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Abstract 

As grid-forming converters (GFM) and grid-following converters (GFL) continue to be 

integrated into low-inertia power systems in place of traditional synchronous gen-

erators, the characteristics and forms of system inertia have undergone significant 

transformation. This evolution poses significant challenges to conventional inertia 

response mechanisms and analytical methodologies. To address these challenges, 

this study proposes a novel grid index frequency stability margin (FSM) from the 

perspective of frequency stability, encompassing its definition, quantitative evalua-

tion, and practical applications. This paper first introduces the mathematical foun-

dations and operational definitions of the FSM. It then systematically investigates 

the factors influencing FSM and presents a comprehensive mathematical model 

specifically developed for low-inertia power systems. The FSM calculation method 

based on aggregated system modelling was developed, followed by the derivation of 

a simplified estimation approach suitable for practical engineering applications. The 

effectiveness of the FSM in analyzing the frequency stability of low-inertia grids was 

validated through case studies based on provincial-level power grid data from China 

and a modified IEEE 39-bus system. The findings establish a theoretical framework 

for optimizing the planning and development of new energy power plants, as well as 

for formulating grid operation control strategies. This framework offers essential guid-

ance to ensure the secure and stable operation of low-inertia power systems.

1  Introduction

Integrating renewable energy into power grids necessitates converter-interfaced 
generation (CIG), which is becoming increasingly central to power systems as renew-
able energy penetration grows. Current converter technologies primarily consist of 
the grid-forming converter (GFM) and grid-following converter (GFL). In practical 
engineering, the vast majority of GFL operate in constant power control mode and 
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do not provide inertial support to the system. In this study, the term “GFL” specifically 
denotes those units that do not deliver system inertia. Certain improved GFL imple-
mentations can deliver limited inertial support via additional virtual inertia control 
strategies [1–3]; however, their response characteristics fundamentally differ from 
those of the GFM. While it improves system performance, its response speed, sup-
port depth, and stability are constrained by the measurement accuracy and dynamic 
response capabilities of the phase-locked loop (PLL). By contrast, the GFM can pro-
vide virtual inertia with adjustable equivalent inertia time constants. The large-scale 
integration of CIG alters the inertia characteristics of power systems, thereby posing 
new challenges to conventional analytical methods.

In modern frequency stability analysis, the equivalent inertia time constant and 
damping coefficient serve as fundamental parameters. Contemporary research 
employs phasor measurement units (PMUs) to monitor these parameters and has 
developed various analytical methods, including impedance analysis [4], data-driven 
approaches [5], system identification [6], and modal analysis [7]. These approaches 
have collectively established a theoretical foundation for frequency stability assess-
ment in low-inertia power systems.

Two primary paradigms exist for characterizing the equivalent inertia time constant 
which are the traditional time-dimensional index and modern energy-dimensional 
representations. Zhai et al. [8] employs time-dimensional inertia constants to 
demonstrate decreasing grid inertia trends, concluding that frequency stability is 
progressively deteriorating. In conventional power grids, the equivalent inertia time 
constant is decoupled from the grid capacity since rotating generator sets inherently 
possess rotational inertia. However, in low-inertia power systems, where specific 
power sources are incapable of providing inertia, the equivalent inertia time constant 
becomes dependent on the grid capacity. Consequently, a lower inertia time con-
stant does not necessarily imply a degradation of disturbance resistance; instead, an 
increase in system capacity can maintain or even enhance stability despite a reduc-
tion in the inertia constant [9].

Energy-dimensional inertia index is widely adopted in international standards and 
operational guidelines because it provides a direct and intuitive basis for grid secu-
rity assessment, as reflected in requirements such as those specified by AEMO. For 
instance, the Australian Energy Market Operator specifies 6000 MWs as the min-
imum inertia requirement and 4400 MWs as the operational safety threshold [10]. 
The extensive adoption of the GFL, which operates under constant power output 
control, has significantly weakened the system’s inertia support capability. As a result, 
disturbances may activate Rate-of-Change-of-Frequency (RoCoF) and frequency 
threshold protection mechanisms. Consequently, some current research has focused 
on the equivalent inertia time constant (represented in kinetic energy units) under 
system dynamic frequency constraints encompassing RoCoF and rated frequency 
deviations. A recent study [11] identified post-fault inertia requirements exceeding 
130 GVA. s for the UK grids, based on predefined RoCoF limits and credible contin-
gency scenarios. García-Ruiz et al. [12] proposed an integrated assessment method 
that combines frequency deviation and RoCoF constraints, which ENTSO-E has 
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adopted for evaluating minimum inertia. Additionally, Zang et al. [13] have established minimum safety inertia require-
ments under similar constraints. The energy-dimensional index only reflects the total kinetic energy of the system. Still, 
it does not encompass the dynamics of the frequency regulation process (such as FCAS response speed and damping 
characteristics).

To address this limitation, this study introduces a new index, the Frequency Stability Margin (FSM), under system 
dynamic frequency constraints. The advantage of the FSM lies in its simultaneous consideration of inertial kinetic energy 
and frequency regulation capability, thereby enabling a more comprehensive assessment of the maximum tolerable power 
deficit and providing a reference for analyzing grid frequency stability. This paper introduces the Frequency Stability Model 
(FSM) as a method for effectively analyzing frequency stability in low-inertia power grids. It details computation method-
ologies for the FSM, which include both an aggregated model-based approach and a Phasor Measurement Unit (PMU)-
based estimation method. The FSM explicitly quantifies the maximum tolerable power deficit under both frequency and 
RoCoF constraints while enabling vulnerability identification for planned grids across multiple operational scenarios. This 
facilitates the determination of secure renewable energy penetration levels and control strategies.

2  The FSM concept

When the power system frequency reaches its stable upper limit, it can be regulated through measures such as gener-
ator tripping and load increase to achieve frequency restoration at a relatively low cost. In contrast, when the frequency 
drops to the stable lower limit, restoring frequency requires increasing the system output power. This process requires a 
comprehensive consideration of factors such as whether the system’s inertia and reserve capacity are sufficient, as well 
as the economic costs associated with increasing power output. Consequently, higher requirements are imposed on grid 
planning and operational strategies. This paper examines the lower frequency stability limit in power systems and subse-
quently proposes the Frequency Stability Margin (FSM) as a new analytical metric.

