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Abstract

Signal averaging imposes a significant trade-off between measurement time and
measurand resolution in a sub-meter differential cross-spectrum Brillouin optical time
domain reflectometry (DCS-BOTDR). This article introduces an optimized post-
processing strategy that integrates wavelet denoising (WD) function with a traditional
Lorentzian curve fitting (LCF) under relatively low signal averages to mitigate this
problem. Symlet, Daubechies, Coiflet, and Biorthogonal Spline WD functions with a
4-level decomposition were executed on a six-core CPU utilizing a single-program-
multiple-data (SPMD) paradigm and compared. Experimental validation was exe-
cuted over distances of 350 meters and 1.21 kilometers of single-mode fiber. The
experimental results demonstrate a 2.7 times reduction in required signal averages,
in which the proposed LCF + WD method achieved a 2.7 MHz Brillouin frequency
shift (BFS) resolution with only 21000 averages, a performance that required 56000
averages using the LCF method alone. To manage the computational load on the
large experimental datasets, the algorithm was implemented on a parallel six-core
architecture, accelerating the data processing speed by up to 4.8 times compared to
serial computation. The method also successfully preserved a 0.4 m spatial resolu-
tion and improved temperature resolution to 3°C across a 1.21 km fiber at just 14000
signal averages. In comparison to other methods such as machine learning-based
enhancements, the proposed strategy presents a more straightforward, training-free
execution that attains comparable BFS and temperature resolutions without the
necessity of extensive datasets or rigorous model training. Together with the multi-
core architecture, the proposed strategy is particularly beneficial for real-time distrib-
uted sensing applications where computational resources may be constrained.
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1. Introduction

In recent years, Brillouin-based distributed fiber optic sensors have become a power-
ful technology for monitoring strain and temperature along tens of kilometers of fiber
[1]. Brillouin optical time domain reflectometry (BOTDR) is one of the well-known
Brillouin-based distributed fiber optic sensors that have been studied for years [2].
Unlike point-based optical sensing techniques [3,4], BOTDR offers a wider sensing
range with excellent measurement distribution and sensing performance. BOTDR
generates spontaneous Brillouin scattering (SpBS) in fiber from the interaction
between a pulsed probe and an acoustic wave [5]. The frequency difference between
the pulsed probe and the generated SpBS is known as the Brillouin frequency shift
(BFS). BFS exhibits a linear relationship with the change in temperature and strain
along the fiber, making it valuable for distributed temperature and strain monitoring
[6]. BOTDR is capable of measuring strain and temperature in a distributed manner,
making them advantageous for monitoring large sensing areas. The applications
include structural health monitoring of civil infrastructures and leakage detection
along oil and gas pipelines [7—10].

To estimate a BFS from a measured Brillouin gain spectrum (BGS), the Lorentzian
curve fitting (LCF) function is predominantly used due to the Lorentzian shape of a
BGS. However, LCF is time-consuming and prone to significant errors, particularly
when the signal-to-noise ratio (SNR) is low. A sharp spectral profile can be achieved
from a strong Brillouin gain interaction, low noise level, or improved SNR [11].
However, in the case of BOTDR, due to the nature of the SpBS, the amplitude of the
generated Brillouin signal is small, and this results in the difficulty in achieving high
BFS resolution, as well as high spatial resolution.

To improve the spatial resolution of BOTDR to sub-meter order, several techniques
such as double-pulse BOTDR (DP-BOTDR) [12], differential cross spectrum BOTDR
(DCS-BOTDR) [13], phase shift pulse BOTDR (PSP-BOTDR) [14] and differential
BOTDR [15] have been proposed. However, the techniques reported in [13—15] suffer
lower SNR measurement than the conventional single pulse BOTDR despite the high
spatial resolution attainment, due to the pulse differential calculation in the signal
processing stage that removes the SpBS signal contributed by the long pulses; this
consequently degrades the BFS resolution. The BFS resolution measurement from
the above methods can be improved by increasing the signal averaging, which how-
ever requires longer measurement and signal processing times.

Alternatively, encoding the optical pulse of the BOTDR with certain codes such as
Golay complementary sequences [16,17], or modulating several pulses with various
phase modulation schemes [18] have improved the SNR and at the same time attain
the sub-meter spatial resolution. Despite the additional number of pulses significantly
improving the BFS resolution, these techniques add more complex encoding and
decoding processes that further require more computational resources and conse-
quently longer processing time.

