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Abstract 

Identifying drivers of deforestation is crucial for developing targeted conservation and 

land management strategies, and satellite data provide a long time series of data to 

understand deforestation dynamics. However, the timing of imagery after forest loss 

may affect classification accuracy, and optimal timing may be different for different 

drivers. Studies of broad-scale drivers across large and pan-tropical regions have 

shown that using time series can improve driver classification from satellite imagery, 

but requiring multi-year information means waiting longer after forest loss to classify 

what drives it. Our previously introduced model, Cam-ForestNet, was developed to 

use single-date imagery to classify fifteen direct detailed deforestation and degra-

dation drivers for Cameroon. Here, we test whether the overall and per-class clas-

sification performance of Cam-ForestNet can be improved by either using imagery 

taken longer after a forest loss event or by incorporating a greater number of images, 

with performance evaluated using macro-average and per-class F1 scores to enable 

broad comparability across different contexts. Combining data up to four years after 

forest loss leads to improved model performance overall (macro-average F1 score) 

and for nearly all individual classes (per-class F1 scores). The classification of deg-

radation drivers and slow-growing plantation benefitted most by incorporating time 

series data. However, when comparing approaches using only a single image from 

different years after a forest loss event, images from the first year following an event 

performed best, both overall (macro-average F1 score) and for most classes (per-

class F1 scores), offering a promising strategy for relatively fast analysis of deforesta-

tion and degradation drivers following forest loss. We conclude that whilst multi-year 

imagery is beneficial, relying on a single image from the first year after forest loss still 

provides valuable and timely insights into the nature of drivers of forest loss.
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1.  Introduction

Commitments such as the European Union Deforestation Law [1] and pledges made 
at COP26 [2] show international ambition to slow down deforestation in the tropics. 
However, recent overall trends do not show a decline in forest loss [3]. This is mir-
rored in Cameroon, which had the 4th highest increase in primary forest loss world-
wide in 2022 [4], and the 7th highest tropical primary forest loss in 2023 [3]. Despite 
this, Cameroon aims to achieve deforestation-free agriculture by 2035 to align with its 
pledge from the 2021 Glasgow Leaders’ Declaration on Forests and Land Use and 
the objectives from its 2030 National Development Strategy [5]. Cameroon’s National 
Adaptation Plan also treats forests as both vulnerable ecosystems and important 
resources for adaptation, promoting actions like helping communities become more 
resilient, managing forests sustainably, restoring damaged areas, and reducing 
carbon emissions through programmes like REDD+ [6]. Its Nationally Determined 
Contribution (NDC) commitments aim to lower emissions by 32% by 2035 compared 
to their 2010 baseline [7].

Identifying and tracking deforestation drivers with high spatial and temporal reso-
lution is needed to design and evaluate the potential of interventions [8,9]. Detecting 
degradation drivers is also necessary since they impact forest functions, properties 
and services (e.g., carbon storage, biological productivity) [10] and degradation 
is often the first step before deforestation [11]. Here, we focus on ‘direct’ drivers, 
meaning the land use leading to the forest loss (e.g., conversion to agriculture land) 
and not the underlying driver which could have led to the conversion (e.g., change 
in the price of a commodity). Current solutions to detect these drivers geospatially 
are either manual [12,13] which can be subjective and time consuming [9]; only 
cover broad classes with insufficient information about driver types (e.g., ‘plantation’ 
or ‘small-scale agriculture’ but not crop types) [14–16]; and are often not country-
specific [9,17,18]. Some regional studies exist for other countries [11,16,19–25], but 
as far as we are aware, not for Cameroon (besides our previous own study, [26]. Fol-
lowing an alternative approach focussing on detailed drivers, in [27] we collated an 
independent dataset of fifteen drivers, and in [26] we describe Cam-Forest, a model 
to classify these fifteen direct deforestation and degradation drivers for Cameroon.

Examples of direct drivers include smallholder agriculture such as small-scale 
maize plantation, selective logging, mining, and agro-industrial plantation expan-
sion such as oil palm or rubber. Deforestation drivers can be classified using either 
single-date or temporal methods, with various methods chosen depending on the 
use cases, making it challenging to find the most suitable strategy. In addition to our 
own Cam-ForestNet [26], some studies in other countries used single-date imagery in 
their classification [16,20–22,25] while others have opted for time series either using 
composites [11] or temporal segmentation, i.e., partitioning time series into trends or 
trajectories [23,24]. Various studies in other tropical countries have also used both 
single-date and temporal classifications separately to compare the two approaches, 
and tested different methods, including: Convolutional Neural Network (CNN) with 
the time series concatenated as input, combined with a Long-Short Term Memory 
module (CNN-LSTM), or with an attention mechanism (CNN-Attention LSTM) [18]; a 
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LSTM, a 3D-CNN with the time dimension treated as a third spatial dimension, a hybrid 2D-CNN/LSTM, a Convolutional 
Long Short-Term Memory neural network (ConvLSTM), a CNN + Multi-Head Self-Attention model (CNN-MHSA), and a 
CNN-Transformer [9]; and finally a Temporal Attention U-Net [19].

