structure and logic of
the underlying economic process. Although purely predictive models may achieve incremental gains through advanced
architectures, hyperparameter optimization, or feature enrichment with post-trade information, the observed performance
ceiling suggests that predictive accuracy alone is insufficient. In contrast, models that incorporate economic reasoning
and structural constraints can deliver more robust and interpretable outcomes without sacrificing predictive power. This
advantage is particularly salient in complex financial settings such as MD2C negotiation platforms—systems that are suf-
ficiently intricate to pose meaningful modeling challenges, yet structured enough to permit explicit representation of their
internal mechanisms.

In the case of the generative model, this strength arises from its explicit representation of the internal RfQ negotiation
mechanics—capturing, for example, the simultaneous bidding behavior of multiple dealers and the client’s selection of
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Fig 4. Calibration plots for the three evaluated models and the majority class baseline. While the generative model appears smooth and close to
the diagonal, class-balanced metrics indicate better calibration for logistic regression and LightGBM (see BBSS values in Table 1). (a) Generative. (b)
Logistic regression. (c) LightGBM. (d) Majority class.

https://doi.org/10.1371/journal.pone.0341369.9g004

the most competitive quote. Furthermore, its ability to integrate post-trade signals, such as the cover price or informa-
tion about being the second-best bid, enhances both interpretability and performance, reinforcing the value of structurally
grounded modeling strategies in financial applications.

One potential limitation of structurally informed models, however, lies in their inference time. Generative approaches, in
particular, tend to be slower than the other models evaluated. This drawback may be mitigated by the fact that low-latency
inference is typically more critical in highly liquid markets—precisely the contexts in which the relevance and applicability
of structurally rich models are often more limited. This consideration, though, helps explain why simpler approaches, such
as logistic regression, remain popular in practical applications [1].

To better understand the drivers of predictive performance, we examine the importance of variables across models. In
Table 2 we show the ranking of feature importance for each model. The majority class baseline does not use features, so
it is not applicable. The ranking has been calculated using permutation importance for the generative model, standardized
coefficients for the LR, and gain-based feature importance for LightGBM. More details are available in S3 Table.

Across models, spread is the dominant driver of hit probability: it ranks first in LightGBM, the logistic model, and the
generative model. The second tier is led by risk/size proxies: DV01 (logistic) and DV01 exposure (LightGBM) carry
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Table 2. Ranking of feature importance across models for sell RfQs.
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https://doi.org/10.1371/journal.pone.0341369.t002

substantial importance, indicating that larger risk¥adjusted notionals materially affect execution. Microstructure controls—
number of dealers, maturity, volatility, and client frequency—play a secondary role: LightGBM assigns non-trivial impor-
tance to number of dealers (competition intensity) and to maturity (liquidity/duration risk), while the generative specifica-
tion picks up maturity and volatility more than the frequency variables. The overall pattern is consistent: pricing aggres-
siveness (spread) and risk/size (DV01) are the primary drivers of execution, with platform and liquidity frictions shaping

outcomes at the margin.

7 Conclusions

This work has presented a unified framework for understanding and optimizing dealer behavior in electronic bond trad-
ing on Multi-Dealer-to-Client (MD2C) platforms, grounded in the formal tools of probabilistic graphical models and causal
inference. By representing the RfQ process through a causal graph, we uncover latent structures and confounding
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relationships that often undermine traditional data-driven approaches to business interventions such as pricing, client tar-
geting, and profitability estimation. Our framework supports a rigorous analysis of these interventions, enabling the iden-
tification of conditions under which valid causal reasoning can be applied—leveraging the rich historical datasets typi-
cally available to dealers. In the absence of such tools, dealers risk deploying suboptimal strategies that fail to account for
underlying causal dynamics. A summary of a typical workflow using our framework is provided in Fig 6.

