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Abstract 

Remaining Useful Life (RUL) prediction is crucial for implementing predictive main-

tenance strategies, however, RUL prediction is severely constrained by the lack of 

high-quality labeled life-cycle data. Moreover, complex coupling relationships exist 

within the obtained multidimensional degradation data, making it difficult to con-

struct an accurate health index (HI) for the system. To address this challenge, we 

propose an RUL prediction method based on sequential healthy index evaluation 

which incorporate two parts: the parameter prediction process and the health index 

fusion process. The core innovation of this study is an RUL prediction method that 

integrates a CNN-Transformer hybrid model with a sequential health index evaluation 

scheme. Compared to traditional data-driven methods, our approach incorporates a 

chunk-interaction mechanism into the multi-head attention design, thereby reducing 

model complexity and computational demands. Simultaneously, the sequential eval-

uation scheme dynamically constructs the health index based on the Mahalanobis 

distance and the Sequential Evaluation Ratio (SER), which eliminates the reliance 

on high-quality labeled life-cycle data. Experimental results demonstrate that the 

proposed method outperforms existing deep learning approaches (such as LSTM, 

Transformer, and Att-BiGRU) across multiple datasets, exhibiting higher prediction 

accuracy and robustness, particularly in label-scarce scenarios.

1  Introduction

Predicting the Remaining Useful Life (RUL) of complex systems is a crucial com-
ponent of Prognostics and Health Management (PHM) [1,2] and predictive mainte-
nance strategies [3]. However, accurate RUL prediction is highly dependent on the 
availability of labeled life-cycle data. Furthermore, as systems become increasingly 
integrated, multidimensional degradation parameters often exhibit complex coupling 
characteristics [4]. Relying on a single degradation parameter for prediction tends to 
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overlook the interdependencies among multiple parameters, thereby preventing an 
accurate overall RUL estimation [5].

Currently, data-driven RUL prediction methods are widely used due to their strong 
adaptability and generalization capability in practical applications [6]. Data-driven 
approaches can be broadly classified into machine learning-based methods and 
various hybrid fusion methods [7]. Machine learning methods encompass deep learn-
ing [8], with common models including Support Vector Machines (SVM), Gaussian 
Process Regression (GPR), Convolutional Neural Networks (CNN), recurrent neural 
networks (RNNs), and Transformers. Recent advances include: Li et al. [9] predicting 
turbine engine RUL with LS-SVM; Shen et al. [10] introducing intermediate-domain 
SVM for bearings; Zheng et al. [11] using dilated CNNs for motors; Rathore et al. 
[12] employing attention-based Bi-LSTM for bearings. However, machine learning 
methods often have a black-box nature, leading to a lack of model interpretability. 
To enhance interpretability and accuracy, various fusion strategies have been devel-
oped. Chen et al. [13] combining RNNs with Wiener processes; Ma et al. [14] apply-
ing PSO-optimized neural networks; Chen et al. [15] integrating CNN-LSTM with 
feature selection. Such fusion approaches significantly improve both performance 
and interpretability. In recent years, with the deepening understanding of complex 
coupling relationships between system components, Graph Neural Networks (GNNs) 
have been introduced into the RUL prediction field, demonstrating unique advan-
tages. GNNs can explicitly model the topological relationships between sensors 
or subsystems, treating multidimensional degradation data as graph structures for 
processing. For instance, the DCAGGCN model captures dynamic dependencies 
between components through a Dynamic Causal Attention Graph Convolutional 
Network [16]; DyWave-BiAGCN combines dynamic wavelet transforms with a bidi-
rectional attention mechanism to simultaneously capture time-frequency domain 
features and global dependencies [17]. These methods have achieved outstanding 
performance in systems with strong coupling characteristics (such as aero-engines 
and complex mechanical systems), providing new ideas for handling multidimen-
sional coupled degradation data.

Another issue in data-driven lifetime prediction is the complex coupling relation-
ships within multidimensional degradation data. For systems with simple functions, a 
single degradation parameter can directly reflect performance degradation. However, 
for the complex system, multidimensional degradation parameters often collectively 
encapsulate the system’s RUL information; relying solely on a single degradation 
parameter cannot yield comprehensive results. The data collection process for com-
plex systems is typically costly and technically challenging, making it difficult to obtain 
high-quality, labeled full life-cycle data in practice. Therefore, a deep exploration of 
the underlying correlations among historical degradation parameters and the rational 
construction of a Health Index (HI) are key to enhancing RUL prediction accuracy. To 
address this issue, this study proposes a dynamic sequential evaluation – based pre-
diction method capable of accurately predicting the system’s degradation states and 
achieving lifetime prediction without life labels. This method adopts the concept of 
parameter prediction followed by index fusion to indirectly achieve lifetime prediction. 
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It utilizes a CNN-Transformer model to discover the hidden correlations among degradation parameters and capture their 
dynamic variations. Through the Sequential Evaluation Ratio (SER), it quantifies deviations in the system’s health states 
to construct health index curves for subsystems. These indexes are then fused via a comprehensive evaluation metric to 
derive the system’s health index, reflecting its degradation state.

Compared to traditional data-driven methods, the CNN-Transformer model proposed in this study tackles the chal-
lenge of modeling the coupled relationships among multidimensional degradation parameters by integrating CNN’s local 
feature extraction capability with Transformer’s global temporal dependency modeling. Its innovations are reflected in: 
(1) introducing a chunk-interaction mechanism and Multi-Head Latent Attention (MLA), significantly reducing computa-
tional complexity while maintaining long-sequence prediction capability; (2) employing a sequential health index evalu-
ation scheme that dynamically quantifies system state deviation, eliminating the reliance on lifecycle labels required by 
traditional methods. Compared to existing deep learning approaches (such as LSTM, Transformer, and Att-BiGRU), our 
method demonstrates significant advantages in model lightweighting, multidimensional data fusion, and adaptability in 
label-scarce scenarios, providing a feasible solution for real-time predictive maintenance in industrial settings.

2  Methodology

2.1  Problem formulation

To address the complex nonlinear relationships among degradation parameters and the varying impact of each subsys-
tem’s degradation on the overall system health, the proposed method is structured as follows: First, the HI based on the 
degradation parameters of each subsystem is constructed. Then, the future values of these subsystem HIs are predicted. 
Finally, the system’s overall HI and its RUL are derived based on the criticality of the subsystems and a comprehensive 
evaluation scheme.

