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Abstract 

In contrast to cancers with high immunotherapy responsiveness, such as lung cancer 

and melanoma, thyroid carcinoma (THCA) immunotherapy remains investigational. 

To establish a theoretical foundation for THCA immunotherapy, we investigated the 

association between genetic mutations and tumor microenvironment (TME) by ana-

lyzing RNA-sequencing data and somatic mutation profiles from 571 THCA samples 

in The Cancer Genome Atlas (TCGA) database. The ESTIMATE algorithm was first 

applied to calculate ImmuneScores and StromalScores. Samples were subsequently 

stratified into immune-high and immune-low groups, as well as stromal-high and 

stromal-low groups, based on median score thresholds. We then identified differen-

tially expressed genes (DEGs) and differentially mutated genes (DMGs). Significant 

disparities in mutation frequencies of BRAF, NRAS, and HRAS were observed both 

between immune stratification groups (high vs low) and stromal stratification groups 

(high vs low). Correlation analysis between DMGs and clinicopathological features 

revealed that BRAF/NRAS expression levels were associated with THCA clinical 

stage. CIBERSORT computational algorithm was also used to quantify the relative 

abundance of tumor-infiltrating immune cells (TICs), demonstrating that 11 types of 

activated TICs were strongly associated with BRAF expression. Finally, we examined 

target DMGs expression in relation to immune checkpoint proteins (ICPs) to identify 

potential therapeutic targets. THCA specimens with suppressed BRAF expression 

demonstrated upregulated ICPs expression, indicating potential susceptibility to 

checkpoint blockade immunotherapy.

1.  Introduction

Thyroid carcinoma (THCA) is the ninth most frequently occurring malignancy world-
wide, with a rising incidence, and represents a major global health challenge [1–3]. 
Differentiated THCA [including “papillary thyroid carcinoma” (PTC) and “follicular 

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0341123&domain=pdf&date_stamp=2026-02-12
https://doi.org/10.1371/journal.pone.0341123
http://creativecommons.org/licenses/by/4.0/
https://portal.gdc.cancer.gov/projects/TCGA-THCA
https://portal.gdc.cancer.gov/projects/TCGA-THCA
https://xenabrowser.net/datapages/?dataset=TCGA-THCA.GDC_phenotype.tsv
https://orcid.org/0000-0002-5488-2139
mailto:jiangdongqing@sina.com
mailto:chenshihong@sdu.edu.cn


PLOS One | https://doi.org/10.1371/journal.pone.0341123  February 12, 2026 2 / 22

thyroid carcinoma” (FTC)], undifferentiated THCA (“poorly differentiated thyroid 
carcinoma” (PDTC) and “anaplastic thyroid carcinoma” (ATC)), and medullary THCA 
(produced by parafollicular cells) are the main histological categories of THCA [4]. 
Among thyroid malignancies, PTC is the most frequently observed pathological type, 
representing 80% of all THCA cases [5]. In general, PTC has a favorable prognosis, 
characterized by its indolent biological behavior and good long-term survival rate (> 
95%) [6]. However, it has a high recurrence rate, with 25–35% of patients experienc-
ing relapse [7–9].

Surgical resection remains the cornerstone of primary treatment for THCA, with 
intraoperative preservation of parathyroid being critical to reduce postoperative hypo-
calcemia risk [10].Conventional adjuvant therapies also include radioactive iodine 
therapy and endocrine therapy [9]. However, these traditional approaches exhibit 
significant limitations in patients with advanced disease. Key constraints include 
limited surgical eligibility for locally advanced tumors and elevated risks of organ dys-
function, recurrence, and reduced quality of life following extensive resection. Approx-
imately 15–20% of patients with differentiated or anaplastic THCA respond poorly to 
traditional standard treatments [11].The increasing adoption of molecularly targeted 
agents and immune checkpoint inhibitors (ICIs) has positioned neoadjuvant treatment 
as an innovative approach in managing locally advanced thyroid malignancies. ICIs 
have demonstrated efficacy in tumors such as “non-small cell lung cancer (NSCLC)” 
[12], “melanoma” [13], and “head and neck squamous cell carcinoma” [14], and show 
promise in THCA [15]. And the NCCN guidelines first recommended neoadjuvant 
therapy for locally advanced PTC in 2022.

At the molecular level, THCA development is driven by mutations activating key 
signaling pathways. Point mutations in genes such as BRAF and RAS lead to con-
stitutive activation of the MAPK and PI3K/Akt pathways, essential for cell prolifera-
tion, survival, and differentiation [16,17]. These genetic alterations are major factors 
influencing tumor progression and are closely linked to the tumor microenvironment 
(TME). In PTC, BRAF mutations significantly upregulate STRA6 expression, cor-
relating with immune invasion and T-cell exhaustion, thereby modulating the immune 
microenvironment [18].

Tumor pathogenesis is characterized by uncontrolled cell proliferation and 
dysregulation of the microenvironment, with the TME playing a key role in tumor 
remodeling during cancer progression. Genetic mutations are major factors affecting 
tumor progression and are inextricably linked to the TME. Neoantigens arising from 
tumor-specific mutations may elicit immune-mediated identification and subsequent 
eradication of cancer cells [19,20]. Chronic inflammation promotes carcinogenesis by 
triggering changes in specific epigenetic markers in the presence of proto-oncogenic 
mutations. Additionally, tumor suppressor genes rely on the adaptive immune system 
to restrict carcinogenesis [21,22]. The immune system plays a complex role in in situ 
tumorigenesis. Immune cells associated with chronic inflammation and tissue repair 
may promote tumorigenesis, whereas immune cells that recognize and kill cancerous 
cells may inhibit in situ tumor formation. However, the exact underlying mechanisms 
remain unknown.
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To elucidate the influence of the TME on genetic mutations in THCA, we performed an integrated analysis of tran-
scriptomic data and somatic mutation profiles from the TCGA database, stratified by the immune composition of THCA 
patients. This approach aims to reveal the underlying mechanisms of THCA pathogenesis and progression, thereby identi-
fying potential therapeutic targets.