These comparisons have generally concluded that using temporal data does increase the accuracy of deforestation 
drivers’ classification, and attention-based models are especially efficient [9,18,19], with improvements attributed to dis-
tinct spectral-temporal patterns of crops with different growth patterns [18]. But these studies generally are at large scale 
and test general driver classifications (e.g., ‘Commercial agriculture’ or ‘Large-scale cropland’). There is reason to believe 
these findings may not be consistent for detailed drivers in a single country. Indeed, continental scale land-use types may 
be more easily distinguished by their spatial patterns, while temporal patterns become more useful at the pan-tropical 
level [9]. Little single-country work (notable exception being [18]) has assessed the potential of temporal methods, and 
none that we are aware of are in Central Africa or use detailed classes of deforestation drivers. It remains unclear whether 
a single image is enough, or whether the timing of such an image matters, to produce accurate deforestation driver classi-
fication in a context such as Cameroon.

In this paper, we test the value of time series data and temporal features for detailed classification of direct deforesta-
tion and degradation drivers in Cameroon with Cam-ForestNet. We hypothesise (1) that using images in multiple years 
will increase the performance of our approach, since visual distinctions between drivers may appear at different times 
after the forest loss events [18]. Further, we hypothesise (2) that, to focus on the deforestation driver and not follow-on 
land uses, images captured near the time of forest loss event will produce better classifications. This is particularly likely in 
Cameroon, where land conversions are rapid and newly deforested land often experiences non-linear land use transitions, 
i.e., multiple transformations in the years following the forest loss [28]. In addition, we consider the suitability of different 
performance metrics for decision-making and policy in this context.

To test these hypotheses, we here ask two research questions: (1) Does combining images from multiple years after 
the forest loss event improve classification of deforestation and degradation drivers?; (2) Does the ‘best’ time (i.e., the 
timing providing the highest classification performance) after the forest loss event for single image classification differ by 
driver?

2.  Materials and methods

2.1.  Time series dataset construction

We used our previously created reference dataset for classifying deforestation drivers in Cameroon using satellite imagery 
and auxiliary data, described in [27], as a basis for analysis. There, we selected the single image with the lowest cloud 
cover in the five years following a known forest loss event using the intersection of Global Forest Change (GFC) with 
open-access databases with known land uses (see Fig 1 in [27]). Among the data sources, 60% use direct field obser-
vations. Data for categories such as ‘Other’, ‘Grassland/Shrubland’, ‘Small-scale oil palm plantation’, and certain points 
under ‘Other small-scale plantation’ and ‘Wildfire’ are derived from classification algorithms. However, as detailed in the 
‘Technical Validation’ section of [27], both the original data creators and our team conducted thorough validation checks to 
ensure the accuracy and reliability of the dataset.

We used ‘forest loss polygons’ to describe these intersections, which correspond to forest loss areas where we 
know the follow-up land use, or the direct deforestation/degradation driver. Here, we used a similar approach but, 
instead of looking at all the images in the five years following the forest loss event, we filter the data to select, for each 
forest loss polygon, the image with the lowest cloud cover in each of the following five years after the loss event (only 
using images with a cloud cover <20%). This creates a new dataset with up to five images per forest loss event. The 
20% cloud cover threshold was chosen based on a process of trial and error, as described in [27]. This threshold pro-
vided a practical balance between retaining enough usable images and ensuring adequate visual quality for accurate 
interpretation.
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The GFC product the exact time of the loss is not known, only the year in which the forest loss event occurred. This is 
because the GFC product identifies forest loss using the maximum annual decline in tree cover and the largest annual 
decrease in the minimum growing season Normalized Difference Vegetation Index (NDVI) [29]. In our approach, if y  
represents the year of forest loss, then y+ yn indicates the year that occurs yn years after the forest loss event. However, 
because of the way that GFC is created, this means that the satellite image we use may not have been taken exactly yn
years after the event.