Assuming the system has K key degradation parameters, with the degradation parameter sequence Xk = {xk,1
, xk,2

,…, 
xk,t}, where k = 1,2,…,K. By analyzing each parameter, the health index hk(t) for its corresponding subsystem can be con-
structed, which characterizes the degree of degradation of that subsystem at time point t. Mathematically, the health index 
for a subsystem can be expressed as:

	 hk(t) = gk(Xk(t))	 (1)

where gk represents the health index construction function of the subsystem, and Xk(t) represents the degradation parameter 
of the subsystem at time point t. To capture the nonlinear correlations among subsystems and achieve accurate temporal 
prediction of the HI, a prediction function f is trained on historical multidimensional health index sequences. This function is 
used to predict future HI values. Sliding time windows are applied to the historical data, forming a high-dimensional feature 
matrix that encapsulates temporal information. The process is shown in Fig 1. and can be expressed in the following form:

	 H(t) = [h(t – (L – 1)); h(t – (L – 2)); ...; h(t – 1); h(t)]	 (2)

The HIs of multiple subsystems are integrated through a subsystem evaluation scheme to obtain a comprehensive sys-
tem health index HI(t). The fusion function φ incorporates the importance of the subsystems and the evaluation scheme, 
and is mathematically expressed as:

	 HI(t) = φ(ĥ1(t), ĥ2(t), ..., ĥK(t);ω1,ω2, ...,ωK)	 (3)

where ωk is the comprehensive weight coefficient for the subsystems, satisfying the constraint 
∑K

k=1 ωk = 1. The fusion 
operator φ is selected based on the system’s structure and degradation characteristics; common choices include linear 
weighting or extreme value operators. Finally, the RUL is determined based on the first-passage time.



PLOS One | https://doi.org/10.1371/journal.pone.0340645  January 13, 2026 4 / 24

2.2  Framework of the sequential health index evaluation algorithm

This study adopts a two-stage workflow: first performing time-series prediction, and then constructing the health index. 
The overall framework of the proposed method is illustrated in Fig 2. The lifetime prediction method is based on a 
CNN-Transformer model. A dynamic sequential evaluation method is introduced to derive the subsystem HI by quantifying 
the deviation between the observed system state and a predefined healthy state. These subsystems’ HIs are then fused 
using a comprehensive evaluation metric to obtain the overall system health index. This design enables the model to meet 
common industrial resource constraints (e.g., limited GPU memory and computational power) and real-time requirements 
(e.g., fast inference on streaming data).

The CNN-Transformer model is designed to capture both local and global dependencies in multidimensional degra-
dation data, making it adaptable to various degradation modes. The CNN module extracts spatial correlations between 
parameters through convolutional kernels, while the Transformer module with MLA captures long-term temporal depen-
dencies. This combination allows the model to handle complex coupling relationships, even in scenarios with conflicting 
degradation patterns (e.g., when subsystems exhibit opposite trends). To address potential conflict issues during the 
Health Index (HI) fusion process, the model optimizes the weight coefficients ωₖ and the fusion operator φ based on the 
importance and degradation characteristics of the subsystems. The fusion function φ integrates the health indices of 
the individual subsystems into a comprehensive health index, while fully considering potential coupling conflicts that may 
arise from inconsistent degradation trends among the subsystems. The weight coefficients ωₖ are allocated based on 
the importance and degradation consistency of the subsystems, thereby balancing conflicting trends. For instance, if the 
health index of a particular subsystem significantly deviates from others (indicating a conflict), its weight can be dynam-
ically adjusted using the Analytic Hierarchy Process (AHP) to reduce its impact on the overall health index. Further-
more, the fusion operator (such as the linear weighting operator) helps mitigate conflicts by reinforcing the information 
from subsystems whose degradation trends are consistent with the overall trend. As shown in Section 3.3, this method 
ensures that the fused health index maintains monotonicity and robustness even in scenarios with conflicting parameter 
coupling.

In the proposed framework, the CNN serves as a relational feature extraction module, tasked with capturing the cou-
pling relationships among the system’s multidimensional degradation parameters [18]. To enhance the stability of the 

Fig 1.  Schematic diagram of sample slicing for multidimensional historical health index sequence data.

https://doi.org/10.1371/journal.pone.0340645.g001
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feature distribution, a Batch Normalization (BN) layer is incorporated into the CNN, which constrains gradient updates 
within the non-saturation linear region and improves the model’s generalization capability.

Concurrently, the Transformer [19] is adopted as the backbone of the temporal feature extraction module. To address 
the requirements for reduced computational complexity and practical deployment inherent in lifetime prediction tasks, a 
Multi-Head Latent Attention (MLA) mechanism is proposed to replace the standard Transformer encoder.

However, the computational complexity of the core self-attention mechanism in the standard Transformer architecture is 
O(L2), which imposes a significant burden for long-sequence lifetime prediction tasks. To reduce computational complexity 
for model lightweighting and practical deployment, a common strategy is to adopt a chunking mechanism. This involves 
partitioning the long sequence into multiple non-overlapping chunks and computing attention independently within each 
chunk. However, this chunk-based processing can lead to “global information loss.” Specifically, partitioning a sequence 
creates hard boundaries between chunks. This means that the hidden state of a timestep at the end of chunk A cannot 
directly interact with another critical timestep at the beginning of chunk B via the attention mechanism. Since degradation 
processes are often continuous and long-term, crucial degradation features may be distributed across different chunks. 
This inter-chunk isolation prevents the model from capturing long-range dependencies across chunk boundaries, leading 
to a loss of global sequence coherence and ultimately compromising long-term prediction accuracy.

To address this issue, a cross-chunk interaction mechanism is introduced. This mechanism captures and propagates 
global dependencies between chunks through the use of global tokens. Specifically, a learnable global token is added to 
each chunk. This token interacts with all local tokens within its chunk via the attention mechanism, thereby aggregating 
the chunk’s local information. Subsequently, these global tokens from different chunks interact with each other through 
a lightweight cross-chunk attention layer, enabling the flow and integration of global information. This design effectively 

Fig 2.  Framework of the CNN-transformer model and sequential evaluation strategy for RUL prediction.

https://doi.org/10.1371/journal.pone.0340645.g002

https://doi.org/10.1371/journal.pone.0340645.g002
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establishes “information bridges” between independent chunks, successfully mitigating the global information fragmenta-
tion problem caused by chunking without significantly increasing computational complexity (reduced from O(L²) to O(L·P), 
where P is the chunk size). A schematic diagram is shown in Fig 3.

Although GNNs demonstrate excellent performance in processing explicit graph-structured data, their effectiveness 
highly depends on the quality of the predefined graph structure. For the complex systems targeted by this study (e.g., 
aero-engines), the precise physical connections or dynamic coupling weights between sensors are often difficult to obtain 
a priori. In contrast, the CNN-Transformer model adopted in this study implicitly learns local spatial correlations between 
sensor parameters through the CNN’s convolutional kernels, and captures global long-term dependencies through the 
Transformer’s attention mechanism. This approach does not require a predefined graph structure, making it more adapt-
able to industrial scenarios where sensor relationships are ambiguous or dynamically changing. This “implicit coupling 
learning” paradigm ensures performance while reducing the model’s reliance on prior knowledge, thereby enhancing the 
method’s generalizability.

2.3  Sequential HI evaluation strategy

The lifetime prediction method in this study adopts an indirect approach. It requires constructing a reasonable health 
index that reflects the system’s degradation states from multidimensional degradation parameters. The core idea of the 
proposed sequential evaluation method is to establish a standard state space using historical health data. It calculates 
the distance between the standard health state feature vector and the observed state feature vector to this standard state 
space. The ratio of these distances serves as the Sequential Evaluation Ratio (SER). The magnitude of the SER reflects 
the degree of state deviation, thereby constructing the health index value. This study employs the sequential evaluation 
method to construct health index curves for the subsystems, which describe the system’s degradation process and the 

Fig 3.  Schematic diagram of the multi-head latent attention mechanism.

https://doi.org/10.1371/journal.pone.0340645.g003

https://doi.org/10.1371/journal.pone.0340645.g003
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extent of damage. This enables timely warnings at failure states and facilitates system lifetime prediction. The specific 
workflow of the sequential evaluation method is shown in Fig 4.