2.  Materials and methods

2.1.  Raw data

Transcriptomic records and somatic mutation data of 571 THCA specimens (including 59 normal specimens and 512 
tumor specimens) were extracted from the TCGA platform, and relevant clinical information was obtained from the UCSC-
Xena platform. The RNA-seq data (in TPM format) were log2-transformed after adding a pseudo-count of 1 to stabilize 
variance and normalize the distribution for downstream analysis.

2.2.  Calculation of the various components in the TME by implementing the ESTIMATE algorithm

The ESTIMATE algorithm which was developed and maintained by the MD Anderson Cancer Center, is commonly used to 
assess tumor purity. The ESTIMATE package in R software (version 4.2.2) [23] was used to calculate three key scores for 
each THCA sample: ImmuneScores, which reflect the proportion of immune components in the tumor microenvironment 
(TME); StromalScores, representing the proportion of stromal components; and ESTIMATEScores, which combine both 
immune and stromal components to provide an overall assessment. Higher scores in these categories indicate a greater 
presence of the corresponding components—immune cells, stromal cells, or tumor purity—within the TME.

2.3.  Survival analysis

Clinical variables including patient ID, age, gender, TNM stage, tumor stage, vital status and days to last follow up were 
extracted. Survival analyses were performed using the survival and Survminer R packages in R computing environment. A 
total of 473 tumor specimens were selected from 545 THCA cases based on the following criteria: (1) exclusion of normal 
specimens and (2) samples lacking complete clinical data were excluded from subsequent analyses, defined as those 
with more than 20% of clinical data missing. For samples with missing data proportions less than or equal to 20%, the 
gaps were addressed using a multiple imputation approach by chained equations (MICE) with the ‘mice’ R package (ver-
sion 3.15.0), generating 5 imputed datasets. Survival probability distributions were modeled using Kaplan-Meier nonpara-
metric methods, with formal statistical hypothesis testing conducted via log-rank analysis (significance criterion: p < 0.05).

2.4.  Interrelationship evaluation between the scores and clinicopathological features

We employed the ggpubr software package to examine the score-clinicopathological correlations. The association 
between Immune/Stromal/ESTIMATE scores and key clinicopathological variables—including patient ID, vital status, T 
stage, N stage, M stage, tumor stage and days to last follow up was assessed. Non-normally distributed data prompted 
the application of rank-based tests: Wilcoxon rank-sum test for two-group comparisons and Kruskal-Wallis H test for three 
or more groups, with significance defined as p < 0.05.

2.5.  Somatic mutation analysis and differentially mutated gene (DMG) identification

The data on THCA-related somatic mutations were sourced from the TCGA database. Somatic variant information and 
other relevant information were provided in MAF format. Tumor samples (n = 473) were evenly classified into high- or 
low-immunity and high- or low-stromal categories according to the median ImmuneScore and StromalScore. To identify 
DMGs, we compared the high- and low-immunity groups as well as the high- and low-stromal groups using the mafCom-
pare function in maftools package (version 2.14.0) [24], applying a false discovery rate (FDR) adjusted p-value threshold 
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of less than 0.05 for statistical significance. Silent (synonymous) mutations were excluded from the analysis to focus on 
potentially functional variants.

2.6.  Determination of genes showing differential expression

Differentially expressed genes (DEGs) were identified using the limma package in R, which involved pairwise compari-
sons between (a) high- vs. low-immunity groups and (b) high- vs. low-stromal groups. DEGs were deemed significant if 
they satisfied the following conditions: false discovery rate (FDR) < 0.05 and an absolute value of the log

2
 fold-change 

(FC) greater than 1.

2.7.  Volcano plots and heatmaps

Data visualization was performed using the ggplot2 package for volcano plots and the pheatmap package for hierarchical 
clustering heatmaps.

2.8.  GO and KEGG enrichment analysis

To systematically characterize the biological implications, 290 DEGs (the combined set of DEGs that overlapped (both up- 
and down-regulated) between the ImmuneScore and StromalScore) were interrogated using Gene Ontology (GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), and genome enrichment analyses using the R packages clusterProfiler, 
enrichplot, and ggplot2. Significant terms were selected using a p-value < 0.05 and a q-value < 0.05.

2.9  Gene set enrichment analysis

Gene sets, including c5.all.v2023.1, Hallmark collections, and c2.cp.kegg.v2023.1, were retrieved from the Molecular 
Signatures Database (MSigDB). These sets were subsequently analyzed using Gene Set Enrichment Analysis (GSEA) 
software. Gene sets were considered significant if they met the specified thresholds: a nominal (NOM) p-value < 0.05 and 
a false discovery rate (FDR) q-value < 0.25.

2.10.  Tumor-infiltrating immune cell (TIC) analysis

The proportion of TICs in all THCA cases was quantified using the CIBERSORT deconvolution algorithm. Only cases 
demonstrating a p-value < 0.05 were included in downstream analyses.

2.11.  Ethical approval and informed consent

This study utilized exclusively de-identified, publicly available data from The Cancer Genome Atlas (TCGA) database. 
Therefore, ethical approval from an institutional review board (IRB) and individual patient consent were not required for 
this secondary analysis, as per the policies of our institution and the guidelines of PLOS ONE.

2.12.  Statistical analysis

All statistical computations were executed in the R programming environment (v4.2.2) accessed through the Comprehen-
sive R Archive Network (CRAN, https://cran.r-project.org).