In addition, machine learning (ML)-based methods have been proposed for further
improving the BFS resolution and minimizing the requirements for averaging for

PLOS One | https://doi.org/10.137 1/journal.pone.0341131 January 21, 2026 2/17




PLO\Sﬁ\\.- One

faster processing time. Artificial neural networks (ANN) [19,20], and support vector machines (SVM) [21] have exhib-

ited considerable enhancements in the accuracy of BFS estimation, particularly in the presence of noisy environmental
conditions. However, these models necessitate substantial training datasets, complex parameter tuning, and considerable
computational resources to attain a level of generalization. Furthermore, the necessity for retraining often arises when
parameters (such as fiber type, temperature ranges, or laser linewidth) undergo alterations, thereby rendering ML meth-
ods less feasible for real-time applications in BOTDR.

Thus, in this article, we propose the deployment of a simple yet effective wavelet denoising (WD) method after the LCF
calculation of the DCS-BOTDR signals, alongside parallel computing for improving the BFS resolution and the signal pro-
cessing speed under relatively low signal averages. Through experimental analysis across test fiber lengths of 350 m and
1.21 km, the capability of parallel processing in improving the signal processing speed was successfully demonstrated.
Utilizing six CPU cores, the system processed 1750 Brillouin spectra over a 350 m fiber and 6050 spectra over a 1.21
km fiber, achieving a 4.5~4.8 times faster speed improvement compared to serial computation. With just 21000 signal
averages, the LCF + WD approach attained 2.7 MHz of BFS resolution along the 350 m fiber, which is comparable to that
of the conventional LCF averaged 56000 times. This results in an overall 7.5 times the increase in processing efficiency.
With the LCF + WD method, we also observed an enhancement in the temperature resolution as accurate as 3°C along
the 1.21 km test fiber at just 14000 signal averages, with the maximum magnitude of temperature resolution enhancement
of 4.3°C. The method also preserved a sub-meter spatial resolution of 0.4 m, confirming its capability in enhancing the
quality of noisy DCS-BOTDR signals. By overcoming the limitations of conventional processing techniques, the LCF +WD
method provides a simple but highly efficient and precise BFS measurement in a BOTDR sensor.

2. Brillouin spectrum calculation using FFT-based differential cross-correlation

In a DCS-BOTDR technique, an intensity modulation configuration is used to produce a pair of probe pulses, as shown
in Fig 1 (a). The first probe (Probe 1) contains a pulse of long-period T, and another one of short-period T, separated by
an interval T. The second probe (Probe 2) only contains a pulse of the same long period T,. The signal processing begins
by sampling the Brillouin signals measured by both pulsed probes. During sampling, the periods of the narrow and wide
window samplings are set to T and T, respectively, as illustrated in Fig 1 (b) [22].

The analysis is followed by cross correlating the data obtained from the wide and narrow window samplings. The data
b (t, ty) sampled by the wide window function and b% (t, &) by the narrow window function are obtained by integrating the
backscattered signal along the fiber at a distance z, which are given by [22]
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Fig 1. (a) The pair of pulsed probes used in DCS-BOTDR. (b) Two window functions to sample the backscattered light measured by each probe.

https://doi.org/10.1371/journal.pone.0341131.9001
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where the superscript x is either 1 or 2, i.e., Probe 1 or Probe 2, bN’L‘ (t, to, 2’ )and Bg (t, to, Z")are respectively the backscat-
tered light signals in the time domain measured by the long probe- and the short probe pulses.

Finally, the Brillouin spectra for a short fiber section is obtained by applying FFT on the produced signal from differential
cross-correlation between Probe 1 and Probe 2 signals, as shown below:

’<FFT (b} (t.10)] - FFT [bL (8, 10)] > — (FFT [0 (t.t0)] - FFT [ (t.to)] >] .

The product in Eq. (3) determines the bandwidth of the resultant spectrum, which is influenced by the pulse of long-
duration T, and phonon lifetime, while the signal differential gives the spatial resolution determined by T [22].

3. Parallel processing based on multicore processor

Efficient signal processing in high-resolution BOTDR systems necessitates the management of extensive volumes of BGS
data, particularly when each dataset encompasses thousands of time-domain traces and FFT-derived spectra. To mitigate
the limitations associated with serial computation, multicore parallel processing emerges as a viable solution by allocating
computational workloads across multiple cores within a single processor chip [23]. A multicore processor incorporates sev-
eral autonomous processing units (cores) to facilitate the simultaneous execution of instructions [24]. Each core functions
with its own arithmetic and logic unit (ALU), control unit, and cache memory, while sharing higher-level memory and input/
output buses. Multicore processors confer enhanced data exchange rates and reduced latency among cores, rendering
them particularly suitable for high-throughput scientific computations.

In the present investigation, all computational tasks were executed on an Intel® Core™ i7-9750H CPU operating at 2.60
GHz, comprising six physical cores and twelve logical threads. The processing algorithm was formulated and executed
within the MATLAB R2022a Parallel Computing Toolbox, which offers inherent support for distributed and multicore pro-
cessing through various models, including parfor, SPMD, and batch. Among these models, the single SPMD model was
chosen for its adaptability in managing extensive numerical arrays derived from BOTDR measurements.

