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Abstract 

Older adults exhibit heterogeneous immune responses to COVID-19 vaccination, yet 

the relative contributions of age, comorbidity, vaccine platform, and infection history 

to antibody durability remain incompletely defined. Understanding these determinants 

is essential to inform booster strategies in ageing populations. We conducted a longi-

tudinal observational study of 300 participants (250 aged ≥60 years and 50 younger 

controls) followed for up to 15 months. Anti-spike (anti-S) antibody responses were 

assessed at four event-anchored timepoints: ≤ 3 months post-primary vaccination 

(TP1), ~ 3 months post-first booster (TP2), 6–9 months post-first booster capturing 

waning immunity (TP3), and ≤3 months post-second booster where available (TP4). 

Multivariable log-linear regression models were used to identify independent deter-

minants of antibody levels, with additional analyses stratified by infection status and 

vaccine platform. Among older adults, 78.8% had moderate-to-severe comorbidity 

burden, 40.0% were pre-frail, and only 16.8% received a second booster. At TP3, 

older age was associated with lower antibody levels in univariable analysis (GMR 

0.81, 95% CI 0.68–0.97) but not after adjustment (aGMR 0.78, 95% CI 0.51–1.22, 

p = 0.279). Independent predictors of higher TP3 antibody levels included female 

sex (aGMR 1.24, 95% CI 1.02–1.51, p = 0.028), prior SARS-CoV-2 infection (aGMR 

1.39, 95% CI 1.14–1.71, p = 0.001), and mRNA (aGMR 5.16, 95% CI 3.57–7.47, 

p=<0.001) or viral vector boosters (aGMR 6.05, 95% CI 4.03–9.08, p=<0.001), while 

renal disease was associated with lower responses (aGMR 0.71, 95% CI 0.54–0.94, 
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p = 0.017). Similar associations were observed at TP4. Frailty and sarcopenia 

were not independently associated with antibody levels. Neutralising antibodies 

against Omicron were absent after primary vaccination and detected in only 25.9% 

of infection-naïve older adults after the first booster. Sustained humoral immunity 

following COVID-19 vaccination is driven primarily by vaccine platform and immune 

history rather than chronological age or geriatric syndromes alone. Waning immunity 

unmasks vulnerability in older adults, while low uptake of second boosters highlights 

a critical gap between immunological risk and vaccine utilisation. These findings 

support targeted, equity-focused booster strategies prioritising highly immunogenic 

platforms and high-risk older adults.

Introduction

Globally, there have been over 778 million confirmed cases of the coronavirus dis-
ease 2019 (COVID-19), including 7,095,536 deaths, reported to the World Health 
Organisation [1] and 5,301,147 cases and over 37 351 deaths in Malaysia by the 
beginning of May 2025 [2] with recent slight surges in cases, deemed as the peri-
odic COVID-19 waves that are expected throughout the year. The emergence of the 
COVID-19 pandemic highlighted the vulnerability of older individuals to severe illness 
and mortality with transmissible respiratory disease. Mortality from COVID appears 
to increase exponentially after 50 years of age, and most fatalities occurred in those 
aged 80 years and over [3,4]. Infection with the severe adult respiratory syndrome 
coronavirus-2 (SARS-CoV-2), however, may present with the full spectrum of symp-
toms ranging from asymptomatic to catastrophic illness and death in every age group 
including the oldest old. This variability in health status and outcomes may be under-
stood through a lens of frailty, which is a state of increased vulnerability to adverse 
health outcomes [5].

Immunity to SARS-CoV-2 induced either through natural infection or vaccination 
provides protection against reinfection and reduces the risk of clinically significant 
outcomes [6]. Seropositive recovered subjects have been estimated to have 89% 
protection from reinfections, and vaccine efficacies from 50 to 95% have been 
reported [7].In Malaysia, a total of 224.4 vaccine doses has been administered per 
100 population, with 85.1 vaccine-persons with complete primary series per 100 
population but only 50.5 vaccine-persons with at least one booster or additional dose 
per 100 population [1].Immune responses tend to wane and become dysregulated 
with age, through processes known as immunosenescence [5]. Notably, immunose-
nescence does not occur uniformly across all older adults as they age. Indeed, this 
variability is hypothesized to be a contributor to frailty itself [8]. Frailty has been cor-
related with decreased effectiveness of influenza, varicella-zoster, and pneumococcal 
pneumonia vaccines [9–12].

While vaccination against SARS-CoV-2 has become a crucial strategy to protect 
high-risk populations, heterogenicity exists in age-related immunogenicity [13–15]. 
The reduction in death post-COVID-19 hospitalisations after vaccinations is 22.5% 
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lower compared to unvaccinated adults aged 80 years and over [16]. Neutralising antibodies titres are predictive of pro-
tection against severe infection [17]. Reduced neutralising activities against emerging variants of concern (VOC) has been 
recognised in older adults [18]. The duration of protective immunity is also presently unclear. Primary immune responses 
inevitably wane, with ongoing transmission of increasingly concerning viral variants that may escape control by both 
vaccine-induced and convalescent immune responses [6]. A critical challenge is to identify the immune correlate (s) of 
protection from SARS-CoV-2 vaccines in older persons and predict how these guides decisions for future booster doses 
or even other annual vaccines like influenza.

This study aims to determine the antibody response following the primary series and booster doses of SARSCoV-2 
vaccines, measured with a quantitative antibody assay (Roche Elecsys SARS-CoV-2 S) dependent on the different 
vaccines used. A differential impact of age, frailty, comorbidities and sarcopenia on the antibody response as well as 
neutralising abilities is also reported here. These findings will help establish the immune responses of older persons to 
the COVID-19 vaccine in Malaysia, potentially informing future policies on the National Immunization Programme for older 
persons.