Step 1: Acquire historical data for each subsystem and process the data using the sliding window method to obtain 
processed data for each subsystem, expressed as follows:

	

X(t) =




x1,t–L+1 x1,t–L+2 . . . x1,t
x1,t–L+1 x1,t–L+2 . . . x1,t

...
... . . .

...
x1,t–L+1 x1,t–L+2 . . . x1,t



	 (4)

Step 2: Perform time-frequency domain feature extraction on the acquired data to extract data features. Commonly 
used time-frequency domain features include maximum/minimum values, mean, standard deviation, kurtosis, root mean 
square (RMS), skewness, spectral energy, and spectral entropy.

Step 3: Obtain the standard health feature vector μU. Based on features extracted from the system’s healthy state, calculate 
the mean μ to derive the standard health feature vector, where n denotes the number of features selected for the system:

	 µU = [µ1 µ2 µ3 · · · µn]	 (5)

Step 4: Obtain the system’s health memory matrix 
∑

U . Extract features from initial healthy-state data of the system, 
compute its covariance matrix to highlight correlations between different features and across time steps.

	

∑
U =




Cov(X1,X1) Cov(X1,X2) · · · Cov(X1,Xn)
Cov(X2,X1) Cov(X2,X2) · · · Cov(X2,Xn)

...
... · · ·

...

Cov(Xn,X1) Cov(Xn,X2) · · · Cov(Xn,Xn)



	 (6)

Fig 4.  Workflow diagram of the sequential evaluation method.

https://doi.org/10.1371/journal.pone.0340645.g004

https://doi.org/10.1371/journal.pone.0340645.g004
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Step 5: Perform Mahalanobis distance calculation to measure the state deviation between the current feature vector of 
the system and the standard health feature vector. The Mahalanobis distance formula is as follows:

	
D =

√
(x – µU)

T
∑′–1

U
(x – µU)

	 (7)

where, x is the feature vector of the system at the current timestep.
Step 6: Calculate the sequential evaluation ratio SER. Compute the ratio between the Mahalanobis distance of the sys-

tem’s current state and that of its initial healthy state to obtain the sequential evaluation ratio, which describes the damage 
state of the system:

	
SER =

Dcurrent

Dhealth 	 (8)

Step 7: Calculate the health degree HD of the subsystem. The magnitude of the health degree describes the system ‘s 
health status, typically constrained between 0 and 1. Generally, values above 0.8 represent a healthy state, while values 
below 0.4 indicate a warning state.

	
HD =

1
1 + α · exp(SER) 	 (9)

where, α is a tension parameter that controls the influence of the sequential evaluation ratio on the health degree. It can 
be determined based on expert knowledge or system data monitoring intervals.

where, the tension parameter α is a scalar greater than 0, and its physical significance lies in adjusting the sensitivity of 
the system’s health state to observed deviations. Specifically:

α determines the rate at which the Health Degree HD(t) decreases as the Sequential Evaluation Ratio SER(t) increas-
es.A larger α value indicates that the system is more sensitive to minor state deviations; the health degree would decline 
rapidly even with a slight increase in SER. This is suitable for systems with extremely high safety requirements that need 
early warnings.Conversely, a smaller α value indicates a higher tolerance for deviations within the system, resulting in a 
more gradual decline in health degree. This is suitable for systems with slow degradation processes that allow for a cer-
tain buffer period.

This study employs a data-driven grid search approach to determine the optimal α value. The procedure is as follows:
Define the Optimization Objective: The goal is to ensure that the constructed overall system Health Index HI(t) pos-

sesses optimal monotonicity and robustness. The calculation methods for these two metrics are described in Section 3.3.
Set the Search Range: A reasonable range (e.g., α ∈ [0.5, 5]) is defined, and a sequence of candidate α values is gen-

erated with a fixed step size (e.g., 0.1) over the training set.
Evaluation and Selection: For each candidate α, the health index curves for all training units are calculated according to 

Equations (7)–(9), and fused to obtain the system-level HI. The average monotonicity and robustness of these HI curves 
are then computed.

Select the Optimal Value: The α value that yields the highest combined score (e.g., monotonicity + robustness) is 
selected as the final parameter. In the application to the C-MAPSS dataset in this experiment, the optimal α value deter-
mined by this method was 1.5.

To quantitatively evaluate the reasonableness of the constructed Health Index (HI), this study adopts a widely recog-
nized set of evaluation metrics, including Correlation, Trendability, Monotonicity, Predictability, and Robustness. The defini-
tions and calculation methods for these metrics are as follows.



PLOS One | https://doi.org/10.1371/journal.pone.0340645  January 13, 2026 9 / 24

(1)	 Correlation

Correlation(corr ) is used to measure the similarity of trends in multidimensional sensor data within a complex system, 
reflecting the relevance of module health degrees at monitoring time points. The Maximal Information Coefficient (MIC), 
based on the mutual information of all monitoring sensors’ data, is employed to quantify the strength of linear or non-
linear relationships between two degradation parameters. MIC is a non-parametric correlation measure based on mutual 
information, whose core idea involves optimizing the mutual information estimate through dynamic grid partitioning. The 
specific steps are as follows:

Calculate the mutual information: Given two random variables X  and Y  (referring to two degradation parameters in this 
context), compute the K-L divergence between their joint distribution and the product of their marginal distributions:

	
I (X;Y) = ∫

XY
P (X,Y) log

P (X,Y)
P (X)P (Y)	 (10)

Search across different grid partitioning schemes to obtain the maximum normalized mutual information. The calcula-
tion is as follows:

	
MIC (X;Y) = max

xy<B(n)

I (X;Y)
log (min (X,Y))	 (11)

where I (X;Y) represents the mutual information value between the two degradation parameters; x  and y  denote the 
sizes of the partitioning grids; B (n) indicates the maximum number of partitions, typically set to B (n) = n0.6. Assuming the 
equipment has N-dimensional sensor monitoring data, the performance metric Corr(X) describing the trendability of each 
dimension of sensor monitoring data is obtained. The calculation formula is as follows:

	
Corr(X) =

1
N – 1

N–1∑
i=1

∣∣MIC(X;Yi)
∣∣
	 (12)

(2)	 Trendability

Trendability(Tre) refers to the changing trend of the equipment’s health degree over time. It is calculated by fitting the trend 
of the health degree change and determining the slope of the health degree with respect to time, where t represents time.