The SPMD framework permits multiple cores to concurrently execute identical program code, with each core process-
ing a unique segment of the dataset [25]. As depicted in Fig 2, each core undertakes the processing of a subset of the
input BGS data corresponding to designated fiber segments, while synchronization among cores transpires via shared
memory or message passing. This architectural design guarantees that FFT-based differential cross-correlation, LCF, and
WD operations are conducted independently across data partitions. Upon the completion of their designated computations
by all cores, the results are collated and combined into a singular output array that represents the comprehensive BFS
distribution along the fiber.

The implementation workflow initiates with the equitable division of the total number of captured Brillouin traces among
the six cores. For example, within the context of the 350 m fiber test comprising 1750 spectra, each core was responsible
for processing approximately 292 spectra. Each core executed FFT transformation, BGS construction, and LCF fitting
locally. Subsequently, the sym4-based WD procedure was executed in parallel to attenuate high-frequency noise while
preserving the predominant BFS features. This architectural configuration minimized inter-core data transfer, thereby
achieving near-linear scaling efficiency.
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Fig 2. SPMD execution model.

https://doi.org/10.1371/journal.pone.0341131.9002

The deployment of MATLAB’s parallel pool with six cores yielded a 4.5~4.8 times reduction in computational time
relative to serial execution. The total execution duration for 1750 spectra was reduced from 496 minutes to approx-
imately 102 minutes for full-resolution analysis, with results are consistent with those obtained through serial pro-
cessing. Furthermore, the SPMD model facilitates reproducibility and scalability, by which augmenting the number of
available cores or executing the same MATLAB script on a computing cluster would proportionately enhance process-
ing speed without necessitating algorithmic alterations. The incorporation of SPMD-based multicore parallelization
within MATLAB’s Parallel Computing Toolbox thus exhibits reliable scalability, reproducibility, and compatibility with
real-time BOTDR data acquisition systems, which is also applicable for integration with other methodologies such as
adaptive filtering and machine learning.

4. Wavelet Denoising (WD)

Wavelet denoising (WD) technique has been studied for its potential in improving the signal accuracy and while preserv-
ing the essential signal characteristics [26,27]. The WD method is employed to denoise the measured signal, ensuring it
remains non-disruptive under severe environmental conditions. In our analysis, WD is implemented after modifying LCF
to reduce noise, improve SNR, and enhance the BFS resolution. The main feature of WD technique that makes it suitable
for the DCS-BOTDR is that it can isolate and suppress high-frequency noise while retaining low-frequency features. WD
would also preserve the sub-meter spatial performance of the DCS-BOTDR. Besides, it is also computationally efficient
and suitable for real-time or parallel processing. WD operates by decomposing a signal into its frequency components
using wavelet transforms, effectively separating the signal into various scales and frequencies. This method allows for
multi-resolution control and detailed information retrieval in both the time and frequency domains. Consequently, time win-
dows can be adjusted for different signals and analysis states [27]. The process involves the following three steps:

1) Decomposition: The original signal is decomposed into different frequency components or scales using a wavelet trans-
form. This transform highlights both high and low-frequency components, which helps in identifying noise.

2) Thresholding: After decomposition, the noise-containing components are identified and suppressed by applying a
thresholding technique. Thresholding involves setting small coefficients (considered as noise) to zero or reducing their
magnitude significantly. The universal threshold, \

A = o+/2logN (4)
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was deployed, where o is the noise standard deviation and N is the data number.

3) Reconstruction: The denoised signal is reconstructed by utilizing the modified coefficients from which noise has been
suppressed. This reconstructed signal aims to retain essential features of the original signal while removing unwanted
noise.

A one-dimensional signal can be represented by [26]

S(k) = f(k) + ce(k) (5)

where k=0,1,2,3...n—1, S(k) denotes the raw signal, f(k) the actual signal with noise, and e(k) the Gaussian noise with
amplitude coefficient of . In Eq. (5), f(k) consists of the low-frequency signals, while e(k) the high-frequency ones.
Denoising is computed to reduce the high-frequency noise and reconstruct the low-frequency signal; f(k) is the signal
approximation that needs to be optimized, while ce(k) is to be reduced.