Methods

Study approval

The research activities in this study, Prospective Evaluation of Antibody Response Post-COVID-19 Vaccination in Older 
Persons ≧ 60 years (PEARL 60), were implemented under conditions of written informed consent with protocols approved 
by the medical ethics committee at the Universiti Malaya Medical Centre (UMMC; no. 202195−10559). The written 
informed consent permitted storage and de-identified data sharing for research.

Study design and participants

This study was initiated at the peak of Malaysia’s second wave of the COVID-19 pandemic.
Cases were conveniently recruited from the hospital’s phlebotomy clinic if they met the inclusion criteria stated below 

from 19th September 2021, while controls were healthy caregivers of cases or medical students at the UMMC. Recruit-
ment ended on 30th September 2021 once a total of 300 participants (cases and controls) were recruited. Participants 
were initially followed up for 12 months (October 2021-September 2022) but this was extended to 18th December 2022 as 
soon as second boosters were offered to complete a 15-months follow-up.

Blood sampling was anchored to the most recent antigenic exposure, defined as either completion of the primary vac-
cine series or receipt of a booster dose. Unless participants were able to give the date of their symptomatic SARS-CoV-2 
infection, we used anti-N positivity to suggest a naturally-acquired infection. Four timepoints (TP) were designated: TP1 
(≤3 months after completion of the primary vaccine series – captures early post primary response), TP2 (approximately 
3 months after the first booster – allows direct comparison with TP1), TP3 (6–9 months after the first booster – captures 
waning immunity), and TP4 (≤3 months after the second booster, where available – captures sustained immunity due 
to booster). By using this event-anchored approach rather than fixed calendar months, we accounted for variability in 
vaccine platform, rollout schedules, and infection events during the study period. For all analyses, results were further 
stratified by vaccine platform (mRNA, viral vector, inactivated) and infection status (infection-naïve vs previously infected, 
determined by anti-N serology and clinical history.

Inclusion and exclusion criteria

For cases, the inclusion criteria were age ≧ 60 years, attending medical subspecialty clinics (geriatrics, cardiology, neurol-
ogy and nephrology) and primary care clinics after completion of their primary series at recruitment with one and/ or more 
comorbidities; namely diabetes mellitus, ischemic heart disease, stroke, chronic kidney disease and asthma. Controls are 
younger, healthy adults with no known comorbidities and completion of primary vaccine series at recruitment.
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The exclusion criteria were any active cancer (untreated or undergoing chemotherapy or immunotherapy) and any 
immunosuppressive drugs taken for non-cancerous conditions.

In this study, younger, healthy adults were selected to serve as a reference group representing the baseline or optimal 
immune response. Younger, healthy adults have a robust and well-regulated immune system, free from the confounding 
effects of age-related immune decline.

Using an online sample size calculator by Cleveland Clinic [19], at least total 136 samples; 113 cases and 23 controls 
will be required to have a confidence level of 95%, powered at 0.8, with probability of having frail cases with immunose-
nescence of about 20%. Taking into account possible large dropout rates with Movement Control Orders (MCO) imple-
mented nationally, the study team had recruited 250 cases and 50 healthy participants as healthy controls.

Patient data

A standardised data collection form was used to extract relevant clinical information from the electronic medical records.
Data on demography, comorbidities, Charlson’s Comorbidity Index (CCI), vaccination status, dates and types of vac-

cines received, dates and types of boosters received, prior COVID-19 infection, frailty using the FRAIL scale, and sarco-
penia using the SARC-F scale were collected.

The FRAIL scale [20], a 5-item self-reported screening instrument for frailty, has been identified as practical for use in 
identifying frailty in the general practice setting. The FRAIL scale has demonstrated preliminary evidence in favour of its 
predictive validity for mortality. The score ranges from 0–5, with scores of 0 suggesting robust, 1–2 suggesting pre-frail, 
and ≧3 suggesting frail (S1 Table in Supplementary).

The SARC-F questionnaire has been developed as a rapid diagnostic test for sarcopenia [21]. The self-reported 
SARC-F components include strength, assistance with walking, rising from a chair, climbing stairs and falls. The 
scores range from 0 to 10, with 0–2 points for each component and a score of ≧4 suggesting sarcopenia (S2 Table in 
Supplementary).

Laboratory assays

Table 1 below summarises the assays used.

Statistical analysis

Statistical analyses were performed using the IBM SPSS Statistics Version 26 (SPSS, Chicago, IL, USA). Frequencies 
were compared between groups (younger vs older persons) using the χ2 test with unpaired, non-parametric Kruskal–Wallis 

Table 1.  List of different assays used.