3.  Results

3.1.  Analytical workflow of the study

The overall design and sequential steps of our bioinformatics analysis are summarized in Fig 1, outlining the process 
from data acquisition to functional and prognostic correlation. After retrieving RNA-seq data and matched clinical meta-
data from TCGA via the UCSC Xena platform, we applied ESTIMATE and CIBERSORT algorithms to computationally 

https://cran.r-project.org
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deconvolve TME composition in 571 THCA samples, quantifying TIC proportions and stromal constituents. Using median 
ImmuneScore/StromalScore thresholds to stratify samples into high/low immunity and high/low stromal groups, we iden-
tified differentially mutated genes (DMGs). Transcriptomic differential expression analysis based on these thresholds was 
subsequently performed, followed by functional enrichment analyses, including GO biological processes and KEGG path-
ways for differentially expressed genes (DEGs). Subsequent investigations focused on BRAF and NRAS genes, analyzing 
their correlations with overall survival (OS) and clinicopathological features. Finally, we integrated Gene Set Enrichment 
Analysis (GSEA) results with TIC distributions for comprehensive exploration.

3.2.  THCA patient profiles analyzed based on data provided by TCGA and UCSC-Xena

RNA sequencing expression datasets along with the associated clinical details for 571 individuals diagnosed with THCA 
were acquired from the TCGA and UCSC Xena platforms. Of these, 473 THCA specimens satisfied the predefined selection 
criteria, and the baseline clinicopathological characteristics of this analytical cohort are systematically detailed in Table 1.

3.3.  Detection of DEGs in individuals diagnosed with THCA

3.3.1.  Scores were correlated with THCA progression.  The ESTIMATE algorithm is commonly used to assess 
tumor purity. The computational framework infers tumor-infiltrating stromal and immune cell abundance from bulk RNA-
seq profiles, yielding tripartite metrics (Stromal/Immune/ESTIMATE Scores) that serve as non-invasive surrogates for 
TME characterization. To analyze the cellular composition of THCA tumors, we employed the ESTIMATE algorithm, which 

Fig 1.  Analytical workflow of the study.

https://doi.org/10.1371/journal.pone.0341123.g001

https://doi.org/10.1371/journal.pone.0341123.g001
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evaluates RNA-seq data to stratify patients into distinct groups based on immune and stromal characteristics. Specifically, 
we divided the cohort into high- and low-immunity groups using the median ImmuneScore, similarly categorizing patients 
into high- and low-stromal groups based on the median StromalScore, and further classified them into high- and low-
ESTIMATE groups according to the median ESTIMATEScore. This approach allowed us to systematically assess the 
tumor microenvironment’s immune and stromal components, providing insights into their potential influence on disease 
progression and therapeutic response.

We examined survival outcomes and clinical characteristics of thyroid cancer (THCA) cases across different risk 
groups. Our analysis revealed that the ESTIMATE algorithm-generated scores (ImmuneScore, StromalScore, ESTI-
MATEScore) showed no significant link to patients’ overall survival (OS) outcomes (Figs 2A, 2B and 2C), which indi-
cates that neither immune nor stromal cell proportions demonstrated a significant association with OS. Subsequently, 
the clinical data of THCA cases were evaluated to explore the association between TME scores and clinicopatho-
logical parameters (Figs 2D-O). The findings demonstrated a significant correlation between both the ImmuneScore 
and ESTIMATEScore with the stage classification of THCA (Figs 2D and 2F; p = 0.00045 and 0.0038, respectively). 
Additionally, StromalScore and ESTIMATEScore showed a strong correlation with T classification (Figs 2H and 2I; 

Table 1.  Clinicopathological characteristics statistics of THCA patients.

Clinical characteristics TCGA datasets 
(n = 473)

% of PTC in
each
subgroup(n)

%Immune
Score adj,
Median [IQR]

%Stromal
Score adj,
Median [IQR]n %

Age <60 363 76.7 99.4(361) 55.11 [48.45, 60.58] 44.89 [39.42, 51.55]

≥60 110 23.3 99.1(109) 52.92 [47.37, 58.07] 47.08 [41.93, 52.63]

Stage I 273 57.7 100(273) 55.41 [48.29, 60.83] 44.59 [39.17, 51.71]

II 50 10.6 100(50) 49.63 [41.33, 57.62] 50.37 [42.38, 58.67]

III 100 21.1 98.0(98) 55.07 [49.41, 59.42] 44.93 [40.58, 50.59]

IV 50 10.6 98.0(49) 53.2 [50.12, 60.34] 46.8 [39.66, 49.88]

T classification T1 133 28.1 100(133) 54.79 [47.34, 60.22] 45.21 [39.78, 52.66]

T2 160 33.8 99.4(159) 54.53 [47.31, 60.93] 45.47 [39.07, 52.69]

T3 160 33.8 98.8(158) 54.32 [49.23, 60.19] 45.68 [39.81, 50.77]

T4 19 4.0% 100%(19) 52.68 [49.21, 58.03] 47.32 [41.97, 50.79]

TX 1 0.2 100(1) 51.37 48.63

N classification N0 216 45.7 99.1(214) 48.96 [42.5, 56.14] 51.04 [43.86, 57.5]

N1 210 44.4 100(210) 55.35 [50.39, 61.47] 44.65 [38.53, 49.61]

NX 47 9.9 97.9(46) 54.22 [47.3, 60.01] 45.78 [39.99, 52.7]

M classification M0 264 55.8 99.6(263) 55.1 [49.16, 60.08] 44.9 [39.92, 50.84]

M1 7 1.5 85.7(6) 53.41 [52.18, 56.67] 46.59 [43.33, 47.82]

MX 202 42.7 99.5(201) 53.26 [46.18, 61.38] 46.74 [38.62, 53.82]

OS times (year) <1 year 52 11.0 100(52) 53.37 [47.38, 60.43] 46.63 [39.57, 52.62]

≥1 year 421 89.0 99.3(418) 54.62 [48.22, 60.29] 45.38 [39.71, 51.78]

Histological categories PTC 470 99.4

FTC 1 0.2

Undifferentiated 0 0.0

Medullary 0 0.0

Other 2 0.4

% ImmuneScore adj: data are expressed as the adjusted percentage of ImmuneScore.