The Frequency Stability Margin (FSM) is defined as the maximum tolerable power deficit at the grid nodes that simul-
taneously satisfies: 1) power flow equations and operational security constraints imposed by equipment limitations, 2) 
system frequency control actions within the inertial response timeframe, and 3) frequency stability requirements. Assum-
ing that Points 1 and 2 are satisfied, this paper primarily addresses Point 3.

Thus, the FSM quantitatively defines the tolerable power deficit that guarantees that both RoCoF and the rated fre-
quency deviation persistently adhere to operational thresholds throughout the inertial response phase and the primary 
frequency regulation phase, as formulated below:

	 Pf(t) = min(P∆f,Procof)	 (1)

where P∆f  represents the FSM under frequency deviation constraint, and Procof  represents the FSM under RoCoF con-
straint. The FSM integrates M

sys
, frequency deviation constraint, the RoCoF constraint, and regulation capacity through 

equation (1). This approach simultaneously covers both the inertial response and the primary frequency regulation pro-
cesses. Procof  is derived from equation (12), and P∆f  can be calculated using the two methods proposed in this paper, 
which are the aggregated model and a PMU-based approach.

According to Gu et al. [14], the RoCoF is mainly determined by the system’s equivalent inertia time constant. In con-
trast, the lowest point of frequency dip (i.e., the maximum frequency deviation) is jointly determined by the equivalent 
inertia time constant and frequency control ancillary services (FCAS). FCAS acts similarly to a remedial mechanism after 
“braking.” It activates after a fault occurs and gradually offsets the power deficit through dynamic response, thereby pre-
venting further frequency decline and promoting recovery. The response performance of FCAS is closely related to factors 
such as the reserve capacity of generating units and the frequency regulation coefficient. Therefore, focusing solely on 
the inertia time constant overlooks critical decision-making information such as reserve capacity and frequency regulation 
coefficient.
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In conventional power sources, the inertia time constant of a generating unit depends only on its physical parameters 
and can be regarded as an inherent attribute. In renewable energy generation systems, the GFM can adjust its virtual 
inertia time constant through control strategies, however, such adjustment must be based on sufficient reserve capacity. 
Since modern power grids incorporate both conventional power sources and a significant share of renewable energy, 
relying solely on the inertia time constant is no longer sufficient for comprehensively assessing the system’s frequency 
response capability. The FSM encompasses both the inertia time constant and the dynamic process of FCAS, better align-
ing with the requirements for frequency stability evaluation in contemporary power systems.

The physical significance of the FSM presented in this paper is reflected in two key aspects. Firstly, regarding RoCoF, 
the FSM illustrates the relationship between the acceptable power deficit and system inertia. Secondly, with respect to 
the lowest frequency point, FSM reflects the power grid frequency stability boundary under the combined action of tol-
erable power deficit, system inertia, and FCAS dynamic regulation. Thus, FSM can incorporate more comprehensive 
decision-making information. Moreover, as mentioned in the introduction, FSM can directly characterize the tolerable 
power deficit under frequency constraints, thereby providing an intuitive reference for reserve capacity configuration in 
grid planning or operational strategies.

FCAS responses are typically completed on a timescale of seconds to minutes, while the 1-hour timeframe targets 
the unit commitment scheduling cycle. Within this cycle, the system topology and the number of online units are fixed; 
thus, the relevant parameters can be considered time-invariant, which serves as the foundation for the analysis in this 
paper. This study focuses on analyzing the FSM during specific periods or instances, rather than examining the maximum 
or minimum FSM across all timeframes or under extreme boundary conditions. This approach is more practical where 
operational personnel can formulate strategies for the next time period based on the FSM of the current period, thereby 
enhancing the security and adaptability of grid operation. As Fig 1 depicts, although the resultant value (Point A) may not 
represent the global minimum, it nonetheless quantifies the instantaneous FSM magnitude corresponding to the prevailing 
operational state.

3  Factors influencing FSM and critical inertia threshold analysis

Three primary determinants govern the magnitude of FSM: 1) the operational scale of the generation units, 2) the sys-
tem’s equivalent inertia M

sys
, and 3) imposed constraint conditions. The system frequency dynamics during a disturbance 

were modelled using the aggregated swing equation [15]:

	
Msys

d∆f(t)
f0dt

+ D∆f(t) = ∆Pm(t) –∆Pe(t)
	 (2)

Fig 1.  Schematic diagram of the FSM. 

https://doi.org/10.1371/journal.pone.0340648.g001

https://doi.org/10.1371/journal.pone.0340648.g001
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where ∆f(t) represents the frequency deviation, Msys represents the equivalent inertial time constant of power systems. D 
represents the System damping constant. ∆Pm(t) and ∆Pe(t) represent the mechanical power and electromagnetic power, 
respectively.

3.1  The operational scale of the generation unit

Expanding the right-hand side of the swing equation yields the following formulation:

	

Pfup(t) = max




NSG∑
i

∆PSG,i(t) +
NCIG∑
j

∆PCIG,j(t)




	 (3)

	

Pflow(t) = min




NSG∑
i

∆PSG,i(t) +
NCIG∑
j

∆PCIG,j(t)




	 (4)

where ∆PSG,i(t) represents the power deficit of SG, ∆PCIG,j(t) represents the power deficit of CIG, N
SG

 represents the total 
number of online SG, and N

CIG
 represents the total number of online CIG. This equation indicates that the FSM is deter-

mined by the online capacity and the control strategies of generation units.
According to the definition of FSM, this index represents a differential value quantifying the reserve margin of power 

reservation. Consequently, the load side is not considered a source of reserve power, and the FSM primarily reflects the 
reserve capacity on the generation side. Synchronous generators can promptly compensate for power deficits through 
inherent inertia and primary frequency regulation. Similarly, the GFM can emulate the power characteristics of synchro-
nous generators to mitigate power shortfalls immediately. In contrast, the GFL typically employs constant power control 
mode [16], and does not contribute to frequency support. Hence, this paper focuses exclusively on the frequency regula-
tion contribution of GFM within the considered CIG system.

3.2  Equivalent inertial time constant

As derived from the left-hand term of the swing equation, the FSM is directly proportional to M
sys

, which aggregates rota-
tional inertia from the SG and emulates inertia from the CIG. An increase in M

sys
 corresponds to higher FSM values and 

enhanced grid frequency stability. The following section primarily discusses the influence of virtual inertia on the equiva-
lent inertia time constant. The CIG includes both GFM and GFL units.