Assay Name Analyzer/ Kit Detection Target Units/ Index Reactive 
Cut-off

Purpose Usage in Study

Elecsys Anti-
SARS-CoV-2 S

COBAS 8000 
(Roche®, 
Germany)

Spike (S) protein 
antibodies

U/mL (BAU/mL 
equivalent)

≥ 0.80 U/
mL

Quantify anti-S 
antibodies from 
vaccines

All samples in all 4 time points

Elecsys Anti-
SARS-CoV-2 N

COBAS 8000 
(Roche®, 
Germany)

Nucleocapsid (N) 
protein antibodies

COI (Cut-off 
Index)

≥ 1.0 COI Detect prior natural 
infection

All samples in 2nd, 3rd and 4th 
timepoints

GenScript 
cPass sVNT

GenScript cPass 
(L00847)

Neutralizing anti-
bodies blocking 
RBD-hACE2

% Signal 
Inhibition

> 30% 
inhibition

Assess neutralizing 
capacity (wild type, 
Delta, Omicron 
strains)
 (S1 Fig in 
Appendix)

68 randomly selected samples 
amongst the 250 cases, which were 
available for both the time points 1 
and 3.

https://doi.org/10.1371/journal.pone.0340891.t001

https://doi.org/10.1371/journal.pone.0340891.t001
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test (two-tailed) for continuous variables and Chi-squared or Fisher’s exact test (sample size < 5) test for categorical vari-
ables. Comorbidities were regrouped to cardiometabolic: diabetes, hypertension, ischemic heart disease; renal: chronic 
kidney disease; neurological: stroke, cognitive impairment; and respiratory: COPD/asthma; malignancy).

As many of the subjects had missing information due to dropouts in timepoint 2 onwards, a method of ‘last observation 
carry forward’ was applied and results shown used the imputed results. Linear regression analyses were performed to 
determine the relationship between anti-S results and the possible explanatory variables. Univariable linear regression 
was first executed to determine the relationship between each of the explanatory variables and anti-S result at timepoint 
3 and 4 and by age group (young and old). Any explanatory variable with p-value±<0.20 was included in a stepwise 
regression. Stepwise regression was used as a step-by-step iterative construction of a regression model that involves 
the selection of independent variables to be used in a final model. Multivariable linear regression was then performed on 
all the selected explanatory variables to predict the outcome of anti-S results by each age group. Also, because natural 
infection can inflate antibody responses, we performed a prespecified sensitivity analysis that excluded participants who 
seroconverted between TP1 (≤3 months post-primary series) and TP3 (6–9 months post-first booster). The primary model 
used last observation carried forward (LOCF) for missing follow-ups; the sensitivity analysis used observed data only.

Results

Data was available for 300 participants with mean age (standard deviation) of 62.4 (16.1) years, and female (51%). Fig 
1 depicts the sample selection and breakdown of participants over four time points. Eighty four participants (28%) had at 
least two follow-ups and 17 participants (5.7%) were followed-up across all four time points (Fig 1).

Amongst older persons (cases), only 16.8% of older persons received their second booster shots, 78.8% of older per-
sons had moderate-severe CCI with cardiometabolic disease – hypertension and diabetes being the commonest comor-
bidities and 40.0% of older persons were pre-frail (Table 2).

Vaccination platform differed significantly between younger (controls) and older (cases) participants for both the primary 
vaccination series and the first booster dose, with younger participants more likely to have received mRNA vaccines and 
older participants more frequently receiving viral vector or inactivated vaccines (Table 3). Patterns of homologous versus 

Fig 1.  Flowchart demonstrating follow-up rates for each timepoint as well as availability of Anti-S, Anti-N and neutralising antibodies (NABs) 
during the timepoints.

https://doi.org/10.1371/journal.pone.0340891.g001

https://doi.org/10.1371/journal.pone.0340891.g001
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heterologous boosting did not differ after the first booster but differed significantly after the second booster, with heterolo-
gous schedules more common among older participants. Median time from last antigenic exposure differed between age 
groups at TP1 and TP3 but not at TP2 or TP4 (Table 3).

Table 4 shows antibody responses by vaccination stage, infection status, and vaccine platforms. At TP1 (post-primary 
vaccination), antibody concentrations varied by vaccine platform and infection status. Among infection-naïve participants, 
mRNA vaccines and viral vectors elicited higher GMCs compared with inactivated vaccines. Participants with prior infec-
tion demonstrated higher GMCs across all vaccine platforms. Following the first booster dose (TP2), GMCs increased 
substantially across all vaccine platforms and infection strata. Differences between vaccine platforms were less pro-
nounced than at TP1, with overlapping confidence intervals observed for mRNA and viral vector vaccines. At TP3, anti-
body concentrations reached the upper limit of quantification (250 U/mL) in several strata, particularly among previously 
infected participants and those receiving mRNA vaccines. By TP4 (post–second booster), GMCs remained at or near the 
assay upper limit across most vaccine platforms and infection statuses, indicating sustained high antibody concentrations. 
Across all time points, no participants had antibody levels below the seronegativity threshold (<0.8 U/mL)

In the sub study, involving only 68 persons from the cases (older persons), neutralising antibody activity varied sub-
stantially by viral strain, vaccination stage, and prior infection status. Against the wild-type and Delta strains, a high 

Table 2.  Comparison of participant characteristics between young control and older persons.

Variables Controls (n = 50)
age < 59 [n (%)]

Cases (n = 250)
age ≧ 60 [n (%)]

P value

Gender

  Male 15 (30.0) 132 (52.8) 0.003a

  Female 35 (70.0) 118 (47.2)

Comorbidity

  Cardiometabolic 0 212 (84.8) <0.001b

  Renal 0 38 (15.2) 0.001b

  Neurological 0 21 (8.4) 0.031 b

  Respiratory 0 14 (5.6) 0.137b

  Malignancy 0 14 (5.6) 0.137b

  Others 0 91 (36.4) <0.001b

CCI

  Normal 50 (100) 0 <0.001b

  Mild 0 53 (21.2)

  Moderate 0 112 (44.8)

  Severe 85 (34.0)

Frailty

  Robust 50 (100) 123 (49.2) <0.001b

  Prefrail 0 100 (40.0)

  Frail 0 27 (10.8)

Sarcopenia

  Normal 50 (100) 229 (91.6) 0.034a

  Sarcopenic 0 21 (8.4)