% StromalScore adj: data are expressed as the adjusted percentage of StromalScore.

https://doi.org/10.1371/journal.pone.0341123.t001

https://doi.org/10.1371/journal.pone.0341123.t001
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Fig 2.  Analysis of the correlation between scores and survival period as well as clinicopathological features in THCA. (A-C) Kaplan-Meier 
survival analysis of THCA patients stratified by high/low ImmuneScore, StromalScore, and ESTIMATEScore (median cut-off). (D-O) The associations of 
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p = 0.0038 and 0.022, respectively). Simultaneously, ImmuneScore, StromalScore, and ESTIMATEScore were closely 
linked to the N classification (Figs 2J, 2K and 2L; p = 0.00037, 0.0046 and 0.00059, respectively). These findings 
indicate that immune and stromal components are pivotal regulators of THCA progression, particularly tumor inva-
sion and metastasis.

3.3.2.  DEGs were recognized using ImmuneScores and StromalScores.  Although no significant association 
with overall survival was found, the TME-derived stromal and immune signatures showed significant correlations 
with several key clinicopathological features, suggesting a link to THCA progression. Consequently, we proceeded 
to perform comparative analyses between high- and low-immunity cases based on median ImmuneScore thresholds 
and similarly compared high-stromal cases with low-stromal cases according to the median StromalScore cutoffs. 
The comparative analysis revealed 503 DEGs when stratified by the median ImmuneScore, consisting of 437 
upregulated genes and 66 downregulated genes. Similarly, 355 DEGs were derived from the comparison using 
the median StromalScores, including 350 upregulated and 5 downregulated genes. The top 20 upregulated and 
downregulated genes were screened using absolute log

2
 FC values (Figs 3A-3D). The intersecting ImmuneScore 

and StromalScore DEGs were considered target DEGs (Figs 3E and 3F), and further enrichment analysis was 
performed.

GO enrichment analysis demonstrated significant overrepresentation of immune-related biological processes among 
290 DEGs (the combined set of DEGs that overlapped (both up- and down-regulated) between the ImmuneScore and 
StromalScore), as illustrated in Fig 3G, including “leukocyte cell-cell adhesion,” “regulation of T cell activation,” “leukocyte 
migration,” and “lymphocyte-mediated immunity.” KEGG enrichment analysis further demonstrated the significant enrich-
ment of biological processes associated with immune infiltration. Key pathways identified included “cytokine-cytokine 
receptor interactions,” “cell adhesion molecules,” “chemokine signaling pathways,” “Th1 and Th2 cell differentiation,” and 
the “NF-κB signaling pathway,” as shown in Fig 3H.

3.4.  Identification of DMGs in patients with THCA

The immune system plays a complex and multifaceted role in tumorigenesis. Cell types associated with chronic inflamma-
tion and tissue repair can promote tumorigenesis, whereas immune mechanisms that recognize and kill cancer cells can 
inhibit the formation of tumors. To further reveal the impact of the TME on somatic gene mutations in THCA, we quantified 
median ImmuneScore and StromalScore values to explore whether there were differences in genetic mutations between 
the high- and low-immune groups and between the high- and low-stromal groups. The 30 most frequently mutated genes 
in each group are shown in Figs 4A, 4B, 4C and 4D. Intriguingly, BRAF, NRAS, TG, and TTN were the most frequent 
mutations in the four cohorts, which have been reported to regulate a variety of carcinoma biological processes [25–28], 
mainly the initiation and development of THCA.

Interestingly, logistic regression analysis identified BRAF (OR=3.167, 95% CI 2.149-4.705, p<0.0001 and OR=2.248, 
95% CI 1.537–3.304, p < 0.0001), NRAS (OR=0.193, 95% CI 0.077–0.423, p = 0.0001 and OR=0.188, 95% CI 
0.075–0.411, p < 0.0001) and HRAS (OR=0.125, 95% CI 0.020–0.450, p = 0.006 and OR=0.286, 95% CI 0.080–0.823, 
p = 0.031)—genes commonly mutated in THCA—as the top-ranked differentially mutated genes (DMGs) based on p-value 
(Figs 4E, 4F and S1 Table). The analysis further suggested that changes in the tumor microenvironment (TME) of THCA 
patients correlate with increased mutation frequencies. Specifically, high immune and stromal cell infiltration may be asso-
ciated with elevated mutation rates in BRAF, a key driver gene in THCA.

ImmuneScore, StromalScore, and ESTIMATEScore with the clinicopathological features (including the stage, T, M, and N classification) in THCA were 
evaluated separately. The Kruskal-Wallis test is utilized for analyzing multiple independent samples (Figs D-F and Figs G-I), whereas the Wilcoxon rank-
sum test is employed for comparing two independent samples (Figs J-L and Figs M-O).

https://doi.org/10.1371/journal.pone.0341123.g002

https://doi.org/10.1371/journal.pone.0341123.g002
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Fig 3.  DEGs in ImmuneScore and StromalScore; Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 
analyses were performed to analyze DEGs. (A) A volcano plot was generated to visualize differentially expressed genes (DEGs) based on Immun-
eScore. Genes exhibiting notable upregulation are indicated by red dots, whereas those with notable downregulation are marked by blue dots. Genes 
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3.5.  DMGs expression exhibited a correlation with the clinicopathological features observed in patients 
diagnosed with THCA

The occurrence and progression of differentiated THCA are largely attributed to the dysregulation of the MAPK signaling 
pathway, which involves specific genetic alterations such as point mutations in the RAF and RAS genes [29]. The BRAF 
V600E mutation is frequently observed in PTCs as well as in ATCs that originate from pre-existing PTC. Mutations in RAS 
family genes are frequently observed in FTC and in follicular variants of PTC. In addition, TERT promoter mutations often 
occur in aggressive PTC [30].