	

Tre(X) =

N∑
i=1

(xi – x0) · ti

N∑
i=1

t2i
	 (13)

(3)	 Monotonicity

With the accumulation of equipment operating time, component wear occurs, leading to performance degradation. Typi-
cally, the deviation of degradation parameters can represent the equipment’s degradation extent. Although the influence 
of noise and changes in operational conditions may cause parameters to exhibit short-term non-monotonic behavior, the 
long-term trend generally demonstrates monotonicity. This study uses the monotonicity metric to describe the overall deg-
radation trend of equipment performance and the smoothness of the data. The monotonicity metric for equipment monitor-
ing parameters is calculated as follows:
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Mon (X) =

∣∣∣∑N–1
j=1 sgn (X (tj+1) – x (tj))

∣∣∣
N – 1 	 (14)

where X (tj) represents the monitoring data of the equipment at time tj , N  denotes the total number of sensor monitoring 
instances, and sgn() represents the sign function.

(4)	 Predictability

Predictability refers to the dispersion of sensor data at the time of equipment failure and the range of data variability based 
on sensor categories. The predictability metric is calculated as follows:

	
Pre (X) = exp

(
–

std (XTf)∣∣mean (XTf) –mean (XTs)
∣∣
)

	 (15)

where XTf  represents the data characteristics of the monitoring parameters at the time of the equipment’s functional fail-
ure, and XTs  denotes the baseline data from the normal startup phase of the equipment.

(5)	 Robustness

The magnitudes of equipment degradation parameters differ, leading to varying degrees of susceptibility to noise. Fur-
thermore, as equipment ages, degradation parameters often become more sensitive to noise. This study uses robustness 
to represent the sensor’s tolerance to random noise and outliers, reflecting the stability of the equipment module’s health 
degree when confronted with data noise and anomalous values. The calculation formula for the robustness metric is as 
follows:

	
Rob (X) =

1
N

N∑
j=1

exp
(
–

∣∣∣∣
XR (tj)
XT (tj)

∣∣∣∣
)

	 (16)

where XT (tj) represents the smoothed trend component of the health degree for the equipment module at time tj  under 
noise-affected conditions, XR (tj) denotes the random component of the health degree for the equipment module at time tj , 
and N  represents the total number of health degree data points for the equipment module. Both the smoothed trend com-
ponent and the random component are obtained through exponential smoothing, and the calculations for all other metrics 
are performed using the exponentially smoothed data.

The evaluation metrics, including Correlation and Monotonicity, all range from 0 to 1. As described above, a 
higher value of an evaluation metric indicates that the degradation parameter contains relatively more information 
regarding equipment degradation. To construct a more reasonable health indicator for the equipment, it is nec-
essary to comprehensively consider the data characteristics of correlation, trendability, monotonicity, predictabil-
ity, and robustness when selecting essential degradation parameters. Based on the evaluation results, weighted 
information fusion is performed to obtain an overall measure of the degradation parameters. The calculation is 
expressed as follows:

	 J = ω1Tre+ ω2Mon+ ω3Pre+ ω4Rob+ ω5Corr 	 (17)

where 
5∑
i=1

ωi = 1, J  represents the comprehensive evaluation metric, and ωi denotes the weight coefficients of each 

evaluation metric. The weights for the evaluation metrics are obtained via the Analytic Hierarchy Process (AHP).
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3  Experimental verification and result analysis

3.1  C-MAPSS dataset

This study focuses on complex equipment characterized by multidimensional degradation parameters. To validate the 
effectiveness of the proposed method for lifetime prediction, experiments were conducted using the Commercial Modular 
Aero-Propulsion System Simulation (C-MAPSS) dataset, a publicly available aircraft engine performance degradation 
dataset provided by NASA’s Prognostics Center of Excellence. The system is described below.

As the core component of propulsion systems in jet-powered aircraft [20], turbine engines are widely used in aerospace 
applications and represent a quintessential example of a complex system with multidimensional degradation parameters. 
During operation, subsystems such as turbines, compressors, and combustion chambers exhibit intricate interdependen-
cies—for instance, combustion efficiency directly affects turbine performance, which in turn impacts the engine’s overall 
power output [21]. These interactions create deeply coupled relationships among components and subsystems within 
the engine system. Moreover, acquiring degradation data for such complex system is costly and technically challenging, 
making high-quality full lifecycle data with direct labels difficult to obtain in practical applications. The NASA Prognostics 
Center of Excellence developed the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset for 
aircraft engine performance degradation. This dataset meets the validation requirements of this study and is a widely used 
public benchmark in system lifetime prediction research. The C-MAPSS dataset offers high relevance, rich data diversity, 
and varied experimental conditions. Fig 5. illustrates the turbine engine model alongside its module interconnections and 
layout schematic.

During the data collection process for the C-MAPSS dataset, high-fidelity engine models were utilized to simulate the 
degradation process of turbofan engines under various operating conditions. All engines used in the simulation were of 
the same type. Different failure modes were injected into the engines during the simulation. Additionally, environmental 
noise interference and sensor errors were incorporated during data acquisition to approximate realistic flight conditions. 
The dataset records the complete lifecycle data of turbofan engines from normal operational status to failure state, 
encompassing data from 4 subsets. Each record consists of the engine unit ID, the number of operational cycles (where 
one complete engine run from take-off to landing is considered one operational cycle), 3 operational setting parameters, 
and 21 sensor measurements.

Fig 5.  C-MAPSS turbofan engine model schematic and module interconnection diagram.

https://doi.org/10.1371/journal.pone.0340645.g005

https://doi.org/10.1371/journal.pone.0340645.g005
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A detailed description of the dataset is presented in Table 1. This table includes the number of engines in the training 
set, the number of distinct operational condition settings (i.e., combinations of operating parameters), the number of failure 
modes, and the maximum number of operational cycles per engine. The injected degradation corresponds to two failure 
modes: High-Pressure Compressor (HPC) degradation and fan degradation. Subsets FD001 and FD003 contain only 
HPC degradation, whereas FD002 and FD004 include both failure modes. The training set data comprises the complete 
lifecycle data of the engines. In contrast, the test set contains truncated operational sequences that end at some point 
before failure. During data acquisition, although the engines were of the same type, their initial state was an unknown 
non-failure state. This reflects the uncertainties arising from manufacturing variations and component differences encoun-
tered in practical scenarios. In this study, the 21 condition monitoring variables are utilized as degradation parameters for 
experimentation. These parameters primarily consist of data related to temperatures, pressures, rotational speeds, etc., 
from various engine modules. Based on their recording sequence within the dataset, these parameters are designated as 
sm_X, where X indicates the recording order of the monitoring variable. The specific meaning represented by each sm_X 
parameter is not reiterated here.

3.2  Data preprocessing

During the data preprocessing stage, effective denoising is crucial for enhancing the robustness of subsequent model 
predictions. Common time series data denoising methods include wavelet transform, moving average, Kalman filtering, 
and exponential smoothing. Although wavelet transform can effectively handle abrupt changes in non-stationary signals, 
it requires the selection of appropriate wavelet bases and decomposition levels, leading to relatively high complexity. The 
moving average method is simple but can easily lead to phase lag and excessive trend smoothing.

This study ultimately selected exponential smoothing for denoising, primarily based on the following considerations:

(1)	 Data Characteristics Matching: The sensor degradation data in the C-MAPSS dataset typically exhibits a relatively 
smooth gradual process rather than containing a large number of high-frequency abrupt changes. Exponential 
smoothing, by assigning higher weights to recent data, effectively preserves this slow degradation trend while sup-
pressing random noise.