5. Experimental setup

The experimental setup of the DCS-BOTDR is shown in Fig 3. Initially, a tunable laser source (TLS) generates contin-
uous wave (CW) light at a wavelength of 1550 nm and an output power of 12 dBm. A 1 x 2 coupler (coupler 1) splits the
optical power equally into two arms. The bottom arm coupled the light from the TLS directly to a 2 x 2 coupler (coupler 2)
as the reference light for the heterodyne detection. The top arm is connected to a single sideband modulator (SSBM) for
frequency modulation. At the SSBM, the CW light’s frequency is upshifted by approximately 10.08 GHz, with the electrical
signal for frequency modulation is supplied by a synthesized signal generator (SSG). The frequency-shifted light is then
amplified by an Erbium-doped fiber amplifier (EDFA1) achieving about -8 dBm (~0.2 mW) of output power, before being
modulated in its amplitude by a Mach-Zehnder modulator (MZM) into an optical pulse. An arbitrary waveform generator
(AWG) was used to produce an electrical pulse to the MZM for the modulation.

To mitigate fading noise due to polarization, a polarization scrambler (PS) is employed. Further amplification of the
probe pulse is achieved using an additional EDFA (EDFAZ2). The optical pulse power injected into the fiber via an optical
circulator (Cir) was around 300 mW, which was sufficient to generate the SpBS along the test fiber. In our experiment, the
Stokes component of the SpBS was extracted from the test fiber for analysis. The SpBS signal beats with the reference

YA 7 Trigger
(v =

| SSBM D | EDFAI ]j | MzM |j | ps D’EDFAz ﬁl@z ¢ .Tem.j,.;ﬁo“

3

—

Back Scattered SpBS

Pump
—_—

/7 Coupler 1
TLS o couplor

2=1550nm
Power=12 dBm

Reference Light 1
P

Optical connection
Electrical connection

Fig 3. The DCS-BOTDR experimental setup. (TLS: Tunable laser source, SSG: Synthesized signal generator, SSBM: Single side band modulator,
EDFA: Erbium doped fiber amplifier, MZM: Mach-Zehnder modulator, AWG: arbitrary waveform generator, BPD: Balance photodetector, FUT: fiber under
test, OSC: Oscilloscope).

https://doi.org/10.1371/journal.pone.0341131.9003
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light before being detected by a balanced photodetector (BPD). This signal is digitized by an oscilloscope (OSC) at the
sampling speed of 5 GS/s and then processed by a personal computer.

Fig 4 presents the flowchart of the BGS and BFS calculations incorporated with LCF + WD method through parallel pro-
cessing. Furst, the captured DCS-BOTDR time domain traces will be divided equally according to the CPU cores. Then,
the data will be sampled for the FFT calculations explained in Section 2 via parallel processing to produce the Brillouin
spectra. These spectra will be further processed by LCF +WD method, also through parallelism before being analyzed for
final data analysis.

6. Results and analysis

Several experiments have been conducted by measuring 350 m and 1.21 km test fibers (both were the standard ITU-T
G.652.D telecommunication fibers) for analyzing the performance of the DCS-BOTDR sensor based on the proposed

WD filtering and parallel processing methods. In the first experiment, as shown in Fig 5, a 350 m FUT was fabricated by
splicing two single mode fibers (SMF) having different BFS values for simulating temperature difference between both
fibers. The BFS difference was also implemented to validate the BFS accuracy by the proposed WD method. In detail, the

START

Divide DCS-BOTDR data
according to number of
cores

1)

Data sampling
(br (t, to) b5 (¢, to))

v

FFT-based cross-correlation
via parallelism

1]

LCF+WD via parallelism

v

Analysis

Fig 4. Flowchart of the BGS and BFS calculations via LCF +WD method accelerated by the parallel processing.
https://doi.org/10.1371/journal.pone.0341131.9004
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Fig 5. Configuration of the 350 m fiber under test (FUT).

https://doi.org/10.1371/journal.pone.0341131.9005
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BFS for SMF-1 was about 10.90 GHz while SMF-2 10.85 about GHz, which results in about 50 MHz difference. Consid-
ering the Brillouin temperature coefficient of 1.01 MHz/°C [28,29], this translates into about 50°C temperature different.
To evaluate the spatial resolution, the 350 m FUT was segmented into five alternating sections of SMF-1 and SMF-2. The
five sections consist of the following configuration: a 328 m section of SMF-1, a 0.4 m section of SMF-2, followed by a 10
m section of SMF-1, a 3 m section of SMF-2, and finally another 10 m section of SMF-1.

The beat signal detected by a balanced photodetector (BPD) was sampled 56000 times and analyzed by the OSC
before being processed by using the proposed method. The sampling point in each DCS-BOTDR time domain trace for
the FFT and LCF + WD calculations was fixed to 2 ns (equivalent to 0.2 m spatial point), which translates into 1750 num-
ber of time domain data for the 350 m test fiber case. The pulsed probe input power was set to about 300 mW by EDFA2
in Fig 3. Several durations of T, were utilized, specifically 2 ns, 4 ns, 10 ns, 14 ns, 20 ns, and 24 ns, while the interval T;
and short pulse durationTs were fixed at 0.5 ns and 2 ns, respectively. The spatial resolution obtained from the experiment
was expected to be around 0.2 m. For the parallel processing technique, the data segmentation per core was based on
the SPMD method, considering the PC’s CPU consisting of six processors (Intel (R) Core (TM) i7-9750H CPU@2.60 GHz,
6 Cores, 12 Logical Processors). Subsequently, 56000 traces were divided per CPU core, for which a significant reduction
in execution time is expected.