In our study, THCA samples were categorized into high- and low-expression cohorts based on the median expression 
levels of the DMGs (BRAF, NRAS, and HRAS). However, no significant differences in survival outcomes were identified 
(S1 Fig). As shown in Fig 5A, BRAF and NRAS expression levels were significantly higher in normal samples(n = 55) 
than in THCA samples(n = 473) (2.973 ± 0.387 vs 2.852 ± 0.465, p = 0.019 (BRAF) and 5.214 ± 0.4117 vs 4.945 ± 0.562, 
p < 0.001(NRAS), respectively). Conversely, HRAS expression was notably reduced compared with that in THCA sam-
ples (5.203 ± 0.420 vs 5.581 ± 0.558, p < 0.001). The correlation analyses with clinicopathological characteristics, as 
illustrated in Figs 5D-5O, demonstrated that BRAF gene expression exhibited significant associations with both the stage 
(p = 0.0051) and T classification (p = 0.032) of THCA, whereas NRAS gene expression was linked solely to the stage clas-
sification (p = 0.044). After careful analysis, our study found no statistically significant association between HRAS expres-
sion levels and any of the clinicopathological features examined in THCA patients. Therefore, we selected BRAF and 
NRAS as the main markers for subsequent studies.

3.6.  GSEA of BRAF and NRAS

In light of the aforementioned findings, we deduced that the expression levels of BRAF and NRAS showed significant 
correlations with key clinicopathological features in patients with THCA, suggesting these molecular markers may play 
important roles in disease characteristics and progression. Furthermore, gene set enrichment analysis (GSEA) was per-
formed for cohorts with high or low expression of BRAF or NRAS, respectively (Figs 6 and 7).

In BRAF-low-expressing THCA cases, genes were predominantly enriched in biological processes associated with 
immunity, such as “leukocyte migration involved in inflammatory responses,” “natural killer cell chemotaxis,” “peptide 
antigen assembly with MHCII protein complexes,” and “the regulation of antigen processing and presentation” (Fig 6A). 
In the high BRAF expression cohort, the gene signatures converged on core biological pathways including “the positive 
regulation of the circadian rhythm,” “thyroid hormone generation,” and “metabolic processes.” Additionally, GSEA of the 
hallmark gene set within the BRAF-high cohort revealed significant enrichment in “uv_response_dn,” “protein secretion,” 
“mitotic spindle,” “bile acid metabolism,” “heme metabolism,” “unfolded protein response,” and “androgen response” path-
ways (Figs 6C and 6D). KEGG analysis revealed that the predominant pathways were the “mTOR,” “ERBB,” “adipokine,” 
“TGFβ,” and “neurotrophic factor” signaling pathways (Figs 6E, 6F).

lacking notable changes in expression are displayed as gray dots. The thresholds for significance were set as follows: FDR < 0.05, |log2 FC| > 1, and 
p < 0.05. (B) A heatmap of DEGs was generated by comparing the high ImmuneScore cohort with the low ImmuneScore cohort. The row labels cor-
respond to gene names, while the column labels represent sample IDs; these are not displayed in the figure. DEGs were screened via Wilcoxon test 
(FDR < 0.05; |log2FC| > 1). (C) A volcano plot was generated to visualize DEGs based on StromalScore. Genes exhibiting notable upregulation are 
indicated by red dots, whereas those with notable downregulation are marked by blue dots. Genes lacking notable changes in expression are displayed 
as gray dots. The thresholds for significance were set as follows: FDR < 0.05, | log2 FC | > 1 and p < 0.05. (D) A heatmap of DEGs was constructed by 
comparing the high StromalScore cohort with the low StromalScore cohort. The row labels correspond to gene names, while the column labels repre-
sent sample IDs; these are not displayed in the figure. DEGsscreened by Wilcoxon rank-sum test (FDR < 0.05; |log2FC| > 1). (E) Venn diagram showing 
the overlap of upregulated DEGs between immuneScore and StromalScore. (F) Venn diagram showing the overlap of downregulated DEGs between 
immuneScore and StromalScore. (G, H) GO and KEGG enrichment analyses were performed on the 290 DEGs (the combined set of DEGs that over-
lapped (both up- and down-regulated) between the ImmuneScore and StromalScore) using thresholds of p < 0.05 and FDR < 0.05; terms meeting these 
criteria were considered significantly enriched.

https://doi.org/10.1371/journal.pone.0341123.g003

https://doi.org/10.1371/journal.pone.0341123.g003
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Fig 4.  Comparative analysis of somatic mutations across high- versus low-immunity cohorts and high- versus low-stromal cohorts, along 
with the discernment of overlapping genes within DMGs. (A-B) The waterfall diagram depicts the mutation patterns of the 30 most commonly 
altered genes in the immunity cohorts. The middle section displays the various mutation categories present in individual THCA patients. The top section 
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The biological processes in the NRAS low-expression cohort were primarily involved in “the positive regulation of 
cilium movement,” “mitochondrial proton-transporting ATP synthase complex coupling FA,” “proteasome core complex 
beta subunit complex,” and “benzodiazepine receptor activity” (Fig 7A). Within the NRAS high-expression cohort, genes 
were primarily concentrated in biological processes, including “the establishment of sister chromatid cohesion,” “pro-B 
cell differentiation,” “peptidoglycan muralytic activity,” and “transforming growth factor beta receptor activity.” In addition, 
GSEA of the hallmark gene set in the NRAS high-expression cohort revealed significant enrichment in pathways, such as 
the “protein secretion,” “angiogenesis,” “hypoxia,” “heme metabolism,” “glycolysis,” and “inflammatory response” pathways 
(Figs 7C, 7D). KEGG analysis mainly enriched “the TGFβ signaling pathway,” “apoptosis,” “FcγR-mediated phagocytosis,” 
“neurotrophic factor signaling pathway,” and “cancer-related pathways” (Figs 7E, 7F).