Due to cloud filtering, not all forest loss polygons in [27] provide us with an image each year. Table 1 gives the number 
of locations (or forest loss polygons) where we have at least one image for each year considered. For instance, there are 
2,396 locations where we get at least one image with a cloud cover below 20% from both the first and second year follow-
ing the forest loss event.

To be able to assess the benefit of multiple years of images, we create a new dataset (representing a subset of [27]) 
retaining only locations where we have images for each of the four years following the forest loss. We chose this cut-off 
due to the large drop in number of qualifying locations when looking at five versus four consecutive years (Table 1). We 

Fig 1.  Geographical distribution of the 1,783 locations in the subset used in this study, by class. The study area is Cameroon.

https://doi.org/10.1371/journal.pone.0340610.g001

https://doi.org/10.1371/journal.pone.0340610.g001
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split our data into five cross-validation folds (see Section 2.2 for details) and performed additional filtering to ensure the 
model is exposed only to spatially disjoint pixels. We excluded locations where forest loss polygons overlap, and filtered 
the data to maintain a minimum distance of 100 metres between the edges of forest loss polygons in different folds. After 
these exclusions, a total of 1,783 locations remained, with more than 70% of the data being at least 250 metres from the 
edges of forest loss polygons in other folds. Fig 1 shows the study area and the geographical distribution of our data.

Our subset includes around 70% of the original 2,529 locations [26], but with uneven loss of data in the fifteen classes 
(Table 2). Further, slight differences in the filtering used to create both datasets results in more images for some classes 
in this dataset compared to the original one. The overwhelming majority of images are from December-February, corre-
sponding to the dry season in Cameroon and therefore the least cloud cover (Fig 2).

Table 1.  Number of locations with at least one image with a cloud cover below 20% in each year 
after the forest loss event. Due to the drop-off in number of locations for all five years, in this anal-
ysis we only considered images up to four years after loss.

Years after the forest loss event (e.g., Y1 = first 
year after the forest loss event)

Number of locations where we have at least 
one image for all years considered

Y1 2,809

Y1 & Y2 2,396

Y1 & Y2 & Y3 2,207

Y1 & Y2 & Y3 & Y4 2,090

Y1 & Y2 & Y3 & Y4 & Y5 1,215

https://doi.org/10.1371/journal.pone.0340610.t001

Table 2.  Composition of the dataset used in this study, representing a time series of images created based on the approach in [27], here 
termed the ‘original dataset’. In bold we highlighted the classes with a small number of images (<50) in our new subset with an asterisk, 
which we will need to consider when interpreting results. Metrics are based on very small sample sizes, so should be interpreted with cau-
tion. Note that it is possible to have more images in the new dataset. In the original dataset [26,27], for each image we 1) selected the image 
with the lowest cloud cover from the five years following loss and then, 2) discarded images smaller than 10kB, which were blank/partially 
blank, without replacement. So, if the lowest cloud cover image was in the fifth year, this loss location could be removed from the original 
dataset, whereas in the new approach it could be retained. In addition, in [26], some images were discarded when splitting the data into train-
ing, validation and testing datasets to guarantee a minimum distance of 100 metres between the edges of forest loss polygons in different 
splits to minimise the impact of spatial autocorrelation.

Class Number of locations in the orig-
inal single-image approach [26]

Number of locations in the new 
subset for time series analyses

% of original loca-
tions retained

Oil palm plantation 157 56 36%

Timber plantation 303 346 114%

Fruit plantation (e.g., banana)* 36 29* 81%

Rubber plantation* 109 21* 19%

Other large-scale plantation (e.g., tea, sugarcane)* 98 37* 38%

Grassland/Shrubland* 80 7* 9%

Small-scale oil palm plantation 252 73 29%

Small-scale maize plantation 326 349 107%

Other small-scale plantation 142 140 99%

Mining 166 89 54%

Selective logging 513 262 51%

Infrastructure* 54 38* 70%

Wildfire 118 131 111%

Hunting 117 126 108%

Other 58 79 136%

https://doi.org/10.1371/journal.pone.0340610.t002

https://doi.org/10.1371/journal.pone.0340610.t001
https://doi.org/10.1371/journal.pone.0340610.t002
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2.2.  Five-fold data split for cross validation

We perform a stratified five-fold cross validation to avoid obtaining a potential ‘lucky split’, i.e., an unusually good model per-
formance just because of how the data happens to be split [30]. This is especially prone to happen with a small dataset such 
as ours where the split could be unrepresentative [30,31]. In five-fold cross-validation, the data is divided into five equally 
sized parts (or folds). In each round, one of these folds is used for testing, while the remaining four folds are used for training 
and validating the model. This process is repeated five times, with each fold being used as a test set exactly once. With this 
approach, we ensure that the model is not simply overfitting to a specific split of the data and can be generalised on new 
unseen data. While a larger holdout set (e.g., 30%) may further strengthen confidence in generalisability, our combined use 
of 80:20 splitting and cross-validation offers a reliable compromise between data sufficiency and evaluation rigor.