(2)	 Computational Efficiency and Simplicity: The exponential smoothing method is computationally simple, requires no 
complex parameter tuning (such as wavelet base selection), and has very low computational overhead. This aligns 
well with the overall goals of lightweight design and industrial applicability pursued by this method.

(3)	 Synergy with the Prediction Model: The core of this research is multi-step time series prediction. Exponential smooth-
ing itself is a fundamental time series forecasting method. The data preprocessed by it shares an inherent concep-
tual consistency with the subsequent Transformer-based time series prediction model, as both emphasize smooth 
sequence evolution and temporal dependencies.

To evaluate the effectiveness of exponential smoothing in this study, we compared it with a typical wavelet denoising 
method (using ‘db4’ wavelet, soft thresholding, 3-level decomposition). On the FD001 subset, we trained and tested the 

Table 1.  Specific introduction to the dataset.

FD001 FD002 FD003 FD004

Engine units for training 100 260 100 249

Engine units for testing 100 259 100 248

Operating conditions 1 6 1 6

Fault modes 1 1 2 2

Maximum Number of Operational Cycles 362 378 526 544

https://doi.org/10.1371/journal.pone.0340645.t001

https://doi.org/10.1371/journal.pone.0340645.t001
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same CNN-Transformer model architecture using the original data, wavelet-denoised data, and exponentially smoothed 
data, respectively. Using RMSE as the primary evaluation metric, the results are shown in Table 2.

Experimental results show that for sensor data with smooth degradation characteristics, such as the C-MAPSS data-
set, exponential smoothing yields slightly better prediction accuracy than wavelet denoising. This supports our decision 
to select it as the preferred denoising scheme. Furthermore, its lower implementation complexity and computational cost 
make it more suitable for efficiency-oriented industrial prediction scenarios.

To validate the accuracy of the proposed fusion model based on the Multi-Head Latent Attention mechanism and the 
dynamic sequential Evaluation strategy, the C-MAPSS degradation dataset was adopted to verify the performance of the 
prediction method and the reasonableness of the health curve fusion approach. Given the temporal correlation inherent in 
the degradation parameters and the presence of environmental noise interference during system time-series data acquisi-
tion, Exponential Smoothing (ES) was modified for the smoothing pre-processing of multidimensional degradation param-
eters. The calculation is expressed as follows:

	



y0 = x0 , t = 0

yt = r
t∑

i=0

(1 – r)ixt–i, t > 0
	 (18)

where r  represents the decay coefficient, x  represents the raw data of the degradation parameters, and y  represents the 
pre-processed value of the degradation parameter. Through experimental investigation in this study, the decay factor r was 
set to 0.3. This value achieves an effective balance between noise removal (smoothing effect) and preservation of the deg-
radation trend: an r value that is too small (e.g., 0.1) leads to excessive smoothing, potentially obscuring early degradation 
features; while an r value that is too large (e.g., 0.5) results in insufficient filtering. The pre-processed value yt at the current 
time is a weighted result of historical data with unequal weights, exhibiting stronger correlation with adjacent time points. 
This demonstrates that the method can smooth the degradation parameters while preserving their inherent variation trends. 
Performance parameters collected by different sensors exhibit varying dimensions. Prior to parameter prediction and health 
curve construction, monitoring parameters with zero variance were excluded. The remaining multi-dimensional data were 
then standardized. Consequently, all data in subsequent processing stages are dimensionless. Fig 6. displays the visualiza-
tion results of data before and after denoising for Engine No. 9 in the FD001 subset.

Furthermore, for the FD002 and FD004 subsets, the combinations of three operational settings are more numerous, 
and operational data under different settings exhibit significant variations. To mitigate the impact of working conditions on 
method validation results, data screening was performed on these two subsets. Based on the values of the operational 
altitude parameter os_3, data with os_3 ≈ 100 (matching the operational conditions of the FD001 and FD003 subsets) 
were selected. Fig 7. presents the operational data for Engine No. 2 in the FD002 subset. After data filtering, the degrada-
tion trends of parameters such as sm_13 can be visually identified.

After the complete data preprocessing pipeline (including exponential smoothing denoising, removal of zero-variance 
parameters, data standardization, and data filtering for subsets FD002 and FD004 based on the os_3 condition), the final 
dataset for model training and testing was obtained. The statistics of the filtered data scale are shown in Table 3.

Table 2.  Impact of different denoising methods on prediction performance (FD001).

Denoising Method RMSE (Mean) Remarks

Raw Data 0.1258 Contains significant noise, adversely affecting the model’s 
ability to learn the true degradation pattern.

Wavelet Denoising 0.1154 Effectively reduces noise but may introduce minor distor-
tions or over-smooth trends.

Exponential Smoothing (r = 0.3) 0.1116 Achieves the best overall performance on this dataset.

https://doi.org/10.1371/journal.pone.0340645.t002

https://doi.org/10.1371/journal.pone.0340645.t002
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As shown in Table 3, for the FD001 and FD003 subsets (which have only one operating condition), all data were 
retained. For the FD002 and FD004 subsets, to control for the operating condition variable, we filtered data where 
os_3 ≈ 100, ultimately retaining approximately 57% of the engine units. All subsequent reported experimental results are 
based on this filtered dataset.

3.3  Experimental results

This study employs the C-MAPSS degradation dataset to validate the overall predictive efficacy of the proposed 
CNN-Transformer fusion model and sequential evaluation strategy. Root Mean Square Error (RMSE), Mean Absolute 
Error (MAE), and the Coefficient of Determination (R2) are adopted as evaluation metrics. These metrics analyze the 
discrepancy between the ground-truth health index and the predicted health index, thus enabling an indirect evaluation of 
the accuracy of system lifetime prediction. During experimentation, data segmentation was implemented using a sliding 
window approach with a window length of 16 and step size of 1. The selection of this window length was based on the 

Fig 6.  Data visualization for engine No. 9 in the FD001 dataset.

https://doi.org/10.1371/journal.pone.0340645.g006
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following considerations: In the C-MAPSS dataset, one operational cycle represents a complete flight mission. Setting the 
window length to 16 cycles ensures coverage of a sufficiently long continuous operational phase to capture the short-term 
dynamic patterns of the degradation process and the coupled relationships between parameters. Simultaneously, this 
length achieves a balance between computational efficiency and information completeness: excessively short windows fail 
to provide adequate temporal context, while overly long windows would significantly increase the model’s computational 

Fig 7.  Data visualization for engine No. 2 in the FD002 dataset.

https://doi.org/10.1371/journal.pone.0340645.g007

Table 3.  Effective data size of each subset after data preprocessing.