3.7.  Relationship between BRAF and TICs infiltration levels

To better understand how BRAF expression interacts with the immune microenvironment in THCA, we employed the 
CIBERSORT algorithm to analyze and profile 21 distinct immune cell populations within tumor samples and quantify the 
proportions of various TIC subtypes (Figs 8A and 8B). Eleven TIC types exhibited a strong correlation with BRAF expres-
sion levels (Figs 8C-8E). Our results showed that “B cells native,” “CD4 memory resting cells,” “NK resting cells,” “M2 
macrophages,” and “eosinophils” revealed a significant positive correlation with BRAF expression, while “plasma cells,” 
“CD8 T cells,” “CD4 memory activated T cells,” “regulatory T cells (Tregs),” “activated NK cells,” and “activated and M1 
macrophages” showed an inverse correlation with BRAF expression. These findings substantiate that BRAF expression 
has a considerable impact on immune activity.

3.8.  Correlation between BRAF and common immune checkpoints

To assess the effect of immunotherapy on BRAF expression, our study explored the relationship between BRAF expres-
sion levels and the presence of common immune checkpoint proteins (ICPs). We observed correlations between BRAF 
expression and ICPs [“programmed cell death 1 (PD1),” “programmed cell death ligand 1 (PDL1),” “cytotoxic T lymphocyte 
antigen 4 (CTLA4),” “B-lymphocyte antigen B7-2 (CD86),” “T cell immunoglobulin mucin 3 (TIM3),” “lymphocyte activation 
gene-3 (LAG3),” and “T cell immune receptor with Ig and ITIM domains (TIGIT)”], suggesting that high ICP expression 
(PD1, CTLA4, CD86, TIM3, LAG3, and TIGIT) occurred in the low BRAF expression group. The results shown in Fig 8F 
illustrate that THCA patients with diminished BRAF expression demonstrated a tendency toward enhanced immunother-
apy efficacy, potentially due to the upregulation of ICP expression levels.

3.9.  Association of NRAS with TICs infiltration levels and immune checkpoint expression in THCA

Our analysis further explored the correlation between NRAS expression levels and the proportions of TICs. We found 
that the four TICs were strongly correlated with NRAS expression (Figs 9A-C). The results showed that the abundance 
of “resting CD4 memory cells” was positively correlated with NRAS expression, whereas that of “CD8 T cells,” “regula-
tory T cells (Tregs),” and “activated NK cells” revealed a negative correlation with NRAS expression levels. Our inves-
tigation further examined the relationship between NRAS levels and commonly observed immune checkpoint proteins 

illustrates the frequency of mutations in every THCA patient. On the right, bar charts represent the occurrence rates and categories of genetic alterations 
in the immune cohorts. The lower section serves as a key for the different categories of mutations. (C-D) The waterfall diagram depicts the mutation 
patterns of the 30 most commonly altered genes in the stromal cohorts. The middle section displays the various mutation categories present in individual 
THCA patients. The top section illustrates the frequency of mutations in every THCA patient. On the right, bar charts represent the occurrence rates and 
categories of genetic alterations in the stromal cohorts. The lower section serves as a key for the different categories of mutations. (E) The forest plot 
illustrates the markedly different DMGs between the high- and low-immunity cohorts, with the threshold set at p < 0.05. (F) The forest plot illustrates the 
markedly different DMGs between the high- and low-stromal cohorts, with the threshold set at p < 0.05.

https://doi.org/10.1371/journal.pone.0341123.g004

https://doi.org/10.1371/journal.pone.0341123.g004
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Fig 5.  The varying expression levels of BRAF, NRAS, and HRAS in the cases examined and their relationship to the clinicopathological features 
in THCA patients. (A-C) BRAF, NRAS, and HRAS expression was compared between normal(n = 55) and tumor tissues(n = 473) using Wilcoxon rank-sum 
tests, with thresholds set at p < 0.05. (D-O) The association between BRAF/NRAS/HRAS expression levels and clinicopathological features (including the 
stage, T, M, and N classification) in THCA were evaluated separately. The Wilcoxon rank-sum test is utilized for analyzing two independent samples.

https://doi.org/10.1371/journal.pone.0341123.g005

https://doi.org/10.1371/journal.pone.0341123.g005
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Fig 6.  Gene Set Enrichment Analysis (GSEA) conducted on specimens exhibiting both diminished and elevated BRAF expression levels. (A) 
Gene sets enriched within samples with low BRAF expression in the C5 collection (based on GO gene sets). (B) Gene sets enriched within samples with 
high BRAF expression in the C5 collection. (C-D) Ridge plots were used to display the gene sets enriched in the HALLMARK collection for samples with 
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(ICPs), revealing elevated expression patterns of these ICPs (PDL1, CD86, TIM3, and TIGIT) in the high-NRAS group. 
The results shown in Fig 9D indicate that patients with elevated NRAS expression showed improved immunotherapy 
responses, likely owing to the high ICP levels.