Hx of COVID-19 infection

  Natural infection (self-reported and confirmed by anti-N) 22 (44.0) 36 (14.4) <0.001a

  Asymptomatic natural infection (anti-N positive, no reported infection) 7 (14.0) 43 (17.2)
a Chi-Square test. All expected counts are > 5.
b Fisher Exact test.

https://doi.org/10.1371/journal.pone.0340891.t002

https://doi.org/10.1371/journal.pone.0340891.t002
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proportion of participants achieved ≥30% inhibition following the first booster (TP3), with near-universal neutralisation 
observed among both infection-naïve and previously infected individuals across mRNA and viral vector vaccines. In 
contrast, neutralising activity against the Omicron variant was markedly reduced after primary vaccination, with no partic-
ipants achieving ≥30% inhibition at TP1, regardless of infection status or vaccine platform. Following booster vaccination, 
Omicron-specific neutralisation improved, particularly among previously infected participants, though responses remained 
lower and more variable compared with wild-type and Delta strains (Table 5).

In univariable analyses, older age was associated with lower antibody levels at TP3 compared with younger partici-
pants (GMR 0.814, 95% CI 0.681–0.974; p = 0.025), although this association was attenuated and no longer significant 
after multivariable adjustment (aGMR 0.784, 95% CI 0.505–1.219; p = 0.279). Female sex remained independently 
associated with higher TP3 antibody levels compared with male sex (aGMR 1.242, 95% CI 1.024–1.507; p = 0.028). Renal 
comorbidity was independently associated with lower antibody levels (aGMR 0.712, 95% CI 0.537–0.941; p = 0.017), 
whereas cardiometabolic and neurological comorbidities were not significantly associated with TP3 antibody levels in the 
adjusted model. Prior SARS-CoV-2 infection was independently associated with higher antibody levels at TP3 (aGMR 
1.394, 95% CI 1.138–1.708; p = 0.001). Vaccine platform for the first booster showed the strongest association with TP3 
responses: compared with an inactivated booster, mRNA (aGMR 5.163, 95% CI 3.571–7.466; p < 0.001) and viral vector 
boosters (aGMR 6.045, 95% CI 4.027–9.076; p < 0.001) were associated with substantially higher antibody levels. Frailty 
category and sarcopenia were not independently associated with TP3 antibody levels (Table 6).

In univariable analyses at TP4, older age was associated with lower anti-spike antibody levels, although this asso-
ciation was attenuated after multivariable adjustment. Female sex, renal comorbidity, prior SARS-CoV-2 infection, and 

Table 3.  Comparison of types of vaccines received, booster uptake, and median time intervals between time points.

Vaccination Details

Primary Series Vaccination Controls Cases P Value

  mRNA 26 (52.0) 52 (20.8) <0.001a

  Viral Vector 10 (20.0) 129 (51.6)

  Inactivated 14 (28.0) 69 (27.6)

1st Booster

  mRNA 45 (90.0) 159 (63.6) 0.004a

  Viral Vector 3 (6.0) 55 (22.0)

  Inactivated 1 (2.0) 17 (6.8)

1st Booster

  Homozygous 27 (54.0) 104 (41.6) 0.199a

  Heterozygous 22 (44.0) 127 (50.8)

2nd Booster

  mRNA 10 (20.0) 38 (15.2) 1.000b

  Viral Vector 0 2 (0.8)

  Inactivated 1 (2.0) 3 (1.2)

2nd Booster

  Homozygous 8 (16.0) 8 (3.2) 0.001b

  Heterozygous 3 (6.0) 35 (14.0)

Median Days (IQR) from Last Antigenic Exposure

  TP1 99 (78, 112) 72 (54, 91) <0.001*

  TP2 93 (86, 100) 97 (90, 114.5) 0.192*

  TP3 171 (159, 183.5) 182.5 (166, 206) 0.026*

  TP4 298 (109, 311) 269.5 (202, 287) 0.201*

https://doi.org/10.1371/journal.pone.0340891.t003

https://doi.org/10.1371/journal.pone.0340891.t003
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first-booster vaccine platform remained independently associated with antibody levels at TP4, while cardiometabolic and 
neurological comorbidities, frailty status, and sarcopenia were not. Together with the TP3 findings, these results indicate 
that host and vaccine-related factors continue to influence antibody levels across booster timepoints, with consistent 
effects observed for sex, renal comorbidity, prior infection, and booster platform (Table 7).

A sensitivity analysis excluding participants with evidence of intercurrent SARS-CoV-2 infection between TP1 and 
TP3 (n = 12) was performed, leaving 93 participants with observed TP3 data. In this restricted cohort, most associations 
observed in the primary analysis were attenuated after multivariable adjustment, with cardiometabolic comorbidity remain-
ing independently associated with higher antibody levels (adjusted GMR 1.009, 95% CI 1.002–1.016). Similar analysis 
was not done for TP4 given the small number. (S3 Table in supplementary).

Fig 2 demonstrates longitudinal anti-spike (anti-S) antibody levels across four timepoints stratified by infection status 
(infection-naïve vs past infection). Across all timepoints, participants with prior SARS-CoV-2 infection consistently exhibit 
higher anti-S antibody titres compared with infection-naïve individuals. This separation is most evident at later timepoints, 

Table 4.  Geometric mean concentrations of anti–S antibodies by vaccination stage, infection status, and vaccine platforms across all the four 
timepoints.