Subset Original Training 
Engines

Filtered Training 
Engines

Retention 
Ratio

Original Testing 
Engines

Filtered Testing 
Engines

Retention 
Ratio

FD001 100 100 100% 100 100 100%

FD002 260 150 57.7% 259 150 57.9%

FD004 249 140 56.2% 248 140 56.5%

https://doi.org/10.1371/journal.pone.0340645.t003

https://doi.org/10.1371/journal.pone.0340645.g007
https://doi.org/10.1371/journal.pone.0340645.t003
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burden and potentially introduce irrelevant early historical information. K-fold cross-validation (K = 5) was adopted to 
ensure result stability and generalization capability. For each fold, the network prediction model was trained with the Adam 
optimizer, Mean Squared Error (MSE) loss function, a learning rate of 0.05, batch size of 256, and maximum training 
epochs of 500. An early stopping mechanism was incorporated: validation was performed every 5 epochs; training termi-
nated prematurely if validation loss showed no improvement over 5 consecutive evaluations, with optimal model parame-
ters retained to prevent overfitting and conserve computational resources.

The proposed CNN-Transformer fusion model consists of two components. First, a Convolutional Neural Network 
(CNN) serves as a correlative feature extractor to capture interdependencies among multi-dimensional parameters; 
specifically, the input feature dimension is 17, with the CNN employing 2D convolutions using 4 kernels to process feature 
dimensions and yielding a 12-dimensional output. Second, the temporal feature module adopts a Transformer architec-
ture incorporating chunk and cross-chunk interaction mechanisms within its multi-head attention computation to achieve 
model light weighting, configured with 6 encoder layers, 4 multi-head attention heads, a chunk size of 2, and a feedfor-
ward network comprising two linear layers (64 neural units per layer, ReLU activation), resulting in a final 14-dimensional 
output. Experimental comparisons evaluate the proposed method against Att-BiGRU, Transformer, WDCNN, and LSTM 
approaches.

During experimentation, tests were conducted on individual system units using a prediction horizon equivalent to 30% 
of their operational cycles. The mean and variance of evaluation metrics were calculated, with comparative results shown 
in Fig 8. Detailed quantitative outcomes are presented in Tables 4–6. Experimental results demonstrate that the proposed 
fusion model outperforms comparative methods in temporal prediction performance. Across all data subsets, the model 
achieves R2 consistently exceeding 0.8 and maintains RMSE below 0.1. Furthermore, lower metric variances indicate 
enhanced stability and reliability, attributable to: (1) the CNN’s capacity for extracting multidimensional parameter correla-
tions, (2) the Transformer’s long-term forecasting superiority, and (3) reduced model parameters/computational complexity 
through the improved multi-head potential attention mechanism.

Experimental results demonstrate that the proposed method outperforms comparative methods across RMSE, MAE, 
and R2 metrics, exhibiting particularly outstanding performance on multi-operating-condition datasets such as FD002 and 

Fig 8.  Comparison of RMSE and R2 results.

https://doi.org/10.1371/journal.pone.0340645.g008

https://doi.org/10.1371/journal.pone.0340645.g008
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FD004. Across all data subsets, the model presented in this chapter consistently achieves R2 values above 0.8, while 
maintaining RMSE metrics at a low level of approximately 0.1. This is attributed to the ability of the CNN-Transformer 
model to effectively capture coupling relationships among multidimensional parameters, combined with the sequential 
evaluation strategy’s capability to dynamically extract degradation features. Compared to traditional deep learning meth-
ods, the proposed approach reduces computational resource demands through lightweight design (e.g., the MLA mecha-
nism), while simultaneously enhancing practicality in real industrial scenarios through label-free health index construction.

To validate the applicability of the proposed method in industrial scenarios, we conducted a quantitative evaluation of 
the computational efficiency of the proposed CNN-Transformer model and the comparative models. Experiments were 
performed on a platform equipped with an NVIDIA GeForce RTX 3080 GPU and an Intel i7-11700K CPU, using the 
PyTorch framework. We measured three key metrics: (1) Model Parameters, reflecting model size and memory footprint; 

Table 4.  RMSE results comparison.

RMSE Proposed method Transformer Att-BiGRU WDCNN LSTM

FD001 Ave 0.1116 0.1483 0.1306 0.149 0.1426

Std 0.0529 0.073 0.0741 0.0777 0.0741

FD002 Ave 0.1077 0.139 0.1947 0.182 0.2891

Std 0.0142 0.0314 0.0245 0.0523 0.0771

FD003 Ave 0.0681 0.0617 0.0744 0.0703 0.0966

Std 0.0359 0.0205 0.0391 0.0271 0.0368

FD004 Ave 0.0645 0.0715 0.0804 0.1257 0.0973

Std 0.0193 0.0184 0.035 0.0218 0.0248

https://doi.org/10.1371/journal.pone.0340645.t004

Table 5.  R2 results comparison.

R2 Proposed method Transformer Att-BiGRU WDCNN LSTM

FD001 Ave 0.8486 0.8067 0.8293 0.6392 0.8188

Std 0.0862 0.1733 0.1590 0.5402 0.1596

FD002 Ave 0.8090 0.6806 0.4488 0.3979 0.2087

Std 0.1194 0.2114 0.1239 0.3877 0.4455

FD003 Ave 0.8169 0.7672 0.8058 0.7544 0.5650

Std 0.1386 0.2445 0.1371 0.1884 0.3821

FD004 Ave 0.9137 0.8973 0.8738 0.6719 0.8167

Std 0.0308 0.0376 0.0671 0.1297 0.0776

https://doi.org/10.1371/journal.pone.0340645.t005

Table 6.  MAE results comparison.

MAE Proposed method Transformer Att-BiGRU WDCNN LSTM

FD001 Ave 0.0398 0.0474 0.044 0.0487 0.0442

Std 0.0169 0.0172 0.0165 0.0174 0.0162

FD002 Ave 0.0441 0.0589 0.0792 0.0756 0.1259

Std 0.0052 0.0141 0.0121 0.0229 0.0326

FD003 Ave 0.0281 0.0259 0.0299 0.0297 0.0402

Std 0.0159 0.0089 0.0165 0.0119 0.0155

FD004 Ave 0.025 0.0281 0.0333 0.0549 0.041

Std 0.0079 0.0068 0.013 0.0108 0.0092

https://doi.org/10.1371/journal.pone.0340645.t006

https://doi.org/10.1371/journal.pone.0340645.t004
https://doi.org/10.1371/journal.pone.0340645.t005
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(2) Floating Point Operations (FLOPs), reflecting computational complexity; and (3) Average Time for a Single Forward 
Inference (Inference Time), measured with a batch size of 1 to simulate online prediction scenarios. The results are pre-
sented in the Table 7.

To comprehensively evaluate the performance of the proposed method, we supplemented comparative experiments 
with two advanced graph neural network models: DCAGGCN and DyWave-BiAGCN. Since the original GNN models 
require a predefined graph structure, we constructed adjacency matrices in two ways: (1) a knowledge graph based on 
the physical connections of the equipment; (2) a data-driven graph based on the correlation coefficients of the sensor 
data. The experimental results are shown in Table 8.

The results indicate that the CNN-Transformer fusion model proposed in this study achieves prediction accuracy that is 
superior or comparable to advanced GNN models, while demonstrating significant advantages in terms of model complex-
ity and inference efficiency. This validates that, even without complete knowledge of the system’s internal physical con-
nections, the approach of implicitly learning coupled relationships can effectively capture the intrinsic correlations among 
multidimensional degradation parameters. Furthermore, it proves more suitable for industrial scenarios with high real-time 
requirements.