4.  Discussion

This study focused on identifying immune-related genes that show differential mutations and expression patterns 
within the tumor microenvironment (TME) of THCA, while also investigating the potential relationship between the 
TME and specific gene mutations in this context, thereby providing a theoretical basis for immunotherapy in THCA. 
Our bioinformatics analyses identified BRAF, NRAS, and HRAS as DMGs that consistently appeared in both high- 
and low-immunity groups, as well as in high- and low-stromal groups, suggesting their potential role across different 
TME conditions. In THCA, owing to higher immune infiltration and more stroma in the TME, the mutation rate of 
BRAF was higher, whereas the mutation rates of NRAS/HRAS, which are upstream genes of BRAF, were signifi-
cantly reduced. Finally, correlations between BRAF/NRAS mutations and common ICPs were analyzed to assess 
the immunotherapy responses to targeted ICIs in patients with THCA. BRAF was significantly correlated with PD1, 
CTLA4, CD86, LAG3, TIM3, and TIGIT, which could be identified as promising targets for clinical interventions in 
patients with THCA.

THCA currently holds the distinction of being the most prevalent endocrine-related malignancy globally, with docu-
mented cases demonstrating a steady upward trend in occurrence rates annually. Following conventional treatments, 
such as surgical resection and/or radioactive iodine therapy, most patients with THCA achieve a favorable prognosis; how-
ever, 5–15% progress to an advanced stage [31,32]. Conventional treatment approaches are largely ineffective against 
advanced malignant THCA, which is associated with a high risk of recurrence and metastasis, and a lack of effective 
therapeutic strategies. Patients with advanced and undifferentiated THCA may benefit from immunotherapy [33]. Conse-
quently, elucidating the bidirectional molecular signaling and spatiotemporal regulatory networks between THCA and its 
TME constitutes a critical research imperative and provides new ideas for formulating more effective treatment strategies 
to promote the treatment of advanced THCA.

From the perspective of the TME, the pathogenesis of THCA is a multifactorial process involving intricate cellular inter-
actions. Our results identified 290 differentially expressed genes (DEGs) enriched in multiple pathways relevant to this 
process: The “NF-κB signaling pathway” and “cytokine-cytokine receptor interactions” form the central command, initiating 
and sustaining a chronic inflammatory state and aberrant cell communication within the tumor [34], thereby creating a 
prerequisite for tumor growth. Building upon this foundation, the “chemokine signaling pathway”, by mediating “leukocyte 
migration”, precisely recruits inhibitory immune cells—including regulatory T cells and M2 macrophages—to the tumor 
site [35,36]. This subsequently suppresses “lymphocyte-mediated immunity” through mechanisms like the “regulation of 
T cell activation”, leading to the failure of anti-tumor immune responses and achieving immune escape [37]. Simultane-
ously, “cell adhesion molecules” involved in processes such as “leukocyte cell-cell adhesion” not only provide the basis 
for immune cell infiltration but also enhance the migratory and invasive capabilities of the tumor cells themselves [38,39]. 
Ultimately, these mechanisms, coupled with imbalances in “Th1 and Th2 cell differentiation”, collectively promote lymph 
node metastasis and disease progression in THCA [40].

A comprehensive analysis of TICs helps elucidate the mechanism of tumor-immune escape and explains the rea-
sons for cancer treatment failure, which is key to improving response rates and identifying immunotherapy targets 

high BRAF expression. Panel D shows the distribution of log FC for the gene sets. (E-F) Ridge plots were used to display the gene sets enriched in the 
C2 collection (including KEGG gene sets) for samples with high BRAF expression. Panel F shows the distribution of log FC for the gene sets. Statistical 
cutoffs were set at NOMp < 0.05 and FDRq < 0.25.

https://doi.org/10.1371/journal.pone.0341123.g006

https://doi.org/10.1371/journal.pone.0341123.g006
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Fig 7.  Gene Set Enrichment Analysis (GSEA) conducted on specimens exhibiting both diminished and elevated NRAS expression levels. (A) 
Gene sets enriched within samples with low NRAS expression in the C5 collection (based on GO gene sets). (B) Gene sets enriched within samples with 
high NRAS expression in the C5 collection. (C-D) Ridge plots were used to display the gene sets enriched in the HALLMARK collection for samples with 
high NRAS expression. Panel D shows the distribution of log FC for the gene sets. (E-F) Ridge plots were used to display the gene sets enriched in the 
C2 collection (including KEGG gene sets) for samples with high NRAS expression. Panel F shows the distribution of log FC for the gene sets. Statistical 
cutoffs were set at NOMp < 0.05 and FDRq < 0.25.

https://doi.org/10.1371/journal.pone.0341123.g007

https://doi.org/10.1371/journal.pone.0341123.g007
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Fig 8.  Relationship between BRAF and TICs ratios, as well as the correlation between BRAF and ICPs in THCA. (A) Bar chart illustrating the 
distribution percentages of 21 different types of TICs within THCA tumor specimens. The labels on the columns of the graph correspond to each sam-
ple’s ID. (B) The heatmap visually represents the correlations among 21 types of TICs, where each small box contains a numerical p-value indicating 
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[41]. In this study, patients with THCA were stratified based on the different TME components, using the ESTIMATE 
algorithm. We found that variations in the tumor immune microenvironment significantly influenced gene mutations 
in THCA. Higher levels of immune infiltration and stromal content were associated with an increased BRAF muta-
tion rate while the mutation rate of NRAS/HRAS was significantly lower. The variation in BRAF/NRAS/HRAS gene 
mutations, influenced by changes in the tumor immune microenvironment, could offer a theoretical foundation for 
advancing immunotherapy strategies tailored to THCA. This connection highlights how shifts in immune pressure 
might shape the genetic landscape of tumors, potentially revealing new targets or resistance mechanisms that 
could inform more effective treatment approaches. Understanding these dynamics may help researchers design 
immunotherapies that account for or even exploit these mutation patterns, ultimately improving outcomes for THCA 
patients.