Vaccination Stage Infection Status Primary Vaccine Platform N GMC (95% CI) % < 0.8 U/ml

TP1
 (n = 300)

Infection-naive mRNA 51 187.412 (154.146, 228.005) 0

Viral Vector 93 194.654 (174.465, 217.179) 0

Inactivated 48 28.516 (19.719, 41.237) 0

Past-infection mRNA 27 211.265 (160.341, 278.364) 0

Viral Vector 46 206.827 (183.313, 233.358) 0

Inactivated 35 49.947 (31.893, 78.222) 0

TP2
 (n = 107)

Infection-naive mRNA 16 250.000 (250.000, 250.000) 0

Viral Vector 27 233.934 (213.111, 256.791) 0

Inactivated 14 142.381 (64.624, 313.697) 0

Past-infection mRNA 10 237.550 (211.626, 266.650) 0

Viral Vector 25 222.902 (175.905, 282.455) 0

Inactivated 15 245.489 (237.568, 253.674) 0

TP3
 (n = 105)

Infection-naive mRNA 11 250.000 (250.000, 250.000) 0

Viral Vector 25 211.727 (174.694, 256.611) 0

Inactivated 8 243.426 (228.560, 259.259) 0

Past-infection mRNA 16 250.000 (250.000, 250.000) 0

Viral Vector 23 250.000 (250.000, 250.000) 0

Inactivated 22 250.000 (250.000, 250.000) 0

TP4
 (n = 56)

Infection-naive mRNA 4 250.000 (250.000, 250.000) 0

Viral Vector 11 243.606 (229.940, 258.083) 0

Inactivated 4 169.237 (48.893, 585.794) 0

Past-infection mRNA 13 250.000 (250.000, 250.000) 0

Viral Vector 14 250.000 (250.000, 250.000) 0

Inactivated 10 250.000 (250.000, 250.000) 0

i. GMCs computed on log-transformed anti-S (Roche Elecsys) and back-transformed; 95% CIs from log-scale SE.

ii. Infection status defined by anti-N serology and/or recorded PCR/antigen test; “infection-naïve” = no evidence pre-TP.

iii. % < 0.8 U/mL shown for biological context (seronegativity threshold).

iv. Timepoints anchored to antigenic event (TP1 = post-primary; TP2/TP3 = post-1st booster; TP4 = post-2nd booster).

v. N reflects non-missing titres at each stratum.

https://doi.org/10.1371/journal.pone.0340891.t004

https://doi.org/10.1371/journal.pone.0340891.t004
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Table 5.  Neutralising antibodies (NABs) results against SARS-CoV-2 wild-type, Delta, and Omicron strains by vaccination stage, infection 
status, and vaccine platforms.

Strain Time Point Infection 
Status

Vaccine Plat-
form Booster

N = 68 n ≥ 30% 
(%)

95% CI Median % 
Inhibition
 (IQR)

Wild Type TP1 (≤3 mo post-primary) Infection-naive mRNA 27 22 (81.48) 58.97, 78.96 75.16 (51.2-88.64)

Vector vaccine 6 6 (100) 36.39, 78.38 55.22 (39.9-66.36)

Inactivated 0 0 – –

Past-infection mRNA 24 18 (75.0) 57.35, 78.88 60.84 (51.57-93.06)

Vector vaccine 7 7 (100) 54.84, 95.43 80.97 (62.54-92.96)

Inactivated 4 1 (25.0) – 58.98 (58.98)

TP3 (6–9 months post 1st booster) Infection-naive mRNA 27 27 (100) 91.57, 97.20 97.41 (94.1-97.71)

Vector vaccine 6 5 (83.33) 45.25, 93.52 77.42 (68.12-81.61)

Inactivated 0 0 – –

Past-infection mRNA 24 24 (100) 94.67, 97.95 97.62 (97.01-97.76)

Vector vaccine 7 7 (100) 75.54, 105.50 97.68 (91.99-97.86)

Inactivated 4 4 (100) 61.32, 115.24 96.16 (78.83-97.74)

Delta TP1 (≤3 mo post-primary) Infection-naive mRNA 27 17 (62.96) 53.86, 75.85 61.29 (52.16-82.81)

Vector vaccine 6 3 (50.0) −16.56, 121.11 40.17 (32.68-83.98)

Inactivated 0 0 – –

Past-infection mRNA 24 16 (66.67) 45.71, 71.42 45.98 (37.62-83.05)

Vector vaccine 7 6 (85.71) 46.20, 84.94 66.61 (45.46-82.06)

Inactivated 4 1 (25.00 – 44.6 (44.6)

TP3 (6–9 months post 1st booster) Infection-naive mRNA 27 27 (100) 81.80, 94.57 96.03 (83.26-97.02)

Vector vaccine 6 4 (66.67) 30.32, 80.67 58.99 (44.7-66.29)

Inactivated 0 0 – –

Past-infection mRNA 24 24 (100) 87.82, 97.92 97.25 (96.59-97.48)

Vector vaccine 7 7 (100) 60.17, 104.4 97.22 (71.69-97.343)

Inactivated 4 4 (100) 43.62, 120.01 91.50 (66.49-97.14)

Omicron TP1 (≤3 mo post-primary) Infection-naive mRNA 27 0 – –

Vector vaccine 6 0 – –

Inactivated 0 0 – –

Past-infection mRNA 24 0 – –

Vector vaccine 7 0 – –

Inactivated 4 0 – –

TP3 (6–9 months post 1st booster) Infection-naive mRNA 27 7 (25.93) 39.10, 69.65 57.98 (32.57-69.19)

Vector vaccine 6 0 – –

Inactivated 0 0 – –

Past-infection mRNA 24 18 (75.0) 72.84, 88.66 84.03 (66.24-95.73)