Building upon this framework, we have analyzed several key business applications: optimal pricing strategies under
various revenue definitions, a classification model for assessing RfQ revenue potential, and an uplift-based axe matcher
to identify clients likely to respond to commercial actions. Crucially, applying the framework to these use cases reveals
that neglecting confounders—such as bond and client characteristics—or failing to account for partially observable fac-
tors, including information asymmetry or client intent (e.g., price discovery), can bias predictive models and ultimately
result in suboptimal decision-making.

We implemented both generative and discriminative modeling strategies to estimate the causal effects underlying
these interventions, aiming to assess their respective strengths in extracting actionable insights from the proposed frame-
work. The generative model—built upon and extending the foundational work of Fermanian et al.—captures key struc-
tural aspects of the RfQ process, including competitive dynamics, client reservation spreads, and post-trade signals
such as the cover price. It adheres to fundamental economic assumptions, such as monotonicity with respect to spread,
and enables fully probabilistic reasoning. In contrast, the discriminative models—Iogistic regression and LightGBM—are

Observational Data
RfQ (side s, dealers n, half-spread §, volume v)
Market state (drift u, volatility o, BF, CF)

!

Causal Inference
Graph & do-calculus; back-
door; select conditioning set Z;

!

Model Specification
Generative; Discriminative (Lo-
gistic Regression, Light GBM)

!

Model Estimation
Maximum Likelihood

!

Evaluation & Model Selection
ROC/AUC, BBSS, Business Constraints

!

Optimal pricing policy
do(6™)

Fig 6. Overview of the frameworks developed in this work for causal interventions on MD2C platforms, exemplified through the opti-

mal pricing problem. We apply causal inference to identify the conditioning set Z; that enables reduction of the problem to empirically estimable
probabilities—specifically, the hit probability model. Both generative and discriminative model formulations are used to estimate this probability, with
parameters fitted via maximum likelihood. Their performance is then evaluated on a separate validation set using standard predictive metrics tailored
to this problem, while incorporating business constraints such as monotonicity with respect to the spread. Finally, the selected model is employed to
compute the optimal spread, denoted &*.

https://doi.org/10.1371/journal.pone.0341369.9g006
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designed to optimize predictive accuracy but do not inherently encode domain-specific constraints, except in cases like
logistic regression, where such constraints may be satisfied by construction.

An empirical evaluation based on a proprietary dataset of BBVA's Request-for-Quote (RfQ) activity in European gov-
ernment bonds shows that the generative model achieves performance comparable to LightGBM in terms of AUC.

The logistic regression model, while offering straightforward interpretability and satisfying monotonicity by construction,
underperforms on classification metrics. This contrast is particularly noteworthy given that LightGBM—a state-of-the-
art machine learning approach—does not impose monotonicity constraints by default. The trade-off for the generative
model’s structural rigor is a deterioration in calibration metrics, as its reduced flexibility limits its ability to produce well-
calibrated probabilities across the entire range. Nevertheless, for the dealer intervention use cases discussed in this
study, we consider this trade-off worthwhile, since violating structural constraints such as monotonicity can lead to eco-
nomically inconsistent or unreliable decisions in practice.

These results suggest that embedding structural knowledge of the RfQ process directly into the model provides advan-
tages that are not easily replicated through predictive optimization alone. While further enhancements to discriminative
models—such as advanced feature engineering or the use of constrained architectures—remain possible, our findings
highlight the value of hybrid or generative approaches that incorporate domain-specific structure and are grounded in
causal reasoning. This has implications beyond this particular setup, offering a concrete example of a complex economic
environment where the trade-offs between purely data-driven and model-driven approaches can be meaningfully evalu-
ated.

Several promising directions emerge for future work, offering pathways to extend and validate the proposed framework.
One line of research focuses on enhancing the predictive performance of discriminative models by making full use of the
available information, while also adhering to key business constraints. This includes developing models that incorporate
domain-specific requirements—such as monotonic neural networks—and enhancing feature engineering to integrate
informative post-trade signals like cover prices. This work is ongoing; see [32] for further developments. Other recent
studies have explored alternative feature engineering approaches, including quantum-enhanced representations that aim
to enrich probabilistic models with higher-order informational structure [35].