After prediction, the sequential evaluation strategy constructs the system’s health curve, prioritizing monotonicity 
and trend characteristics during weight allocation. The constructed HI were evaluated using early/late time consistency, 
correlation, robustness, and monotonicity metrics, compared against a residual evaluation method without sequential 
principles. Dynamic thresholds of 0.75 (early) and 0.4 (late) were applied for time consistency calculations, with values 
<0.4 indicating a warning state. Validation shows consistently high consistency metrics, confirming the strategy effectively 
extracts degradation features, constructs rational health curves, and accurately characterizes degradation states. Metric 
results are shown in Table 9.

To validate the model’s capability in capturing parameter coupling under different degradation modes, we compared its 
performance on subsets with single failure modes (FD001 and FD003) and mixed failure modes (FD002 and FD004). As 
shown in Tables 4–6, the proposed method maintains high R2 (>0.8) and low RMSE (~0.1) across all subsets, demonstrat-
ing robustness to varying degradation patterns. Specifically, in FD002 and FD004 (with multiple failure modes), the model 
effectively captures coupled relationships without significant performance drop, indicating its adaptability to complex deg-
radation scenarios.

Table 7.  Comparison of model computational efficiency.

Model Parameters (M) FLOPs (G) Inference Time (ms)

Proposed (CNN-Transformer) 2.1 0.38 4.5

Transformer 4.8 0.95 9.8

Att-BiGRU 3.5 0.72 7.1

WDCNN 5.2 1.10 11.3

LSTM 1.8 0.41 5.2

https://doi.org/10.1371/journal.pone.0340645.t007

Table 8.  Performance comparison with graph neural network models (FD001).

Model Graph Construction Method RMSE R² Parameters (M) Inference Time (ms)

Proposed (Ours) Not Applicable 0.1116 0.8486 2.1 12.8

DCAGGCN Physical Graph 0.1189 0.8274 3.8 22.5

DCAGGCN Data-Driven Graph 0.1152 0.8381 3.8 22.5

DyWave-BiAGCN Physical Graph 0.1203 0.8227 4.5 28.3

DyWave-BiAGCN Data-Driven Graph 0.1168 0.8335 4.5 28.3

https://doi.org/10.1371/journal.pone.0340645.t008

https://doi.org/10.1371/journal.pone.0340645.t007
https://doi.org/10.1371/journal.pone.0340645.t008
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Furthermore, we analyzed the health index fusion in coupling conflict scenarios, where subsystems exhibit contradic-
tory trends. For example, in FD004, some engines show conflicting sensor behaviors (e.g., sm_13 increasing while sm_15 
decreasing). The sequential evaluation strategy, combined with weight coefficients ω_k derived from AHP, ensures that 
the fused HI prioritizes consistent subsystems, mitigating conflicts. This is reflected in the high monotonicity and late-stage 
consistency metrics (Table 9), confirming the rationality of index fusion even in challenging conditions.

Fig 9 presents health degree distribution histograms for the FD001 and FD003 subsets, comparing the proposed 
sequential evaluation strategy against the conventional residual evaluation method. Pink solid-line boxes denote statistical 
results from the proposed method. The figure clearly demonstrates higher differentiation between healthy and warning 
states, along with enhanced sensitivity to system state transitions. The overall health degree distribution aligns with the 
ground-truth pattern of progressive degradation over operational time, visually revealing degradation trends and further 
validating the method’s rationality and effectiveness.

To validate the effectiveness of the aforementioned parameter calibration method and demonstrate the impact of the α 
value on the results, we conducted a sensitivity analysis on the FD001 subset. We compared the key evaluation metrics of 
the health index curves constructed using different α values (α = 0.5, 1.5, 3.0). The results are presented in Table 10.

It can be observed that when α = 1.5, the health index curve achieves the best monotonicity and favorable late-stage 
consistency, which aligns with the objective of our grid search optimization. When α is too small (0.5), although the curve 
exhibits the highest robustness, its monotonicity decreases significantly, which is unfavorable for characterizing a clear 
degradation trend. When α is too large (3.0), all metrics show a decline. This experiment demonstrates the necessity of 
systematically calibrating the parameter α and confirms the rationality of the final selected value of α = 1.5.

Table 9.  Evaluation results of the sequential HI evaluation strategy.

Sequential Evaluation Strategy Residual Evaluation Method

FD001 FD002 FD003 FD004 FD001 FD002 FD003 FD004

Accuracyearly 1.00 0.93 0.99 0.98 0.39 0.51 0.31 0.73

Accuracylate 0.92 0.75 0.94 0.83 0.46 0.92 0.96 0.75

mon 0.51 0.23 0.55 0.34 0.39 0.28 0.41 0.22

corr 0.50 0.019 0.46 0.11 0.02 0.001 0.02 0.01

rob 0.37 0.36 0.36 0.37 0.36 0.32 0.36 0.26

https://doi.org/10.1371/journal.pone.0340645.t009

Fig 9.  Health index value distribution comparison for FD001 and FD003 subsets.

https://doi.org/10.1371/journal.pone.0340645.g009

https://doi.org/10.1371/journal.pone.0340645.t009
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To visually demonstrate the characterization capability of the HI constructed via the sequential evaluation strategy and 
comprehensive metric fusion for system degradation, health index curves for all engines in the FD001 and FD003 subsets are 
presented as heatmaps in Fig 10. The gradual color transitions over time indicate excellent monotonicity and robustness, con-
firming stable reflection of progressive health degradation. Concurrently, during late operational stages, health indexes consis-
tently fall below the warning threshold (0.4), demonstrating timely and accurate responsiveness to impending failure states.

Compared to direct lifespan prediction methods, the proposed predict-then-fuse approach relies on temporal prediction 
accuracy, where the precision of multi-dimensional degradation parameter forecasts influences health index construction. 
To evaluate this impact, single-step predictions generated by the model were used to construct health index curves, which 
were compared against ground-truth curves in Fig 11. When the prediction model achieves R2 ≈ 0.9, the predicted health 
curves closely align with ground truth, while the HI themselves maintain high R2 values. This confirms that the predict-
then-fuse strategy introduces no significant adverse effects when temporal prediction capability is robust, thereby validat-
ing the method’s effectiveness and rationality.

3.4  Ablation study

To quantify the contribution of each core module in the proposed method, we conducted a systematic ablation study. 
Experiments were performed on the FD001 and FD003 subsets, using RMSE and R2 as evaluation metrics. All ablated 
models maintained the same hyperparameters as the full model.

Table 10.  Impact of different α values on health index quality (FD001).

α Value Monotonicity Robustness Early-stage Consistency Late-stage Consistency

0.5 0.42 0.55 1.00 0.85

1.5 0.51 0.50 1.00 0.92

3.0 0.48 0.45 1.00 0.88

https://doi.org/10.1371/journal.pone.0340645.t010

Fig 10.  Health index extraction results for FD001 and FD003.

https://doi.org/10.1371/journal.pone.0340645.g010
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We designed the following model variants to verify the necessity of components in the CNN-Transformer architecture:
Variant A (w/o CNN): Removes the CNN relational feature extraction module and feeds the raw time series data directly 

into the Transformer. Variant B (w/o MLA): Replaces the Multi-Head Latent Attention (MLA) mechanism with the standard 
multi-head self-attention mechanism. Variant C (LSTM Replacement): Completely replaces the entire Transformer tempo-
ral module with standard LSTM layers. Full Model (Ours): The complete CNN-Transformer model proposed in this study.