Vector vaccine 7 4 (57.14) 80.77, 96.08 90.44 (85.7-91.15)

Inactivated 4 2 (50.0) −185.12, 333.54 74.21 (53.8-94.62)

https://doi.org/10.1371/journal.pone.0340891.t005

particularly during the waning phase after the first booster (TP3) and following subsequent boosting (TP4), where antibody 
levels in the past-infection group remain clustered at higher values with less dispersion. In contrast, infection-naïve partici-
pants show greater variability and lower median antibody levels over time, with more pronounced spread and lower values 
evident during later timepoints (Fig 2).

https://doi.org/10.1371/journal.pone.0340891.t005
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Discussion

In this longitudinal observational study, we evaluated determinants of anti-S antibody levels across multiple post-
vaccination timepoints encompassing both waning immunity after the first booster and early responses following a 
second booster. Multivariable analyses consistently identified booster vaccine platform, prior SARS-CoV-2 infection, 
sex, and renal comorbidity as independent correlates of antibody magnitude at both TP3 and TP4, whereas chrono-
logical age, frailty status, sarcopenia, cardiometabolic disease, and neurological comorbidity were not independently 
associated after adjustment. Longitudinal visualisation of antibody distributions corroborated these findings, demon-
strating persistently higher antibody levels among previously infected individuals compared with infection-naïve 
participants, particularly at later timepoints. Collectively, these results indicate that heterogeneity in vaccine-induced 
humoral responses is largely explained by vaccine- and exposure-related factors rather than chronological age or 
global vulnerability measures alone, underscoring the importance of considering immune history and specific comor-
bid conditions when interpreting post-vaccination antibody responses in older adults.

The most striking finding in this study was the dominant influence of booster vaccine platform on antibody levels. 
Participants primed with inactivated vaccines had recorded lower aGMR than their mRNA-or-virus vector-primed 
peers, an observation that mirrors the phase II data in Chinese adults where the inactivated vaccines elicited sub-
stantially weaker neutralisation than the mRNA vaccine [22]. Compared with inactivated vaccines, both mRNA and 
viral vector boosters were associated with more than fivefold higher antibody titres. This observation is consistent 
with randomised trials and real-world studies demonstrating superior immunogenicity of mRNA and viral vector 

Table 6.  Univariable and multivariable predictors of anti-spike antibody levels at 6–9 months after first booster vaccination (TP3).

Covariate Levels Univariable GMR at TP3 (95% CI) P Value Multiivariable aGMR at TP3 (95% CI) P Value

Age Young 1 1

Old 0.814 (0.681, 0.974) 0.025 0.784 (0.505, 1.219) 0.279

Sex Male 1 1

Female 1.227 (1.011, 1.489) 0.038 1.242 (1.024, 1.507) 0.028

Cardiometabolic No 1 1

Yes 0.880 (0.724, 1.071) 0.202 0.923 (0.705, 1.209) 0.560

Renal No 1 1

Yes 0.781 (0.533, 1.146) 0.206 0.712 (0.537, 0.941) 0.017

Neurological No 1 1

Yes 1.139 (0.886, 1.464) 0.309 1.222 (0.829, 1.802) 0.310

Infection status Infection-naïve 1 1

Past infection 1.360 (1.138, 1.626) 0.001 1.394 (1.138, 1.708) 0.001

Vaccine Platform (1st Booster) Inactivated 1 1

mRNA 4.751 (2.156, 10.470) <0.001 5.163 (3.571, 7.466) <0.001

Viral vector 5.156 (2.327, 11.423) <0.001 6.045 (4.027, 9.076) <0.001

Frailty Robust 1 1

Pre Frail 1.007 (0.814, 1.246) 0.951 1.074 (0.867, 1.329) 0.512

Frail 1.132 (0.895, 1.432) 0.300 1.189 (0.782, 1.809) 0.416

Sarcopenia No 1 1

Yes 1.010 (0.716, 1.425) 0.954 0.797 (0.525, 1.210) 0.286

i. Values are presented as geometric mean ratios (GMR) from univariable analyses and adjusted geometric mean ratios (aGMR) from multivariable 
models, with 95% confidence intervals.

ii. TP3 corresponds to measurements obtained 6–9 months after the first booster vaccination, representing the period of waning humoral immunity.

https://doi.org/10.1371/journal.pone.0340891.t006

https://doi.org/10.1371/journal.pone.0340891.t006


PLOS One | https://doi.org/10.1371/journal.pone.0340891  February 10, 2026 11 / 17

boosters following inactivated primary series, mediated through more efficient spike protein expression, robust ger-
minal centre responses, and enhanced memory B-cell induction [23,24]. Various other head-to-head studies corrob-
orate this effect observed in our study. In Hong Kong, comparison of 366 adults with 82 participants aged >60 year 
years showed geometric mean neutralising antibody titre was 3.9-fold higher with the mRNA vaccine (BNT162b2) 
than with an inactivated vaccine [25]. Similarly, a parallel study quantified higher median spike-binding IgG after 
mRNA (BNT162b2) vaccine (473 AU mL ⁻ ¹) compared inactivated vaccine (124 AU mL ⁻ ¹) after adjusting for age, sex 
and comorbidity burden [26]. This disparity reflects the alum-only adjuvant used in inactivated vaccines compared 
to higher spike expression induced by mRNA vaccines, compounded by immunosenescence in older participants. 
From a public health perspective, these findings have direct implications for booster policy, particularly in settings 
where inactivated vaccines were widely deployed during the primary rollout. Prioritising higher-immunogenicity 
booster platforms may be especially important for older adults and clinically vulnerable groups, in whom maximising 
durable protection is critical.