6.1. Signal processing by the conventional LCF method

To analyze the effectiveness of LCF+WD method in the DCS-BOTDR, we started by analyzing the experimental results of the
DCS-BOTDR signals processed by the conventional LCF method alone. Figs 6 (a) and (b) respectively illustrate the represen-
tative of 1750 Brillouin spectra along the 350 m test fiber measured by T, of 10 ns and 14 ns cases. For T; = 10 ns case, the

A B
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4000

3 S 3000
L L
15 5
: g 4
Q Q

1000

e
Distance(m) 4 10.8 Distance(m) \;i’il;' 10.8
Frequency(GHz, 10.75 Frequency(GHz
0 4107 equency(GHz) > 4o equency(GHz)

Fig 6. Brillouin spectra along the 350 m FUT processed by the conventional LCF method for T, of (a) 10 ns, and (b) 14 ns cases. (a) T,=10 ns
(b) T,=14 ns.

https://doi.org/10.1371/journal.pone.0341131.9006
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Brillouin spectrum width analyzed at the full-width-at-half-maximum (FWHM) was around 112 MHz, while for T;= 14 ns case,
the spectrum width has narrowed to about 78 MHz, confirming the inverse proportionality of the spectrum width with T; .

Fig 7 (left y-axis) illustrates the effect of T, on the spectrum width. As T, increases from 2 ns to 24 ns, the spectrum
width has narrowed from 483.3 MHz to 43.9 MHz. Fig 7 (right y-axis) also shows the change in the BFS resolution (cal-
culated by standard deviation) with T;. For T; from 2 ns to 24 ns, the BFS resolution has improved from about 19 MHz to
2.7 MHz. For all T, cases, the signal processing time via conventional serial calculation took about 496 minutes (~8 hours)
to calculate the FFT-cross correlation for all 1750 BGS after 56000 times of averaging, with each spectrum having 1024
datapoints. Thus, on average, it took about 17 seconds to calculate a BGS through the serial processing.

From these results, we will demonstrate later the effectiveness of the proposed LCF +WD method and the parallel
processing in improving the BFS resolution and the processing time of the DCS-BOTDR at lower than 56000 signal aver-
ages, while preserving its sub-meter spatial resolution feature. Performance parameters such as pulse duration (T.),
number of averages, and fiber length were accounted for in the analysis. It should be noted that although the represen-
tative results shown here pertain to short fiber, in general, the effect of the pulse duration on the spectrum width and the
BFS resolution is generally similar for any fiber length.

6.2. Incorporating the LCF with WD method accelerated by the parallel processing

To identify the optimal wavelet for improving Brillouin frequency shift (BFS) resolution, we performed a comparative anal-
ysis of four wavelet functions: Symlet (sym4), Daubechies (db4), Coiflet (coif4), and Biorthogonal Spline (bior4.4). Each
function, using 4-level decomposition, was applied to the DCS-BOTDR signals measured along the 350 m test fiber by
T,=14 ns case. To accelerate the calculation, six-core parallel processing was deployed.

The BFS resolution for each WD function was statistically evaluated by calculating the standard deviation of the BFS
data between the 250 m and 300 m locations, as described in Eq. (6),

BFS resolution = 1

=

S v-v7
i=1

where y is the measured value of BFS, ¥ the average of the estimated BFS and N the quantity of data. The standard

deviation, i.e., the BFS resolution results obtained by the WD functions were then compared with the conventional LCF
method across various signal averages, as shown in Fig 8. The conventional LCF approach established a baseline per-
formance, with its BFS resolution improving from 8.8 MHz at 7000 averages to 2.7 MHz at 56000 averages. In contrast,
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Fig 7. Effect of the pulse duration T, on the Brillouin spectrum width and BFS resolution along the 350 m fiber, processed by the conven-
tional LCF method.

https://doi.org/10.1371/journal.pone.0341131.9007
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all WD methods delivered a substantial improvement, achieving resolutions below 3 MHz at 21000 averages and higher.
Additionally, the analysis on the measurement accuracy was also conducted. In detail, the root means square error
(RMSE) was calculated for all WD cases and the conventional LCF using the Eq. (7).