Given the proprietary nature of the dataset used in this study, an important direction for future work is cross-institutional
validation. Applying the proposed framework to RfQ data from other institutions—even if non-public—would help eval-
uate its generality and robustness across different dealer environments and market structures. Our results indicate that
the causal intervention framework enhances predictive modeling in bond RfQ platforms. When the trading mechanism
remains the same—i.e., an RfQ-based dealer-to-client process—the framework should be overall portable; what requires
adaptation is the conditioning set and, potentially, the parameterization. Extending the approach to other asset classes,
such as corporate bonds or derivatives, will therefore necessitate re-tuning the instrument characteristics, and client pro-
files. For example, the conditioning variables may need to incorporate credit ratings, alternative risk measures (e.g., CDS
spreads, duration/DV01), collateral eligibility, margining practices, or contract-specific features (e.g., option Greeks). In
some cases, minor variations in the RfQ trading protocol may need to be adapted to the specific use case. In summary,
while the graphical model is, in principle, flexible enough to accommodate most of these elements, a careful reassess-
ment would still be required before applying the framework to new contexts.

While our empirical evaluation focused primarily on optimal pricing, additional causal interventions explored in this
work—such as revenue potential estimation and uplift-based axe matching—warrant further empirical analysis. However,
progress in this area is often constrained by limited availability of detailed records on commercial actions, such as client
outreach and follow-ups, even within proprietary datasets.

A particularly valuable extension involves incorporating the proposed causal framework into the multi-RfQ optimiza-
tion problem, where dealers must determine optimal pricing for a given RfQ while anticipating the arrival of other RfQs
in the same direction or with different volumes, prior to the final liquidation of the position. This setting reflects the real-
world complexity of managing partially executed positions and requires optimizing not only for the current trade, but also

PLOS One | https://doi.org/10.1371/journal.pone.0341369 January 27, 2026 28/ 30



https://doi.org/10.1371/journal.pone.0341369

PLOR. One

for its interaction with future flow. Addressing this problem effectively calls for an integration of the causal inference tools
developed in this work with stochastic optimal control techniques, such as those introduced by Avellaneda and Stoikov.
While their framework already embeds a form of causal reasoning, it does not fully capture the structural richness and
latent complexity addressed in the present work. Combining these perspectives could yield a more robust and realistic
foundation for dynamic decision-making in multi-RfQ environments.

Finally, the graphical model introduced here offers a flexible foundation for reasoning about a wider range of probabilis-
tic and causal questions beyond the specific applications discussed. As such, it provides a principled and extensible basis
for rigorous, data-driven decision-making in electronic bond trading via Multi-Dealer-to-Client platforms.

Supporting information

S$1 Appendix. Data preprocessing. Complete description of cleaning, filters, and outlier removal.
(PDF)

S1 Table. Data summary table. Summary statistics of the RFQ dataset (size, period, sides, dealers, notional, frequency).
(PDF)

S2 Table. Notation. Reference table.
(PDF)

S3 Table. Feature importance. Feature importance across models for sell RfQs.
(PDF)

Author contributions

Conceptualization: Javier Sabio Gonzalez.

Data curation: Paloma Marin Martinez.

Formal analysis: Paloma Marin Martinez.

Investigation: Paloma Marin Martinez.

Methodology: Javier Sabio Gonzalez.

Project administration: Sergio Ardanza-Trevijano Moras.
Resources: Sergio Ardanza-Trevijano Moras.

Software: Paloma Marin Martinez.

Supervision: Sergio Ardanza-Trevijano Moras, Javier Sabio Gonzalez.
Visualization: Paloma Marin Martinez.

Writing — original draft: Javier Sabio Gonzalez.

Writing — review & editing: Paloma Marin Martinez.

References
1. Sabio Gonzalez J. Advanced analytics and algorithmic trading. n.p.; 2024.
2. Koller D, Friedman N. Probabilistic graphical models: principles and techniques. MIT Press; 2009.
3.  Murphy KP. Machine learning: a probabilistic perspective. Cambridge, Massachusetts: MIT Press; 2013.
4. Denev A. Probabilistic graphical models: a new way of thinking in financial modelling. London: Risk Books; 2015.