The GFL mitigates power imbalance in the system by adjusting its output power, thereby reducing the rate of frequency 
change. However, this mechanism constitutes a power response that does not contribute to system inertia. Therefore, the 
inertial time constant of a grid-following converter is zero.

The GFM emulates the dynamic behavior of synchronous generator rotors and electromagnetic transients via its control 
strategy, thus exhibiting external operational characteristics similar to those of synchronous generators. This control para-
digm classifies the GFM as a voltage source. Accordingly, GFMs provide virtual inertia, and per regulatory guidelines, their 
inertial time constant is user-definable, typically ranging from 4 to 12 seconds, with 5 seconds recommended [17].

During the development of power grid infrastructures, the distinct generation source configurations differentially influ-
ence grid frequency stability. To systematically evaluate the effectiveness of configurations in enhancing frequency 
stability, the following premises were established: 1) All GFM units maintain identical equivalent inertia time constants. 2) 
The aggregate energy storage capacity remains fixed. Thus, varying the GFM storage penetration ratios (K) represents an 
alternative infrastructure development strategy. The GFM storage penetration ratio K is mathematically defined as

	
K =

SGFM
SGFM + SGFL

=
SGFM
SCIG 	 (5)
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where S
CIG

 represents the rated capacity of CIG, and S
GFM

 and S
GFL

 represent the rated capacity of GFM and the rated 
capacity of GFL, respectively.

Under these conditions, the equivalent inertia time constant for low-inertia power systems incorporating both CIG and 
SG devices can be formulated as

	
Msys =

∑n
i=1 SSGiM

SG
i +MGFMSCIGK∑n

i=1 SSGi + SCIGK 	 (6)

Where MSG
i  represents the equivalent inertial time constant of SG, and MGFM represents the equivalent inertial time 

constant of GFM. It should be noted that equation (6) fails to capture inertial variations during dynamic processes and is 
therefore only suitable for preliminary assessment at the planning stage.

The GFM can provide virtual inertia support to low-inertia power systems, where the M
GFM

 parameter has a critical influ-
ence on M

sys
. Intuitively, this suggests that the increased penetration (K) of GFM storage converters enhances frequency 

stability.
Contrary to this intuition, the user-configurable nature of M

GFM
 in GFM introduces a critical consideration where, without 

proper parameter coordination, excessive K values may paradoxically reduce Msys, thereby degrading frequency stability.
Through analytical derivation, we establish that M

sys
 maintains a positive correlation with K only when the M

GFM
 sat-

isfies the following constraint condition: Under this criterion, increasing the GFM storage penetration (K) proportionally 
enhances M

sys
, thereby preserving the frequency stability.

	
MGFM >

∑n
i=1 SSGiM

SG
i∑n

i=1 SSGi 	 (7)

The equality condition in equation (7) defines the critical threshold value of M
GFM

 as M
x
.

Proof: Building on equation (6), demonstrating that M
sys

 is functionally dependent on K, the formulation can be  
re-expressed as

	
f(k) = Msys =

A+MGFMk
B+ k 	 (8)

where

	
{A =

n∑
i=1

SSGiM
SG
i B =

n∑
i=1

SSGi k = SCIGK
	

To ensure f(k) constitutes a monotonically increasing function, the derivative condition df(k)dk > 0 must be satisfied to ensure 
that f(k) constitutes a monotonically increasing function

	

df(k)
dk

=
BMGFM – A

(B+ k)2
> 0

	 (9)

This inequality resolves to:

	
MGFM >

A
B	 (10)

Thus, the theoretical derivation presented in equation (7) of the main text was rigorously validated.
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3.3  Constraint conditions

As demonstrated by equation (1), the constraint conditions represent another critical determinant of FSM magnitude.
Considering that the governor responses are not activated during the first stage of the inertial response, the maximum 

RoCoF Rf  is expressed as follows [14]:

	

d∆f
dt

|
max

= Rf = –f0
Procof
Msys 	 (11)

Through algebraic transformation, the equation becomes:

	
Procof = –

RfMsys

f0 	 (12)

Recent revisions to grid codes have proposed relaxing RoCoF protection settings to accommodate the integration of 
non-synchronous resources better and reduce the risk of grid separation. The UK, Ireland, and Northern Ireland grid 
operators have implemented 1 Hz/s RoCoF ride-through standards [18,19]. Regarding frequency thresholds, China’s third 
defense line configuration requires maintaining a minimum frequency of 49.0 Hz during first-level contingencies [20], while 
Spain specifies 49.2 Hz [21].

For analytical clarity, it is postulate Procof > P∆f  in subsequent discussions. Thus, P∆f  is designated as the index for 
FSM quantification.

3.4  Critical inertia threshold and system planning implications

Equation (7) reveals a non-intuitive but critical insight where increasing the penetration of GFM storage (K) does not nec-
essarily lead to an enhancement in system inertia. The efficacy of GFM integration is contingent upon the relative magni-
tude of its configured virtual inertia (M

GFM
) in comparison to the critical threshold Mx. Fig 2 illustrates the impact of M

GFM
 on 

frequency stability.
Physical interpretation: The critical inertia Mx is mathematically defined as the capacity-weighted average inertia of the 

existing synchronous generator fleet. Physically, it represents the existing system’s “inertial baseline” or “inertial density.”
When M

GFM
 > Mx: Each additional unit of GFM capacity introduces a higher-than-average inertial contribution, conse-

quently, increasing the penetration K raises the overall system inertia (Msys), strengthening frequency stability. In this 
sense, the GFM acts as an inertia enhancer.

When M
GFM

 < Mx: Each additional unit of GFM capacity introduces a lower-than-average inertial contribution. In this 
scenario, diluting the grid with such GFM units reduces the overall system inertia (Msys), potentially degrading frequency 
stability despite increased “green” capacity. Whereby, the GFM inadvertently acts as an inertia diluter.