(7)

where y is the true BFS value. The true BFS value was obtained from the temperature of the fiber measured by a thermo-
couple, before being transformed into a BFS value using the associated Brillouin temperature coefficient of 1.01 MHz/°C.
Taking the BFS values from the 56000 times average case, the RMSE for all WD functions and the conventional LCF are
shown in Table 1. It was observed that all WD functions gave better RMSE than the conventional LCF method, and almost
similar with the standard deviation results for 56000 times average depicted in Fig 8, indicating the consistency of the
resolution (standard deviation) and the accuracy (RMSE) calculated by all WD functions.

As observed in Table 1 and Fig 8, all four WD functions consistently produced almost similar BFS resolutions and accu-
racy (RMSE) across all averaging conditions. However, considering the near-symmetrical structure and compact support
features of sym4 that provides an optimal balance between effective noise removal and the preservation of the Brillouin
signals, we chose this wavelet function for all further analysis.

The resultant BFS resolution achieved by the LCF + WD (sym4) approach ranged from 6.73 MHz at low averaging to
1.19 MHz at high averaging. This reflects an improvement in BFS resolution of approximately 2 MHz compared to the
conventional LCF method. Although increasing the number of averages improves the BFS resolution, it concurrently
increases the measurement time. Importantly, the inclusion of sym4 function substantially improves resolution even at low

Table 1. Root-mean-square error (RMSE) for all WD functions and conventional LCF under the case
of 56000 times average.

Wavelet function RMSE (MHz)
symé4 1.47
db4 1.45
coif4 1.46
bior4.4 1.46
conventional LCF 3.10

https://doi.org/10.1371/journal.pone.0341131.t001
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number of averages. Notably, while the conventional LCF method required 56000 averages to achieve a BFS resolution of
2.7 MHz, the LCF + WD method attained the same resolution with only 21000 averages, representing a 2.7 times reduc-
tion in processing time.

Fig 9 illustrates the effect of signal averaging on the processing time for generating a total of 1750 Brillouin spectra
along the 350 m fiber, for T, = 14 ns case. The graph compares the processing time by serial processing (in blue) and
six-cores parallel processing (in orange), with both showing a linear increase with the number of averages. For serial
processing, the FFT calculation time ranges from 62 to 496 minutes. In contrast, parallel processing with six cores signifi-
cantly reduces the time to between 13 and 102 minutes, achieving nearly 4.8 times faster processing.

To verify the robustness of the LCF +WD method in preserving the feature of the DCS-BOTDR signal and the enhance-
ment in the BFS resolution along the 350 m test fiber, a BFS distribution comparison was made between the conventional
LCF method and that of the LCF+WD (sym4) method for T, = 14 ns case. As representative, Figs 10 (a), (b) and (c)
show the comparison of BFS distribution between the LCF + WD method and the conventional LCF method 14000, 28000
and 56000 signal averages respectively.

For all averaging conditions, the LCF + WD method produces smaller BFS fluctuation than the conventional LCF,
indicating an improved BFS resolution measurement. In addition, as observed in each Fig, the LCF + WD method still
preserves the main feature of the original DCS-BOTDR signal. In detail, from the inset Figs in Fig 10, the BFS measure-
ment at SMF-1 and SMF-2 cables has been distinguished clearly. Furthermore, as explained by Fig 9, the deployment of
six cores parallel processing in the LCF + WD method has sped up the calculation time by a factor of 4.8. As discussed
previously, by referring to the results illustrated in the Figs 8 and 9, the 21000 times of averaging (38 minutes processing
time) for the LCF + WD method produced the same BFS resolution of 2.7 MHz as that by 56000 times (102 minutes) for
the conventional LCF method, resulting in about 2.7 times faster processing speed. Thus, combining this with the effect of
parallel processing, the total processing time was 7.5 times faster.

To evaluate the effectiveness of the LCF + WD method and parallel processing under various pulse durations, we
measured a 1.21 km test fiber with T, = 6, 10, 14, 18, 22 and 30 ns pulses, while the T; and T were fixed at 2 and 4 ns,
respectively. The pulse input power was set to 600 mW. The time domain signals were captured at only 14000 times for
averaging purposes. Fig 11 shows the arrangement of the 1.21 km test fiber for the experiment, with a 2 m section at the
far end heated to approximately 70°C using a water bath equipment. The experiment was conducted at a room tempera-
ture of 27°C. As a representative, Fig 12 illustrates the BFS distribution along the 1.21 km fiber for the T, =18 ns case,
where a 2 m heated section at the far end of the fiber was observed. It is confirmed that the deployment of the LCF + WD
method has improved the BFS resolution measurement compared to the conventional LCF method. The BFS resolution
processed by the conventional LCF- and LCF + WD methods was 4.9°C and 3°C respectively. Despite the low number of
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——Parallel processing (minutes)