The results are shown in the Table 11.
Removing the CNN module (w/o CNN) leads to a noticeable performance degradation, confirming that explicitly model-

ing the coupling relationships among multidimensional parameters is crucial for accurate prediction. Without the CNN, the 
model struggles to capture the interactions between subsystems. Removing the MLA mechanism (w/o MLA) also results 
in performance decline and increased computational complexity. This validates the value of our proposed lightweight 
attention mechanism in maintaining accuracy while improving efficiency. Replacing the Transformer with LSTM causes 
the most significant performance loss, highlighting the advantage of the Transformer architecture in capturing long-term 
temporal dependencies compared to traditional RNN models.

Furthermore, to validate the effectiveness of the sequential health index evaluation strategy, we compared it with two 
baseline methods: Baseline 1 (Residual) constructs the health index using the traditional model prediction residual-based 
method [22]. Baseline 2 (Direct Fusion) skips the sequential evaluation and directly constructs the system health index by 
weighted fusion of raw sensor data. The full strategy (Ours) refers to the SER-based sequential health index evaluation 
strategy proposed in this study.

Using the same full prediction model and only altering the health index construction method, we evaluated the quality of 
the final system health index (using the metrics from Table 9). The results are as follows in Table 12.

The proposed sequential evaluation strategy significantly outperforms the two baseline methods in terms of both mono-
tonicity and late-stage consistency. This indicates that dynamically quantifying state deviation using Mahalanobis distance 
and the SER can more effectively capture the system’s degradation trend and provide clear, consistent early warnings 
upon failure. Baseline 2 (Direct Fusion) exhibits better robustness but extremely poor monotonicity, demonstrating that 

Fig 11.  Health curves for engine No. 9 in FD001 and engine No. 63 in FD003.

https://doi.org/10.1371/journal.pone.0340645.g011

Table 11.  Ablation study results on model architectures (mean ± standard deviation).

Model Variant FD001 (RMSE) FD001 (R²) FD003 (RMSE) FD003 (R²)

w/o CNN 0.1284 ± 0.061 0.821 ± 0.102 0.0795 ± 0.041 0.781 ± 0.121

w/o MLA 0.1201 ± 0.058 0.835 ± 0.095 0.0728 ± 0.038 0.802 ± 0.115

LSTM Replacement 0.1347 ± 0.065 0.809 ± 0.110 0.0831 ± 0.043 0.769 ± 0.129

Full Model (Ours) 0.1116 ± 0.053 0.849 ± 0.086 0.0681 ± 0.036 0.817 ± 0.139

https://doi.org/10.1371/journal.pone.0340645.t011

https://doi.org/10.1371/journal.pone.0340645.g011
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PLOS One | https://doi.org/10.1371/journal.pone.0340645  January 13, 2026 22 / 24

fusing untreated raw data fails to form a clear health degradation curve. Baseline 1 (Residual method) performs poorly 
across all metrics, highlighting the superiority of the data-driven sequential evaluation approach in the absence of a 
precise physical model. In summary, the ablation study compellingly demonstrates that each module within the proposed 
CNN-Transformer model, as well as the sequential evaluation strategy, is indispensable. They collectively contribute to the 
overall excellent performance of the method.

4  Conclusions

This study addresses the challenge of predicting the Remaining Useful Life (RUL) of complex equipment with multidi-
mensional degradation parameters under unlabeled or label-scarce conditions by proposing a method based on historical 
degradation data. This method indirectly achieves lifespan prediction by performing temporal prediction of the equipment’s 
multidimensional degradation parameters and constructing health indicator curves. It tackles several challenges, includ-
ing high data acquisition costs, the difficulty of obtaining full life-cycle data, the high complexity of existing methods, and 
their impediment to practical deployment. To this end, this study proposes an RUL prediction method based on a CNN-
Transformer and sequential health index evaluation. Its core innovations include: achieving model lightweighting through a 
chunk-interaction mechanism and Multi-Head Latent Attention (MLA), significantly reducing computational complexity; and 
dynamically constructing the health index using Mahalanobis distance and the Sequential Evaluation Ratio (SER) via the 
sequential evaluation scheme, eliminating reliance on lifecycle labels.

Experimental results on the C-MAPSS dataset demonstrate that the proposed method achieves robust long-term 
prediction of degradation parameters, with an R2 consistently above 0.8 and an RMSE around 0.1. The constructed 
health indicators exhibit high temporal consistency accuracy (late-stage temporal consistency metrics are around 0.8). 
Ablation studies further quantify the contribution of each module: the CNN module effectively extracts coupling rela-
tionships between multidimensional parameters, and its absence leads to an approximately 15% relative increase in 
RMSE; the MLA mechanism achieves lightweighting while maintaining accuracy; and the sequential evaluation strategy 
significantly enhances the monotonicity and consistency of the health index, with the late-stage consistency metric 
improving by over 100% compared to baseline methods. These results validate the rationality and necessity of the 
method’s design.

Compared to various baseline models, the proposed method achieves superior prediction accuracy while significantly 
improving computational efficiency through lightweight network design, featuring lower parameters, computational com-
plexity, and inference latency. This proves its feasibility for deployment in resource-constrained industrial environments 
(e.g., edge computing devices). Furthermore, the “parameter prediction-index fusion” framework offers better modularity 
and interpretability. Comparisons with Graph Neural Network models indicate that the proposed method achieves compa-
rable or superior prediction accuracy without relying on predefined graph structures, while incurring lower computational 
overhead and higher inference efficiency. This demonstrates that the paradigm of “implicitly learning” internal system 
coupling relationships presents a practical and effective alternative in industrial scenarios where sensor physical relation-
ships are ambiguous or where high real-time performance is required. In summary, this research provides a solution for 
RUL prediction of complex systems under label-scarce conditions that combines high accuracy, high efficiency, and high 
practicality, exhibiting strong potential for engineering application.

Table 12.  Ablation study results of health index evaluation strategies (FD001).

Evaluation Strategy Monotonicity Robustness Late-stage Consistency

Baseline 1 (Residual) 0.39 0.46 0.39

Baseline 2 (Direct Fusion) 0.28 0.58 0.45

Full Strategy (Ours) 0.51 0.50 0.92

https://doi.org/10.1371/journal.pone.0340645.t012

https://doi.org/10.1371/journal.pone.0340645.t012
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Supporting information

S1 File. 3-cnn-transformer. Implements the complete CNN-Transformer hybrid model for RUL prediction, includ-
ing training and evaluation pipelines.
(PY)

S2 File. Dataset. Defines a PyTorch Dataset class to structure and load sensor data for batch training.
(PY)

S3 File. Utils. Provides utility functions for data processing, model evaluation, and result visualization.
(PY)
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