This finding provides concrete guidance for system planners and operators. For grid planners, planning new GFM stor-
age projects should begin by calculating Mx based on the existing or expected future synchronous-generator fleet. The 
virtual inertia constant M

GFM
 for new GFMs should then be specified to be significantly greater than this calculated Mx to 

ensure they provide genuine inertia support. This may influence inverter sizing and the selection of control strategies. For 
Grid Operators, Mx should be treated as a dynamic quantity that changes with the set of committed synchronous units. 
Therefore, the requirement M

GFM
 > Mx should be evaluated dynamically. Operating strategies must ensure that the aggre-

gate virtual inertia from online GFMs consistently contributes positively to Msys.

4  Evaluation of the FSM

According to the analysis in Section 3, multiple factors affect the magnitude of FSM values. This section examines the 
methodology for calculating the FSM utilizing both aggregation models and PMU.
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4.1  FSM evaluation based on the aggregation model

According to the preceding context, the GFL cannot provide inertia support. Consequently, during power disturbances, 
inertia in low-inertia power systems is supplied by a synchronous generator (SG) and the GFM.

1) SG: A transfer function for the frequency-power relationship of SG is obtained from [22] as (13).

	

(
MSG
i s+ DSG

i

)
∆fi = –∆Pi +∆PSGGi 	 (13)

Where

	
∆PSGGi =

–KSGi
1+ sTSGi

∆fi
	 (14)

Where∆Pi  represents the difference between mechanical and electrical power,∆PSGGi  represents the output of SG, DSG
i  

represents the damping contribution from SG and frequency-dependent loads, KSGi  represents the inverse of the droop of 
SG, TSGi  represents the time constant of the governor.

Following a step disturbance, governor systems and prime movers are typically represented as sustaining constant 
output power, while the effects of load damping are often disregarded. Under these assumptions, the frequency deviation 
is derived from the standard equation (15) as indicated by Baldwin and Schenkel [23].

Fig 2.  Impact of MGFM on frequency stability.

https://doi.org/10.1371/journal.pone.0340648.g002

https://doi.org/10.1371/journal.pone.0340648.g002
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d∆fi
dt

≈ –∆Pi
MSG
i

= –mSG

	 (15)

Where mSG represents the inverted sign frequency derivative of SG.
Let us assume the additional simplification that the output given by (15) could be approximated by an averaged con-

stant ramp:

	 ∆PSGGi (t) = GSG
i ·mSG · t 	 (16)

Where GSG
i  represents the ramp gain of SG. Substituting equation (14) into equation (13) yields the following formula:

	 ∆PSGGi (t) = KSGi ·mSG · (t – TiSG + Ti
SGe–t/Ti

SG
)	 (17)

Where

	
GSG
i = KSGi (1 –

Ti
SG

tp
(1 – e

–tp
Ti
SG ))

	 (18)

2) GFM: The GFM droop and its LPF for the measured output power are combined to derive a swing (19) for GFM inverters [24].

	

(
MGFMs+ DGFM

i

)
∆fi = –∆Pi +∆PGFMGi 	 (19)

It is known that there is always a significant delay in the mechanical governor of SG. In previous research on VSG, this 
delay is also imitated when (20) is applied [25–27].

	
∆PGFMGi =

–KGFMi

1+ sTGFMi

∆fi
	 (20)

Assuming a further simplification, the output described in equation (20) may be approximated as the constant averaged 
ramp presented in (21).

	 ∆PGFMGi (t) = GGFM
i ·mGFM · t 	 (21)

Where GGFM
i  and GSG

i , mGFM and mSG have similar expressions and definitions.
3) The Aggregation Model: The SG and GFM models are aggregated to form a comprehensive model (22) for low-

inertia power systems, where the frequency transitions to the COI frequency while neglecting local frequency oscillations 
around the COI.

	 (Msyss+ Dsys)∆fCOI = –∆PSG+GFM
T +∆PSG+GFM

G 	 (22)

When the damping of the loads is neglected. Equations (23) and (15) have similar expressions.

	

d∆fCOI
dt

≈
–∆PSG+GFM

T

Msys
= –m

	 (23)



PLOS One | https://doi.org/10.1371/journal.pone.0340648  January 7, 2026 10 / 25

Where∆PSG+GFM
T  represents the difference between mechanical and electrical power, ∆PSG+GFM

G  represents the output of 
SG and GFM, Dsys represents the damping of power systems, Ki  represents the inverse of the droop of power systems, Ti 
represents the time constant of power systems, m represents the inverted sign frequency derivative of power systems, Gi  
represents the ramp gain of power systems. Equation (22) becomes

	
Msys

d∆fCOI
dt

= –∆PSG+GFM
T +

NSG+NGFM∑
i

Gi ·m · t
	 (24)

where

	
Gi = Ki(1 –

Ti
tp
(1 – e

–tp
Ti ))

	 (25)

Solving (24) in time yields

	
∆fCOI(t) = –

∆PSG+GFM
T

Msys
· t+ 1

2Msys

NSG+NGFM∑
i

Gi ·m · t2
	 (26)

Minimum is found by solving the following:

	
d∆fCOI
dt

= 0
	 (27)

The nadir time tp is obtained:

	
tp =

Msys∑NSG+NGFM
i Gi	 (28)

Substituting (28) in (26), the maximum frequency deviation ∆fm is found:

	
∆fm =

–∆PSG+GFM
T

2
∑NSG+NGFM

i Gi

(p.u.)
	 (29)

When the maximum frequency deviation reached its permissible limit, the computational formula for P∆f  was derived as 
follows:

	
P∆f = –∆fm · 2 ·

NSG+NGFM∑
i

Gi

	 (30)

4.2  FSM evaluation based on PMU

Given the fixed number of committed units and constant unit parameters during a specific time period, G
i
 becomes a fixed 

constant according to Equation (31). Therefore, the FSM for this period can be simplified to:

	 P∆f = –∆fm × Kf 	 (31)
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Where Kf  represents the frequency proportionality coefficient.
This formulation provides the theoretical basis for the preliminary assessment of the FSM. Specifically, when a power 

disturbance occurs at a particular node under given system conditions, provided that the PMU-recorded threshold values 
have been reached, the FSM can be estimated using disturbance power and frequency deviation data derived from PMU 
measurements under identical nodal operating conditions.