Time (minutes)
w
(=]
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100 W‘-’“
0
7000 14000 21000 28000 35000 42000 49000 56000

Number of Averages

Fig 9. The effect of parallel processing on the processing time in comparison with the serial processing in producing 1750 Brillouin spectra
along the 350 m test fiber.

https://doi.org/10.1371/journal.pone.0341131.9009
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Fig 10. BFS distribution comparison between that obtained by the conventional LCF method and that by the LCF+WD (sym4) method under

(a) 14000, (b) 28000 and (c) 56000 times averaging. The inset Fig each shows the BFS difference between SMF-1 and SMF-2 cables.

https://doi.org/10.1371/journal.pone.0341131.9010
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Fig 11. Configuration of the temperature measurement along the 1.21 km test fiber.

https://doi.org/10.1371/journal.pone.0341131.9011
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Fig 12. Temperature distribution along the 1.21 km fiber for both conventional LCF and LCF +WD methods after 14000 times average (T, =18
ns case). At the far end of the fiber, a 2 m section was heated to demonstrate the shift in the BFS.

https://doi.org/10.1371/journal.pone.0341131.9012

averages of only 14000 times for measuring the 1.21 km fiber, a 1.9°C temperature resolution enhancement has been
successfully demonstrated by the LCF + WD method. At location 1122 m, there was a slight fluctuation in the temperature,
which was due to the imperfection in the fiber setup and thus could be ignored in the analysis.

Fig 12 also shows the fiber-heated location, which exhibited an approximate temperature increase of 42°C. Considering
the Brillouin temperature coefficient of approximately 1.01 MHz/°C [28,29], the BFS corresponding to the room tempera-
ture (27°C) was around 10.860 GHz. From this relationship, the 42.9 MHz frequency shift translates into about 42°C [30],
confirming the correct measurement of temperature change at the 2 m heated section at the far end of the fiber. In terms
of processing time, for generating 6050 Brillouin spectra along the 1.21 km fiber, with each spectrum containing 1024
datapoints and processed at 14000 signal averages, it took approximately 440 minutes using serial processing and 98
minutes using parallel processing. Thus, it required approximately 4.4 seconds to generate a Brillouin spectrum with serial
processing and only about 0.97 seconds with parallel processing. This indicates that the parallel process has accelerated
4.5 times faster processing, nearly as expected. We then analyzed the rising and falling edges of the signal at the 2 m
heated section to confirm the robustness of the LCF + WD method in preserving the spatial resolution of the DCS-BOTDR.
As a result, a 0.4 m spatial resolution measurement was observed for both the conventional LCF and the proposed
LCF + WD methods, corresponding to Ts = 4 ns.

Fig 13 compares the temperature resolution between the conventional LCF method and the proposed LCF +WD for T,
range values from 6 to 30 ns for the 1.21 km fiber. The relationship between T; and the temperature resolution agrees well

19.9
7.7°C uLCF
= LCF + WD
11.8
77
6 6.7
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Fig 13. Comparison of BFS resolution enhancement between the conventional LCF method and LCF + WD method for different T, durations
after 14000 times average for the 1.21 km fiber.

https://doi.org/10.1371/journal.pone.0341131.9013

PLOS One | https://doi.org/10.1371/journal.pone.0341131 January 21, 2026 13717



https://doi.org/10.1371/journal.pone.0341131.g012
https://doi.org/10.1371/journal.pone.0341131.g013

PLO\Sﬁ\\.- One

with the previous report on the DCS-BOTDR technique [22], confirming the consistency of the DCS-BOTDR technique in
achieving optimum measurand resolution for T, between 10 ns and 22 ns. In the case of conventional LCF, for T, between
6 ns and 30 ns, the highest temperature resolution was 5.2°C (T, =18 ns), while the lowest 19.9°C (T, =6 ns). How-
ever, with the LCF + WD method, the temperature resolution (i.e., the BFS resolution) has been significantly enhanced.
For the same T, range, the temperature resolution has improved to a range between 3°C (T, =14 ns) and 12.2°C (T, =
6 ns). Even though the temperature resolution enhancement was the highest for 7, =6 ns case (7.7°C), the resultant
temperature resolution of 12.2°C after the deployment of LCF +WD was still much poorer than that of T, =10, 14, 18 and
22 ns cases. The use of T, duration of shorter than the phonon lifetime (~10 ns) had generated very low SNR of Brillouin
signal, which had consequently resulted in a poor temperature resolution. Thus, from Fig 13, it can be observed that the
LCF+WD has further enhanced the temperature resolution of the DCS-BOTDR for the optimum T, of between 10 and 22
ns, confirming the effectiveness of the proposed method in refining the noisy data obtained from the DCS-BOTDR at low
signal averages.