PLOS One | https://doi.org/10.1371/journal.pone.0341369 January 27, 2026 29/ 30



https://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0341369.s001
https://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0341369.s002
https://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0341369.s003
https://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0341369.s004
https://doi.org/10.1371/journal.pone.0341369

PLO&&- One

10.

1.
12.

13.
14.
15.

16.

17.

18.
19.

20.
21.

22.

23.

24,
25.

26.

27.

28.
29.
30.
31.
32.

33.
34.

35.

Pearl J, Glymour M, Jewell NP. Causal inference in statistics: a primer. John Wiley & Sons; 2016.
Pearl J. Causality. Cambridge, UK: Cambridge University Press; 2009. https://doi.org/10.1017/cbo9780511803161

Baiardi A, Naghi AA. The value added of machine learning to causal inference: evidence from revisited studies. The Econometrics Journal.
2024;27(2):213-34. https://doi.org/10.1093/ectj/utac004

Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C, Newey W, et al. Double/debiased machine learning for treatment and structural
parameters. The Econometrics Journal. 2018;21(1):C1-68. https://doi.org/10.1111/ectj.12097

Kumar A, Dodda S, Kamuni N, Arora RK. Unveiling the impact of macroeconomic policies: a double machine learning approach to analyzing
interest rate effects on financial markets. In: 2024 3rd International Conference on Atrtificial Intelligence for Internet of Things (AlloT). 2024. p. 1-6.
https://doi.org/10.1109/aiiot58432.2024.10574726

Oliveira DC, Lu Y, Lin X, Cucuringu M, Fujita A. Causality-inspired models for financial time series forecasting. arXiv preprint 2024.
https://arxiv.org/abs/240809960

Lopez de Prado M, Zoonekynd V. A protocol for causal factor investing. Elsevier BV; 2025. https://doi.org/10.2139/ssrn.5277078

Fermanian J-D, Guéant O, Pu J. The behavior of dealers and clients on the european corporate bond market: the case of multi-dealer-to-client
platforms. Mark Microstructure Lig. 2016;02(03n04):1750004. https://doi.org/10.1142/s2382626617500046

Bishop CM. Pattern recognition and machine learning (information science and statistics). 1st ed. Springer; 2007.

O’Hara M. Market microstructure theory. Cambridge, MA: Blackwell Publishers; 1995.

Cartea A, Sanchez-Betancourt L. Brokers and informed traders: dealing with toxic flow and extracting trading signals. SIAM J Finan Math.
2025;16(2):243-70. https://doi.org/10.1137/24m 1660243

Barzykin A, Bergault P, Guéant O, Lemmel M. Optimal quoting under adverse selection and price reading. arXiv preprint 2025.
https://doi.org/arXiv:250820225

Andersen TG, Bollerslev T, Christoffersen PF, Diebold FX. Chapter 15 Volatility and correlation forecasting. Handbook of economic forecasting.
Elsevier; 2006. p. 777-878. https://doi.org/10.1016/s1574-0706(05)01015-3

Katsov I. Introduction to algorithmic marketing: artificial intelligence for marketing operations. Grid Dynamics; 2017.

Kohavi R, Deng A, Frasca B, Longbotham R, Walker T, Xu Y. Trustworthy online controlled experiments. In: Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery and data mining. 2012. p. 786-94. https://doi.org/10.1145/2339530.2339653

Varian HR. Intermediate microeconomics: a modern approach. 8th ed. New York: W.W. Norton & Co.; 2010.