5  Simplified assumptions and error analysis

5.1  Simplified assumptions

As described in Section 4.1, the FSM calculation method based on the aggregate model (Equation 30) relies on 
several simplified assumptions. First, the frequency regulation effect of loads is neglected, and the system damping 
constant is assumed to be zero during the derivation. Second, the dynamic responses of power sources are aggre-
gated and linearized, meaning that the complex and heterogeneous frequency response behaviors of SGs and 
GFMs are approximated by a uniform linear response with a constant ramp rate Gi. Third, the method adopts the 
center-of-inertia (COI) frequency consistency assumption, where the system frequency is considered to follow the 
COI frequency strictly while local frequency oscillations induced by disturbance locations and network structure are 
ignored.

These simplifications significantly reduce model complexity and computational burden, making the method suitable for 
rapid scanning in planning stages and preliminary assessments in online applications. However, in modern low-inertia 
systems, the dynamic characteristics of loads and the diverse control strategies and response speeds of various power 
sources make the errors introduced by these assumptions non-negligible.

5.2  Applicability boundaries and error analysis

The analytical framework developed in this study relies on several simplifying assumptions that enable tractable estima-
tion of frequency stability index. While these assumptions are widely used in reduced-order frequency response models, 
their validity depends on specific system conditions and may introduce non-negligible errors when those conditions are 
not satisfied. To clarify the scope and limitations of the proposed approach, this section outlines the applicability bound-
aries of the key assumptions and identifies the primary sources of error associated with each. The discussion provides 
guidance for interpreting the results, especially in low-inertia or heterogeneous power systems where model deviations 
can significantly affect FSM estimates.

1)	  Load Damping Effect

Assumption: During the initial stage of inertial response, the load power is assumed to be independent of frequency 
changes (i.e., D = 0).

Applicability Boundary: This assumption is held in scenarios where motor loads constitute a relatively small proportion.
Error Analysis: A higher proportion of motor loads increases the error of this assumption. The self-regulating effect of 

motor loads provides positive damping power, which helps suppress frequency decline. Ignoring this effect leads to an 
underestimation of the nadir frequency and consequently an overestimation of the tolerable power deficit for maintaining 
frequency within limits, thereby overestimating the FSM.

2)	  Linear Aggregation of Power Source Responses

Assumption: The inertial responses of SGs (governor and prime mover systems) and GFMs (virtual governor systems) 
with different time constants are aggregated into a single equivalent linear ramp response.

Applicability Boundary: This assumption is valid when the system is dominated by similar types of power sources with 
comparable time constants.
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Error Analysis: Greater diversity in power source types and control parameters increases the error. GFMs exhibit 
virtual inertial responses typically within milliseconds, whereas SGs have governor response delays ranging from 
hundreds of milliseconds to several seconds. The linear aggregation model fails to accurately capture these tempo-
ral differences in response, resulting in deviations in predicting the nadir frequency and, consequently, errors in FSM 
estimation.

3)	  COI Frequency Consistency Assumption

Assumption: The system frequency is assumed to be uniform, ignoring the effects of network topology and disturbance 
location.

Applicability Boundary: This assumption applies to systems with strong connectivity and relatively small-scale 
disturbances.

Error Analysis: In low-inertia systems, reduced overall stiffness results in significant variations in the RoCoF and fre-
quency deviation across different locations for the same disturbance. When evaluating disturbances occurring at electri-
cally remote or weak nodes, the aggregate COI-based model severely underestimates the local RoCoF and frequency 
deviation, thereby overestimating the FSM for that specific disturbance location.

6  Application of the FSM

In this section, the application of the proposed FSM is discussed. The frequency stability of the system was analyzed by 
comparing the lower boundary of the FSM with the maximum disturbance power of the system.

The application framework of the FSM based on the aggregation model is described in Section 6.1, while the applica-
tion framework of the FSM based on PMU is described in Section 6.2. In Section 6.3, the advantages and disadvantages 
of these two algorithms are compared and analyzed.

6.1  Application framework of the FSM based on aggregation model

To operationalize the proposed FSM assessment method, a structured evaluation procedure is employed. The proce-
dure integrates real-time system information, analytical formulations derived earlier, and a stability verification criterion to 
determine whether the system can withstand a specified disturbance. The following steps summarize the implementation 
workflow, from parameter initialization to FSM computation and final stability judgement.

Step 1: System Parameter Initialization
The system parameters are initialized first, including setting the Rf  value according to the given standard, obtaining 

the commitment plans for online SG and GFM, calculating the system parameter M
sys

 using PMU, and acquiring relevant 
parameters G

i
 of these online units.

Step 2: FSM Calculation
The initialized parameters are substituted into equations (30) and (12) to derive the frequency deviation power compo-

nent P∆f  and RoCoF power component Procof . Compute Pf  using equation (1).
Step 3: Stability Criterion Validation
Comparison of Pf  with maximum disturbance power ΔP in the operational system. If Pf  ≥ ΔP, the system frequency is 

deemed stable; otherwise, the frequency control strategies or inertia enhancement measures are activated. Fig 3 presents 
the application framework of the FSM based on the aggregation model.

6.2  Application framework of the FSM based on PMU

It should be noted that the FSM derived from practical algorithms represents an instantaneous value under 
specific operating conditions, rather than a conservative lower bound. The operational workflow aligns with the 
aggregated model approach in three sequential phases: system parameter initialization, FSM computation, and 
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validation of the stability criterion. Although the latter two phases remain identical, the parameter initialization 
diverges significantly.

The framework is initiated with minor disturbances by employing a dual-path parallel processing mechanism for 
dynamic parameter coupling:

Left Branch: Real-time PMU data drives the transient parameter M 
sys

 calculation, enabling RoCoF power component 
Procof  derivation via equation (12).

Right Branch: Sampled disturbance power ΔP and frequency deviation Δf facilitate iterative system damping coefficient 
K

f
 computation through equation (31). Subsequently, substituting the rated frequency deviation Δf

m
 into equation (31) 

yields the frequency deviation power component P∆f .
This bifurcated initialization enables concurrent parameter estimation. Fig 4 presents the application framework of the 

FSM based on PMU.
The frequency proportionality coefficient Kf  can be calculated using an iterative algorithm based on the gradient 

descent method. The specific computational procedure is as follows:
Step 1: Initialize Parameters. Set the initial value for the frequency proportionality coefficient Kf0, the convergence 

threshold ∊, the maximum number of iterations N
max

, and the learning rate α.
Step 2: Preprocess PMU Data. Filter the raw PMU measurements (e.g., using a low-pass filter) to suppress high-

frequency noise and extract the data segment surrounding the power disturbance event for subsequent calculations.