To further validate the BFS resolution enhancement by the LCF + WD method, we provide the comparative statistical
analysis of the BFS distribution between the LCF + WD and the conventional LCF methods. As a representative, Fig 14
illustrates the histogram of 4000 BFS distribution data along the 1.21 km fiber for both methods in the case of 7, =18 ns.
In terms of the mean value, both methods gave similar mean of BFS of 10.860 GHz. However, the standard deviation of
the BFS, i.e., the BFS resolution for the LCF +WD is around 3.6 MHz, which is better than that of the conventional LCF
of 5.4 MHz, as expected. This also resulted in a smaller margin error of 0.11 MHz compared to 0.17 MHz for the conven-
tional LCF. Considering a 95% confidence interval, the range of BFS distribution processed by the LCD +WD method was
between 10.86009 GHz and 10.86032 GHz, which was narrower than that for the conventional LCF method of between
10.86003 GHz and 10.86036 GHz. The significant reduction in the BFS distribution’s width and in the BFS deviations
concludes the efficacy of the WD method in attenuating high-frequency noise prior to the LCF process, thereby yielding a
more accurate and reliable BFS estimation.

7. Comparative analysis of computational complexity and scalability

To evaluate the applicability of the proposed LCF +WD methodology, its computational attributes were compared with
the traditional LCF processing and the ML-based enhancement algorithms for Brillouin-based sensors [19-21]. From a
computational perspective, the LCF method requires sufficient numbers of data in spectral points within each Brillouin
gain spectrum (BGS) for BFS estimation, and this also represents the needs of iterative fitting operations. By integrating
WD into the LCF method, the overall process requires a modest escalation to attributable to the wavelet transform oper-
ations. Nevertheless, the noise attenuation effect diminishes the required iterations for convergence in the LCF, thereby
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Fig 14. Histogram of BFS distribution along the 1.21 km fiber for both LCF +WD and LCF methods in the case of T, = 18 ns.

https://doi.org/10.1371/journal.pone.0341131.9014
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equilibrating the total computational requirements. Moreover, the implementation of parallel processing allocates the com-
putation across six CPU cores, providing almost a linear scalability and realizing a practical speedup factor ranging from
4.5 to 4.8 times without compromising the accuracy of BFS estimation.

Conversely, ML-based techniques such as artificial neural networks (ANN) or support vector machines (SVM), embody
a significant training complexity, typically affected by the number of network layers, number of neurons and training
epochs. ML techniques necessitate substantial data labeling for training and validation to attain model generalization
under fluctuating noise and environmental conditions. Upon completion of the training process, ML models can deduce
BFS with minimal latency; however, retraining or transfer learning is frequently imperative when there are alterations in
measurement range, experimental configurations and more importantly different fiber type. Different fiber cable has differ-
ent BFS at room temperature, and thus this results in further complexity in data training in ML techniques. This challenge
of adaptability escalates maintenance requirements and constrains scalability across diverse fiber configurations.

In contrast, the LCF + WD methodology offers a deterministic strategy characterized by uniform performance across a
spectrum of fiber lengths and measurement conditions. Its computational burden scales linearly with the dataset size and
can be seamlessly distributed across multicore or GPU architectures. As a result, the proposed approach presents a more
balanced factor between algorithmic simplicity, processing efficiency, and scalability, rendering its appropriateness for real-
time or large-scale distributed fiber sensing applications.

8. Conclusion

In summary, this investigation has elucidated an advanced signal processing methodology for DCS-BOTDR systems
through the incorporation of wavelet denoising (WD) with Lorentzian curve fitting (LCF), further expedited by multicore
parallel processing. The proposed LCF + WD significantly diminishes signal averaging necessities while maintaining
sub-meter spatial resolution and enhancing the Brillouin frequency shift (BFS) and consequently the temperature res-
olution. In addition to the enhancement demonstrated by a 2.7 times reduction in number of averages and a 4.8 times
acceleration in computational speed, this approach signifies a remarkable advancement toward real-time, high-precision
distributed fiber sensing.

Crucially, this research underscores a transition from solely hardware-centric improvements to computationally efficient
signal processing techniques. The synergy of WD and parallel computing offers a versatile framework that can be seam-
lessly integrated into the existing BOTDR systems without necessitating hardware alterations. This merging framework
also establishes a scalable foundation for next-generation Brillouin-based distributed fiber sensing, characterized by
increased speed, intelligence, and suitability for the sophisticated monitoring systems anticipated in the future. In future,
the incorporation of this framework with artificial intelligence (Al) and embedded edge computing platforms may facilitate
autonomous, adaptive noise mitigation and instantaneous data interpretation. Such integration would amplify the rele-
vance of BOTDR technology for extensive smart infrastructure applications, encompassing structural health monitoring,
energy asset management, and environmental sensing networks.
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