The V600E mutation in the BRAF gene is a clinically validated biomarker for THCA, which primarily drives tumori-
genesis and progression via constitutive activation of the MAPK signaling pathway. This mutation induces sustained 
downstream signaling, promoting uncontrolled cellular proliferation central to THCA pathogenesis [42]. The BRAF 
V600E mutation can promote tumor immune escape by enhancing PD-L1 expression and inducing or recruiting sup-
pressive immune cell populations to disrupt host immune surveillance and responses, thus promoting the occurrence 
and development of THCA [43]. Therefore, BRAF is often selected as a therapeutic target for THCA. However, a major 
limitation of targeted therapy is that tumor cells tend to develop tolerance over time. In contrast, a combination of tar-
geted therapy and immunotherapy can significantly alleviate the progression of malignant THCA and enhance overall 
survival [44,45].

There are five main forms of immunotherapy: oncolytic virus therapy, cancer vaccines, cytokine therapy, adoptive 
cell transfer, and ICIs [46]. Among these, progress in ICIs development has been the most remarkable. ICPs are 
molecules that synergistically suppress signaling pathways to maintain immune tolerance; however, they are often 
used in tumor tissues to evade immune responses. The mechanism of ICIs involves blocking ICPs to reactivate T 
cells, triggering cytotoxic activity against tumor cells. This effect is mediated through pathways like coinhibitory or 
costimulatory signaling, which restore or enhance antitumor immunity [47,48]. It was observed in this study that the 
common ICPs PD1, CTLA4, CD86, LAG3, TIM3, and TIGIT may serve as alternative targets for immunotherapy in 
patients with THCA. These two immune checkpoint molecules (PD-1 and CTLA4) exert inhibitory effects on T cell 
function by modulating signal transduction at the immunological synapse [49,50]. PD-1/PDL1 and CTLA4 inhibitors 
are commonly used worldwide and have become indispensable in the therapeutic management of many common 
malignancies. Several studies have reported the therapeutic effects of PD1/PDL1 inhibitors in THCA. PD1/PDL1 
inhibitors combined with BRAF inhibitors (BRAFi) can affect tumor regression and intratumoral immune responses 
in ATC. Tumor volumes were significantly reduced in the combination treatment group, and PD1/PDL1 inhibitors 
enhanced the effect of BRAFi on tumor regression. PD-1 expression may be a characteristic of thyroid tumors infil-
trating CD8 + and CD4 + T cells, indicating that ICI therapy may be an effective method for enhancing THCA cytotoxic 
T cell responses, thereby controlling tumors [51].

the statistical significance of the correlation between two specific cell types. The color intensity of each box reflects the strength of the correlation, with 
darker shades representing stronger associations, while the Pearson correlation coefficient is used to quantify and test the significance of these relation-
ships. (C) The scatter plot illustrates the correlation between the proportions of 13 types of TIC and BRAF expression levels, with statistical significance 
set at p < 0.05. Each graph features a blue line representing the linear regression model, which visually depicts the relationship between immune cell 
proportions and BRAF expression. The strength and significance of this association were evaluated using the Pearson correlation coefficient, providing a 
quantitative measure of the observed relationships. (D) Venn diagram identifies 11 BRAF-correlated TIC subtypes, with corresponding violin plots show-
ing distribution differences and scatter plots illustrating correlation patterns. (E) The violin plot shows the differences in the proportions of 21 immune cell 
types between THCA samples with high and low BRAF expression, with the Wilcoxon rank-sum test utilized to determine statistical significance. (F) The 
relationship between ICPs expression level and high-/low- BRAF expression groups. *p < 0.05, **p < 0.01, ***p < 0.001.

https://doi.org/10.1371/journal.pone.0341123.g008

https://doi.org/10.1371/journal.pone.0341123.g008


PLOS One | https://doi.org/10.1371/journal.pone.0341123  February 12, 2026 19 / 22

Fig 9.  Correlation between NRAS with the TICs ratios and common ICPs. (A) The scatter plot demonstrates the correlation between the propor-
tions of six types of TICs and NRAS expression levels, with statistical significance (p < 0.05). Each graph features a blue line representing the linear 
regression model, which visually depicts the relationship between immune cell proportions and NRAS expression. The strength and significance of this 
association were evaluated using the Pearson correlation coefficient, providing a quantitative measure of the relationship. (B) Venn diagram identifies 
four NRAS-correlated TIC subtypes. Distribution differences are shown in violin plots, while scatter plots quantify association patterns. (C) The violin plot 
illustrates the differential ratios of 21 immune cell types in relation to the THCA samples categorized by high or low NRAS expression, with the Wilcoxon 
rank-sum test utilized to determine statistical significance. (D) The relationship between ICP expression level and high-/low- NRAS expression groups. 
*p < 0.05, **p < 0.01, ***p < 0.001.

https://doi.org/10.1371/journal.pone.0341123.g009

https://doi.org/10.1371/journal.pone.0341123.g009
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Using comprehensive bioinformatics analysis, we found that alterations in the tumor immune microenvironment could 
drive mutations in BRAF, NRAS, and HRAS in THCA, thus playing a role in tumor progression and metastasis. Based on 
the correlation analysis between BRAF/NRAS and ICPs, ICPs such as PD1/PDL1, CD86, TIM3, and TIGIT may be alter-
native targets for immunotherapy in THCA.

4.1.  Limitations of the study

This study has several limitations. First, as a retrospective analysis based solely on the TCGA public database, the clinico-
pathological information may be incomplete, and the predominantly Western origin of the samples introduces potential 
ethnic bias. Therefore, the conclusions require further validation in multi-center independent cohorts. Second, although 
the bioinformatics methods used can reveal associations, they cannot establish functional causality. Finally, this study 
did not elucidate the specific mechanisms by which the tumor immune microenvironment leads to differences in gene 
mutations and lacks experimental validation. Consequently, the current conclusions are preliminary, and future work must 
incorporate in vitro and in vivo experiments as well as multi-ethnic cohort data to thoroughly validate the mechanistic roles 
of the identified genes and pathways.
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