Fig 3.  Application framework of the FSM based on aggregation Model.

https://doi.org/10.1371/journal.pone.0340648.g003

https://doi.org/10.1371/journal.pone.0340648.g003
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Step 3: Iterative Calculation Core Loop.
Compute Error Function E

k
: Calculate the least squares error based on the current estimate Kfkand the preprocessed 

PMU data (ΔP
i
, Δf

i
).

Update Estimate: Using the gradient descent method, compute the gradient of the error function ∂K
f
∂E

k
 and update 

the damping coefficient estimate K
fk+1

 = K
fk
 − α ⋅ ∂K

f
∂E

k
.

Convergence Check: Check if the update in this iteration is less than the preset convergence threshold ∊.
If Yes, the algorithm is considered converged. Exit the loop and output the final Kf .
If No, check if the maximum iteration count N

max
 has been reached.

If Yes, terminate the iteration to prevent an infinite loop and output the current result (a warning can be issued).
If No, return to step 3 to continue with the next iteration.
Since the error function is convex, the algorithm guarantees convergence to the global minimum, typically achieved 

within several tens of iterations. A data preprocessing step (low-pass filtering) is incorporated to effectively suppress 
high-frequency noise, thereby reducing its impact on the iterative process. The gradient descent method further enhances 
robustness by averaging out the effects of noise over multiple iterations. Through data preprocessing and appropriate 
parameter selection, the algorithm can be effectively applied to practical power system FSM assessments. Fig 5 presents 
the iterative algorithm of the frequency proportionality coefficient.

6.3  Comparison of advantages and disadvantages between the two calculation methods

The two FSM calculation methods proposed in this paper are not mutually exclusive; instead, they are complementary 
to each other. Table 1 quantifies the comparison between the two calculation methods. Together, they form a full-cycle 
frequency stability assessment system from planning to operation:

Fig 4.  Application framework of the FSM based on PMU.

https://doi.org/10.1371/journal.pone.0340648.g004

https://doi.org/10.1371/journal.pone.0340648.g004
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Planning Stage: The aggregation model-based method should be employed to perform FSM calculations for multiple 
scenarios and parameters. This is used to assess the impact of renewable energy penetration, GFM inertia configuration, 
reserve capacity, and other factors on frequency stability.

Operation Stage: The PMU-based method should be integrated, utilizing actual disturbance data to update the FSM 
estimate continuously. This provides a basis for real-time adjustments to unit commitment and optimization of GFM control 
strategies.

Ultimately, through the mode of “offline calculation + online calibration,” the FSM can effectively serve the safe and 
stable operation of low-inertia power systems.

7  Case studies

In this section, two test systems are used to validate the effectiveness of the proposed FSM: a realistic provincial 
power grid in China, and a modified IEEE 39-bus system. All experiments were performed on a personal  
computer with an Intel I Core I i7-7500U (2.9 GHz) processor and 16 GB of memory, using Power Factory/
Matlab-Simulink.

For analytical convenience, the simulation framework assumed that the RoCoF parameter exceeded the P∆f  value. 
Consequently, P∆f  serves as the FSM throughout the subsequent evaluations.

Fig 5.  An iterative algorithm for the frequency proportionality coefficient.

https://doi.org/10.1371/journal.pone.0340648.g005

https://doi.org/10.1371/journal.pone.0340648.g005
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7.1  Provincial-level power grid planning

Fig 6 presents the projected installed capacity mix (2025–2060) for a Chinese provincial grid with a maximum DC block 
capacity of 8 GW. The plan provides the online unit commitment schedule, along with the operating parameters and con-
trol strategies for each unit. The rated frequency deviation Δf

m
 = −1 Hz (per unit: −0.02).

Table 1.  Comparison Between the Two Calculation Methods.

Comparison 
Dimension

Aggregation Model-Based Method PMU-Based Method

Applicable Stage Planning stage, offline analysis, strategy 
formulation

Real-time operation, online monitoring, 
rapid assessment

Data Requirements System parameters, unit models, droop 
coefficients, etc.

PMU measurement data, actual distur-
bance records

Calculation 
Accuracy

High (theoretically sound, but relies on 
parameter accuracy)

Medium (affected by disturbance scale; 
larger errors under minor disturbances)

Real-Time 
Performance

Low (complex computation, unsuitable 
for high-frequency updates)

High (can rapidly respond to system 
changes)

Dependence on 
Disturbance

Independent of actual disturbances Must rely on actual disturbance events

Output Results Theoretical FSM lower limit (conservative 
value)

Instantaneous FSM (estimated value 
at the current operating point)

https://doi.org/10.1371/journal.pone.0340648.t001

Fig 6.  Installed capacity of various power sources.

https://doi.org/10.1371/journal.pone.0340648.g006

https://doi.org/10.1371/journal.pone.0340648.t001
https://doi.org/10.1371/journal.pone.0340648.g006


PLOS One | https://doi.org/10.1371/journal.pone.0340648  January 7, 2026 17 / 25

Matlab-Simulink simulations for the 2060 carbon neutrality scenario establish M
x
 = 6.43 s, as per regulatory guidelines 

and equation (7). Fig 7 illustrates the M
sys

 variations across the GFM storage penetration ratios (K: 0–1) and the GFM iner-
tia time constants (M

GFM
: 4–12 s).

Key observations:

For M
GFM

 < M
x
, M

sys
 decreases with rising K values.

For M
GFM

 > M
x
, M

sys
 increases proportionally with K, demonstrating enhanced frequency stability with higher grid-forming 

storage penetration.

Table 2 quantifies the FSM variations under different M
GFM

 and K combinations. Both M
GFM

 = 8 s and 12 s satisfy the crit-
ical threshold requirements, with the FSM increasing alongside the M

GFM
 and K values. According to Table 2, an increase 

in the M
GFM

 correlates with a rise in the FSM. With a fixed M
GFM

 value, increasing K results in a higher FSM, indicating 
improved frequency stability in the power grid.

Three representative scenarios are simulated (Fig 8):

S1: K = 0, M
GFM

 = 8 s.

S2: K = 1, M
GFM

 = 8 s.

S3: K = 1, M
GFM

 = 12 s.