Female sex was independently associated with higher antibody levels at TP3, even after adjustment for confound-
ers. This finding aligns with extensive literature demonstrating stronger humoral immune responses in females following 
vaccination and natural infection [27–30]. Biological mechanisms include the immunomodulatory effects of sex hormones, 
differential expression of X-linked immune genes, and enhanced B-cell activation and antibody production in females 
[27,31,32]. While higher antibody titres may translate into improved short-term protection, they are also associated with 
increased reactogenicity, underscoring the complex trade-offs inherent in sex-specific immune responses. The persistence 
of this association several months after booster vaccination supports sex as a stable modifier of vaccine-induced immunity 
rather than a transient early effect [32].

Among comorbidities examined, renal disease emerged as an independent predictor of lower antibody lev-
els. Chronic kidney disease is well recognised to impair both innate and adaptive immune responses through 

Table 7.  Univariable and multivariable predictors of anti-spike antibody levels at 3 months after second booster vaccination (TP4).

Covariate Levels/ Comparison Univariable GMR at TP4 (95% CI) P Value Multivariable aGMR at TP4 (95% CI) P Value

Age Young 1 1

Old 0.788 (0.666, 0.933) 0.006 0.767 (0.493, 1.193) 0.238

Sex Male 1 1

Female 1.245 (1.028, 1.509) 0.025 1.224 (1.008, 1.486) 0.041

Cardiometabolic No 1 1

Yes 0.878 (0.722 = 3, 1.067) 0.192 0.940 (0.716, 1.232) 0.651

Renal No 1 1

Yes 0.773 (0.527, 1.134) 0.187 0.709 (0.536, 0.938) 0.016

Neurological No 1 1

Yes 1.128 (0.878, 1.449) 0.346 1.222 (0.828, 1.801) 0.311

Infection status Infection-naïve 1 1

Past infection 1.373 (1.151, 1.637) <0.001 1.368 (1.5, 1.680) 0.003

Vaccine Platform (1st Booster) Inactivated 1 1

mRNA 4.599 (2.056, 10.291) 5.318 (3.626, 7.799) <0.001

Viral vector 4.948 (2.200, 11.131) <0.001 6.263 (4.117, 9.526) <0.001

Frailty Robust 1 1

Pre-Frail 0.980 (0.792, 1.213) 0.853 1.067 (0.861, 1.321) 0.553

Frail 1.110 (0.878, 1.403) 0.382 1.216 (0.799, 1.850) 0.361

Sarcopenia No 1 1

Yes 1.000 (0.709, 1.411) 0.998 0.799 (0.523, 1.203) 0.274

https://doi.org/10.1371/journal.pone.0340891.t007

https://doi.org/10.1371/journal.pone.0340891.t007
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mechanisms including uremia-associated immune dysfunction, impaired antigen presentation, reduced memory 
B-cell formation, and chronic systemic inflammation [33,34]. Studies have consistently demonstrated reduced 
serological responses to COVID-19 vaccines in individuals with renal impairment, including those not receiving 
dialysis [35,36]. In contrast, cardiometabolic and neurological comorbidities were not independently associated with 
antibody levels after adjustment, suggesting that their effects may be mediated indirectly or outweighed by stronger 
determinants such as vaccine platform and prior infection. These findings underscore the need for heightened vigi-
lance and potentially tailored booster strategies in individuals with renal disease, who already face disproportionate 
risks of severe COVID-19 outcomes.

Prior SARS-CoV-2 infection was strongly and independently associated with higher antibody levels across time-
points, consistent with the concept of hybrid immunity. Hybrid immunity occurs when individuals have experienced 
both natural infection and vaccination, leading to enhanced immune responses compared to either exposure alone. 
Repeated antigenic exposure through infection followed by vaccination enhances both the magnitude and breadth 
of humoral responses, including improved neutralisation against divergent variants [37–40]. The persistence of this 
effect at 6–9 months post-first booster indicates that infection-induced immunological memory remains function-
ally relevant beyond the early post-vaccination period. Population-based studies, including those focused on older 
adults, have shown that hybrid immunity confers more durable immune responses than vaccination alone [39]. These 
evidences has important clinical implications: 1) Increased protection against variants implying that this resilience 
can greatly inform vaccination strategies, particularly in the context of emerging variants [41], 2) Guiding Vaccina-
tion Recommendations and 3) Resource allocation so that healthcare providers can prioritize vaccination efforts 
and resources within populations [39]. However, this immunological advantage must be interpreted cautiously, as 
infection-acquired immunity comes at the cost of acute morbidity and potential long-term sequelae, particularly in 
older and vulnerable populations.

Fig 2.  Anti-S antibody levels acrossTP1-TP4 stratified by SARS-CoV-2 infection status.

https://doi.org/10.1371/journal.pone.0340891.g002

https://doi.org/10.1371/journal.pone.0340891.g002
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Within three months of receiving the first booster dose, only half of included participants had neutralising antibodies 
against the Omicron strains. This may suggest evasion of the Omicron variant from spike protein-specific immunity. Sev-
eral studies had similar findings, demonstrating extensive reduction in neutralising antibodies against the Omicron strains 
compared to the Wuhan/wild type and delta strains [42–45]. At three months post-primary series, binding titres ≥250 U 
mL ⁻ ¹ predicted wild-type and Delta neutralisation (p ≤ 0.005), yet offered no protection against Omicron BA.1, a finding 
echoed by global reports of near-complete immune escape in older adults after two or even three prototype-based doses 
[46,47].