Guéant O, Lehalle C-A, Fernandez-Tapia J. Dealing with the inventory risk: a solution to the market making problem. Math Finan Econ.
2012;7(4):477-507. htips://doi.org/10.1007/s11579-012-0087-0

Avellaneda M, Stoikov S. High-frequency trading in a limit order book. Quantitative Finance. 2008;8(3):217-24.
https://doi.org/10.1080/14697680701381228

Glosten LR, Milgrom PR. Bid, ask and transaction prices in a specialist market with heterogeneously informed traders. Journal of Financial
Economics. 1985;14(1):71-100. https://doi.org/10.1016/0304-405x(85)90044-3

Guéant O. Optimal market making. Applied Mathematical Finance. 2017;24(2):112-54. https://doi.org/10.1080/1350486x.2017.1342552

Bergault P, Evangelista D, Guéant O, Vieira D. Closed-form approximations in multi-asset market making. Applied Mathematical Finance.
2021;28(2):101-42. https://doi.org/10.1080/1350486x.2021.1949359

Wright D, Henrykowski A, Lee J, Capriotti L. Recommender systems for corporate bond trading. Machine Learning and Data Sciences for
Financial Markets: A Guide to Contemporary Practices; 2023. p. 86.

Hendricks D, Roberts SJ. Optimal client recommendation for market makers in illiquid financial products. In: Altun Y, Das K, Mielikdinen T, Malerba
D, Stefanowski J, Read J, et al., editors. Machine Learning and Knowledge Discovery in Databases. Cham: Springer; 2017. p. 166-78.

Gueant O. The financial mathematics of market liquidity: From optimal execution to market making. Boca Raton: CRC Press; 2016.
Cartea A, Jaimungal S, Penalva J. Algorithmic and high-frequency trading. Cambridge University Press. 2015.

Denev A, Amen S. The book of alternative data: A guide for investors, traders and risk managers. John Wiley & Sons; 2020.

Dixon MF, Halperin |, Bilokon P. Machine learning in finance: from theory to practice. Springer; 2020.

Marin P. Al for market microstructure: bridging causality, probabilistic modelling and deep learning in multi-dealer-to-client financial platforms.
Universidad de Navarra; 2025.

Zhou Q. Explainable ai in request-for-quote. arXiv preprint 2024. https://doi.org/arXiv:240715038

Brier GW. Verification of forecasts expressed in terms of probability. Mon Wea Rev. 1950;78(1):1-3.
https://doi.org/10.1175/1520-0493(1950)078<0001:vofeit>2.0.co;2

Ciceri A, Cottrell A, Freeland J, Fry D, Hirai H, Intallura P, et al. Enhanced fill probability estimates in institutional algorithmic bond trading using
statistical learning algorithms with quantum computers. arXiv preprint 2025. https://arxiv.org/abs/250917715

PLOS One | https://doi.org/10.1371/journal.pone.0341369 January 27, 2026 30/ 30



https://doi.org/10.1017/cbo9780511803161
https://doi.org/10.1093/ectj/utae004
https://doi.org/10.1111/ectj.12097
https://doi.org/10.1109/aiiot58432.2024.10574726
https://arxiv.org/abs/240809960
https://doi.org/10.2139/ssrn.5277078
https://doi.org/10.1142/s2382626617500046
https://doi.org/10.1137/24m1660243
https://doi.org/arXiv:250820225
https://doi.org/10.1016/s1574-0706(05)01015-3
https://doi.org/10.1145/2339530.2339653
https://doi.org/10.1007/s11579-012-0087-0
https://doi.org/10.1080/14697680701381228
https://doi.org/10.1016/0304-405x(85)90044-3
https://doi.org/10.1080/1350486x.2017.1342552
https://doi.org/10.1080/1350486x.2021.1949359
https://doi.org/arXiv:240715038
https://doi.org/10.1175/1520-0493(1950)078<0001:vofeit>2.0.co;2
https://arxiv.org/abs/250917715
https://doi.org/10.1371/journal.pone.0341369

	Causal interventions in bond multi-dealer-to-client platforms
	Introduction
	A causal graphical model for the RfQ process
	Causal interventions and predictions in the graphical model
	Causal analysis of the interventional probabilities
	Model specification
	Generative versus discriminative models for causal interventions: Empirical results
	Conclusions
	References