A simulated 0 s power deficit drives the system frequency to the lower limit (−0.02 p.u.). Comparative FSM analysis 
reveals that the minimum frequency stability margin (11.47 GW) exceeds the maximum DC block disturbance (8 GW), 
thereby validating the grid’s resilience under critical contingency scenarios. These results demonstrate compliance with 
operational safety standards and confirm the viability of the proposed capacity expansion strategy.

7.2  IEEE 39-Bus system

Fig 9 illustrates the modified IEEE 39-bus system [28] with a nominal frequency of 50 Hz. Key modifications to the original 
system include the following.

Fig 7.  Changes in the inertia time constant of the power system.

https://doi.org/10.1371/journal.pone.0340648.g007

https://doi.org/10.1371/journal.pone.0340648.g007
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1)	Adjusted load distribution and synchronous generator parameters;

2)	 Integration of five GFM energy storage units (IRS1-IRS5);

3)	Addition of five GFL energy storage units (IRS6-IRS10).

The generator specifications are summarized in Table 3, which includes conventional generators employing IEEE 
G1-type speed governor systems, where a more detailed control architecture can be found in Peng et al. [29]. The virtual 
synchronous generator (VSG) control strategy for energy storage units follows the methodology outlined in Zhong [30]. 
RoCoF and rated frequency deviation are configured at 0.5 Hz/s and 0.5 Hz, respectively, with a data sampling rate of 
100 samples per second. FSM_agg denotes the FSM value derived from the aggregation-based model, while FSM_sim 
represents the FSM value obtained from the PSS/E simulation model [31]. The disturbance location U1 is the farthest from 
the PMU installation site, U2 is at an intermediate distance, and U3 is the closest.

Three operational scenarios are established to evaluate the FSM under varying conditions:

S1: Total grid capacity = 10000 MW, K = 0%, M
GFM

 = 0 s and M
sys

 = 4.44 s.

S2: Expanded grid capacity = 16000 MW with increased renewable penetration, K = 50%, M
GFM

 = 3 s and M
sys

 = 3.96 s.

S3: Identical parameters to S2, except M
GFM

 = 5 s and M
sys

 = 4.63 s.

Table 2.  FSM values under different parameters.

K
(p.u.)

MGFM

(s)
Msys

(s)
FSM
(GW)

tp

(s)

0 8 6.43 11.47 8.77

0.5 8 6.53 12.28 8.90

1 8 6.62 13.07 9.00

0 12 6.43 11.47 8.77

0.5 12 6.79 12.29 9.21

1 12 7.10 13.12 9.59

https://doi.org/10.1371/journal.pone.0340648.t002

Fig 8.  Frequency changing curve.

https://doi.org/10.1371/journal.pone.0340648.g008

https://doi.org/10.1371/journal.pone.0340648.t002
https://doi.org/10.1371/journal.pone.0340648.g008
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The scenario-specific parameters are systematically listed in Table 4. This configuration enables a comparative analysis 
of FSM variations across distinct stages of renewable integration and control parameter configurations.

As shown in Table 4, the key indices for the three scenarios includes M
sys

 (s), M
sys

 (MW·s), and FSM_agg. Compar-
ing scenarios S1 and S2, it is observed that M

sys
 (s) exhibits a decreasing trend. Without coupling this index with system 

capacity, one might mistakenly conclude that the system’s frequency stability is reduced. This highlights a limitation of  
M

sys
 (s), where, in the absence of system capacity information, it becomes impossible to accurately assess frequency sta-

bility. According to Table 4, M
sys

 (MW·s) exhibits an increasing trend, indicating an improvement in the system frequency 

Fig 9.  Diagram of the modified IEEE 39-bus system.

https://doi.org/10.1371/journal.pone.0340648.g009

Table 3.  Generator parameters of the modified IEEE 39-bus system.

Number Rated capacity (MW) Inertia constant (s)

G01 1200 5

G02 700 4.329

G03 800 5

G04 800 5

G05 300 4.333

G06 800 4.35

G07 700 3.711

G08 700 5

G09 1000 3.45

G10 1000 4.2

https://doi.org/10.1371/journal.pone.0340648.t003

https://doi.org/10.1371/journal.pone.0340648.g009
https://doi.org/10.1371/journal.pone.0340648.t003
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stability. However, this index still fails to provide grid operators with intuitive decision-making information. Moreover, M
sys

 
solely reflects system inertia and does not incorporate critical decision-related data, such as frequency regulation power. 
Therefore, the FSM proposed in this study offers a more comprehensive representation of frequency stability and delivers 
intuitively actionable information regarding capacity deficit to grid operators. In other words, the FSM value represents the 
capacity limit beyond which system frequency instability may occur due to generation tripping or load variation. Grid oper-
ators must accordingly adjust the reserve capacity of conventional units, energy storage systems, or the control strategies 
of GFM inverters to maintain stability.

Comparative analysis of scenarios yields critical insights:
S1 vs. S2: Despite the lower inertia time constants in S2 owing to increased renewable penetration (50% vs. 10% GFM 

capacity ratio), the FSM values show enhanced stability (Table 4). This counterintuitive result underscores the effective-
ness of renewable-integrated frequency support strategies and storage responses in maintaining grid stability.

S2 vs. S3: S3 achieves further FSM improvement thanks to properly configured GFM inertia constants (5s vs the 
critical threshold). Conversely, S2’s subcritical inertia setting (3s) causes FSM degradation despite identical renewable 
penetration levels, underscoring the need for optimized inertia time constants to preserve stability.

These findings validate the efficacy of the FSM in low-inertia power system analysis and emphasize the critical relation-
ship between grid-forming converter parameter tuning and system-wide stability enhancement. The methodology success-
fully bridged the theoretical modeling and practical implementation requirements of modern power systems.

To verify the proposed simplified FSM estimation approach, three load conditions (light, medium, and heavy loads) 
were subjected to disturbance tests with varying magnitudes: minor (10% fluctuation), moderate (20%), and major (40%). 
All disturbances were constrained within the frequency thresholds to assess the accuracy of FSM estimation across vary-
ing perturbation scales. Following the methodology in Section 6.2, Table 5 presents the quantitative FSM results for each 
scenario.