Alarmingly, only 16.8% of older adults availed themselves of a second booster, mirroring regional data on booster hesi-
tancy despite clear vulnerability to immune-evasive strains. A web-based cross-sectional study with 798 local respondents 
showed a prevalence of second COVID booster hesitancy to be 26.7% with older age (AOR = 1.040, 95% CI 1.022–
1.058), concern about serious long term side effects of the vaccine (AOR = 4.010, 95% CI = 2.218–7.250), and opinions of 
close friends and immediate family members that the booster is harmful (AOR = 2.201, 95% CI = 1.280–3.785) being the 
main predictors [48]. A study by Jeffrey et al which included 23 000 adults from 23 countries also reported that COVID-19 
vaccine booster acceptance among those vaccinated decreased from 87.9% in 2022 to 71.6% in 2023 (P < 0.001) [48].

Although geriatric syndromes of frailty and sarcopenia and multimorbidity did not attain statistical significance in our 
adjusted models, this null finding is most plausibly explained by limited power rather than a true lack of biological effect. 
Only 27 (10.8%) participants met frailty criteria and 21 (8.4%) met sarcopenia criteria, yielding <40% power to detect a 
between-group difference. Studies consistently highlight frailty as a significant predictor of impaired immune responses 
to vaccinations, including COVID-19 mRNA vaccines. Kakugawa et al. demonstrate that frailty significantly diminishes 
vaccine response effectiveness in older adults, emphasizing that this demographic is at an increased risk for subop-
timal immunogenicity following vaccination [49]. Similarly, a study by Demaret et al. details impaired functional T-cell 
responses to the BNT162b2 vaccine in older individuals [50]. While frailty has been linked to impaired vaccine responses 
and adverse COVID-19 outcomes in these studies, its relationship with humoral immunity appears complex and context-
dependent. Booster vaccination may partially mitigate frailty-related disparities in antibody responses, as suggested by 
studies demonstrating restoration of humoral responses after additional doses [51,52]. Frailty has been associated with 
decreased antibody after the primary series with the booster vaccination overcoming the effects of COVID-19 infection 
and frailty on antibody levels, hence suggesting maximal generation of antibodies can be reached with appropriate boost-
ing even in frail older adults [12], though the true underpinning association between frailty and vaccine responsiveness 
remains poorly defined [43,53–55]. Alternatively, frailty may exert a greater influence on cellular immunity, inflammatory 
regulation, or the clinical consequences of immune escape rather than on circulating antibody titres alone [56,57]. Lim-
ited power, heterogeneity in frailty measurement, and conservative imputation of missing data may also have reduced 
sensitivity to detect any modest associations in this study. These findings reinforce that antibody titres should not be 
interpreted as the sole correlate of protection in frail older adults and highlight the importance of multidimensional immune 
assessment.

Exclusion of participants with intercurrent SARS-CoV-2 infection in the sensitivity resulted in marked attenuation of 
associations observed in the primary TP3 analysis, highlighting the dominant contribution of infection-related antibody 
boosting during the waning phase after the first booster. The loss of statistical significance for most covariates is likely 
attributable to reduced sample size and limited outcome variability rather than absence of underlying biological effects. 
The persistence of an association with cardiometabolic comorbidity should be interpreted cautiously given these con-
straints. Collectively, these findings underscore the need to account for intercurrent infection in longitudinal immunogenic-
ity analyses and indicate that comorbidity-related differences are most discernible prior to infection-driven amplification of 
antibody responses.

Several limitations should be acknowledged. Follow-up was disrupted by COVID-19 movement control orders, resulting 
in attrition at later timepoints, particularly at TP3 and TP4. Missing data were addressed using last observation carried 
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forward, which assumes stability of antibody levels and may underestimate true waning over time. In addition, only a small 
proportion of participants received a second booster during the study period, limiting statistical power at TP4 and poten-
tially attenuating adjusted estimates. Antibody titres were used as the primary immunogenicity outcome and may not fully 
capture cellular or functional immunity, particularly in older or frail individuals. Finally, as an observational study, residual 
confounding cannot be excluded. These limitations should be considered when interpreting the findings, particularly with 
respect to temporal comparisons and subgroup analyses. This study has several strengths too. It employed a longitudinal 
design with clearly defined, event-anchored timepoints capturing early post-vaccination responses, waning immunity, and 
post-booster restoration. Inclusion of both older and younger adults allowed age-related comparisons, while detailed char-
acterisation of vaccine platforms, infection history, comorbidities, frailty, and sarcopenia enabled multivariable adjustment 
for key confounders. The use of geometric mean ratios provided an appropriate analytic framework for skewed antibody 
distributions.

In conclusion, this study provides evidence that heterogeneity in post-vaccination antibody responses among older 
adults is driven predominantly by vaccine platform, immune history, and specific comorbid conditions rather than chrono-
logical age or geriatric syndromes alone. Periods of waning immunity appear to unmask these differences most clearly, 
while recent booster exposure can partially restore humoral responses and reduce inter-individual variability. However, the 
low uptake of second booster doses among older adults, coupled with diminished neutralisation against immune-evasive 
variants, underscores a critical gap between immunological vulnerability and real-world vaccine utilisation. These findings 
support a shift from age-based vaccination paradigms towards more targeted booster strategies that prioritise high-
immunogenicity platforms, timely boosting, and proactive outreach to older adults with high-risk comorbidities. Integrating 
immunogenicity data with geriatric and population-level considerations will be essential to inform equitable, adaptive vac-
cination policies as SARS-CoV-2 continues to evolve.
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