The definitions [32] of the relative error percentage are given by

	
FSMerr(%) =

∣∣∣∣
FSMc – FSMr

FSMr

∣∣∣∣× 100%
	 (32)

	
Ferr(%) =

∣∣∣∣
fnar,c – fnar,r

fnar,r

∣∣∣∣× 100%
	 (33)

Where FSMc represents the calculation value of FSM, FSMr  represents the reference value of FSM,fnar,crepresents the 
calculation value of the nadir frequency, and fnar,r represents the reference value of the nadir frequency.

For Scenario S1, U3 node exhibited FSM estimation errors of 5.7% (minor disturbance), 4.3% (moderate disturbance), 
and 1% (major disturbance), demonstrating improved accuracy with increasing disturbance magnitude. All estimations 
maintained an error of <10%, meeting the engineering tolerance requirements.

The installation location of PMU has a decisive influence on measurement error. Nodes closer to disturbance sources 
and with stronger signal intensity generally exhibit smaller errors in FSM systems. In contrast, nodes located further from 

Table 4.  Key parameters of different scenarios.

Scenario K
(%)

Rated capacity of SG
(MW)

Rated capacity of CIG
(MW)

MGFM

(s)
Msys

(s)
Msys

(MW·s)
FSM_sim
(MW)

S1 0 8000 2000 0 4.44 44400 300

S2 50 8000 8000 3 3.96 63360 395

S3 50 8000 8000 5 4.63 74808 415

https://doi.org/10.1371/journal.pone.0340648.t004

https://doi.org/10.1371/journal.pone.0340648.t004
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the disturbance sources experience significantly amplified errors, primarily due to the attenuation of disturbances over 
increased electrical distance. This highlights the need to integrate data from multiple PMUs to improve the overall accu-
racy of FSM-based measurements.

The time-domain simulations for Scenario S1 (U1 node) in Fig 10 reveal the frequency nadir threshold (49.5 Hz) predic-
tion discrepancies via the PMU-Based method, with frequency error remaining below 1%. As can be observed, even when 
the FSM exhibits a relatively large error (less than 10%), the resulting frequency error remains very small (less than 1%) 
and occurs only near the boundaries. Therefore, it does not lead to severe frequency instability in the power system.

As shown in Table 6, the aggregated model systematically overestimates the system FSM, with errors within 5%. This 
phenomenon can be attributed primarily to the insufficient attention given to load damping and the effects of local fre-
quency variations, resulting in an inadequate assessment of the severity of frequency fluctuations.

Load characteristics represent one of the main sources of error. When the dynamics of motor loads are considered in 
detail, the error reaches 4.8%.

The location of the disturbance has a decisive influence on the error. For nodes close to the disturbance source with 
strong coupling, the error under the COI assumption is smaller. In contrast, for weak nodes at the grid periphery, the error 
increases significantly. This indicates that the aggregated model evaluates the “average” performance of the system and 
may fail to identify the most vulnerable nodes in terms of local stability.

Despite these errors, the aggregated model performs well in trend analysis and maintains high accuracy (error < 5%) 
within its applicable boundaries.

8  Conclusion

The proposed FSM index demonstrates core theoretical value by successfully unifying three critical dimensions that 
affect frequency stability—system inertia, primary frequency regulation dynamics, and operational constraints—within a 
concise, quantitative framework. Compared to conventional indices that focus solely on inertial time constants, the FSM 

Table 5.  Evaluation of the FSM in different scenarios.

Scenario Note FSM based on small disturbance
(MW)

FSM based on middle disturbance
(MW)

FSM based on big disturbance
(MW)

FSM_sim(MW)

S1 U1 328 322 311 300

FSMerr 9.3% 7.3% 3.7% /

U2 325 319 308 300

FSMerr 8.3% 6.3% 2.7% /

U3 317 313 303 300

FSMerr 5.7% 4.3% 1% /

S2 U1 431 423 409 395

FSMerr 9.1% 7.1% 3.5% /

U2 427 419 404 395

FSMerr 8% 6% 2.4% /

U3 416 411 398 395

FSMerr 5.4% 4% 0.8% /

S3 U1 453 445 430 415

FSMerr 9.2% 7.2% 3.6% /

U2 449 441 425 415

FSMerr 8.2% 6.2% 2.5% /

U3 438 432 420 415

FSMerr 5.6% 4.1% 1.1% /

https://doi.org/10.1371/journal.pone.0340648.t005

https://doi.org/10.1371/journal.pone.0340648.t005
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Fig 10.  Time domain simulation results of node U1 in scenario S1.

https://doi.org/10.1371/journal.pone.0340648.g010

Table 6.  The errors of FSM_agg and FSM_SIM.

Scenario Note FSM_agg FSM_sim FSMerr

S3 U1 430 MW 415 MW 3.6%

S3 U2 426 MW 415 MW 2.7%

S3 U3 421 MW 415 MW 1.5%

S3,50% Motor Load. U3 440 MW 420 MW 4.8%

https://doi.org/10.1371/journal.pone.0340648.t006

https://doi.org/10.1371/journal.pone.0340648.g010
https://doi.org/10.1371/journal.pone.0340648.t006
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advances the field by directly addressing a fundamental question in grid planning and operation, namely, determining the 
maximum power deficit the system can withstand without losing stability under current conditions. This allows the FSM 
to move beyond trend-based assessments and provides a physically meaningful boundary value directly applicable to 
decision-making.

In practical applications, the dual computation framework of the FSM—based on both aggregated modeling and PMU 
measurements—forms a closed loop from “offline planning” to “online assessment.” The aggregated model approach is 
suitable for rapid scenario scanning and strategy optimization during the planning stage, while the PMU-based method 
enables online calibration and real-time evaluation using actual disturbance data during operation. This framework pro-
vides grid operators with an unprecedented tool to not only assess the present security level but also predict the system’s 
disturbance resilience over a forthcoming period (e.g., one hour), thereby facilitating a shift from passive response to 
active defense.

Parametric analysis reveals critical insights: grid-forming converters require properly calibrated inertia time constants 
to ensure a positive correlation between grid-forming energy storage penetration and frequency stability improvement, 
ultimately enhancing system stability.

Numerical studies on both the provincial-level power grid planning and modified IEEE 39-bus system demonstrated the 
effectiveness of the FSM in frequency stability analysis and its operational value for engineering applications. The pro-
posed index successfully identifies stability vulnerabilities across diverse grid configurations, informs renewable capacity 
planning, and optimizes protection system settings to ensure secure grid operation.
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