We apply stratification to preserve class distribution across all folds. Following [26], we did not use a spatially parti-
tioned dataset, as doing so would limit the inclusion of samples from the full diversity of ecological sub-biomes across 
Cameroon. Instead, to minimise spatial autocorrelation [32–34], we enforced a minimum distance of 100 metres between 
the edges of forest loss polygons in different folds. This was achieved by starting with a 1 km separation threshold and 
iteratively relaxing it in 100-metre increments until a viable split was obtained, discarding too-close polygons which could 
not be assigned. The 100-metre threshold was selected as a pragmatic compromise: it is large enough to reduce local 
spatial autocorrelation and prevent very close observations from being assigned to different folds, yet not so large that 
it substantially limits the number of available samples [26]. This threshold has been used in similar fine-scale remote-
sensing studies [35,36] precisely because it balances spatial independence with data retention. Within the 80% subset 

Fig 2.  Time distribution of images in the new dataset by class and by time difference (in years) between the image capture and the forest loss 
event. S2 Table details the number of images per month and dry/rainy season by years after the forest loss event, both overall and by driver class.

https://doi.org/10.1371/journal.pone.0340610.g002

https://doi.org/10.1371/journal.pone.0340610.g002
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used for training and validation, we further partitioned the data into 80% for training and 20% for validation, again 
maintaining class balance via stratified sampling. To ensure spatial independence, validation forest loss polygons were 
required to be at least 100 metres away from any training forest loss polygon. If a validation forest loss polygon violated 
this condition, it was swapped with a spatially distant training polygon of the same class. In cases where no suitable swap 
could be identified, the polygon was reassigned to the training set. S1 Table shows the composition of the folds.

2.3.Testing hypothesis 1: ‘More data = a more accurate classification?’

We test whether adding more data from different years following the forest loss event will improve the performance of 
driver classification using our model Cam-ForestNet [26], up to four years after the loss event. We adapt Cam-ForestNet 
to classify time-series data using the highest class logit. Each image is classified individually and for each image, a logit is 
calculated for each class (see Fig 2 in (26)]). The final classification for each forest loss location is then based on the year 
with the highest logit value.

To test the first hypothesis, we first classify only with the images in the first year after the forest loss event, then consec-
utively add in images from each year up to four years after the forest loss event. For each combination of years, we main-
tain the same locations in each fold and include images from additional years. Fig 3 summarises the approach chosen.

We also analyse the mean confusion matrices computed across folds to better understand misclassifications. We spe-
cifically examine how misclassifications change when adding data from different years by using a “change matrix.” This 
matrix is created by subtracting the normalised mean confusion matrix from images taken one year after the forest loss 
event (Y1) from the normalised mean confusion matrix generated using images from all four consecutive years following 

Fig 3.  Overview of the methodology used to the test the impact of adding more images from different years after the forest loss event on the 
performance of Cam-ForestNet.

https://doi.org/10.1371/journal.pone.0340610.g003

https://doi.org/10.1371/journal.pone.0340610.g003
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the forest loss event (Y1&Y2&Y3&Y4). This helps us identify which misclassifications increase or decrease when combin-
ing data from multiple years after the forest loss event.

2.4.  Testing hypothesis 2: ‘The sooner the better?’

We want to test whether there is an ideal time to look at images following the forest loss event, and to study the differ-
ences between classes. To do this, we use a very similar approach to Section 2.3., but with classification based on each 
year’s images individually. We perform the five-fold cross validation for the images in the first year after the forest loss 
event, then for the second year after the forest loss, and so on. Fig 4 depicts this approach.

To determine whether changes in misclassifications over time may indicate shifts in land use, we analyse the mean 
confusion matrices obtained across folds. A “change matrix” is created by subtracting the normalised mean confusion 
matrix from images taken one year after the forest loss event (Y1) from the matrix generated using images taken four 
years after the event (Y4). For a more detailed understanding of variations between years, we also look at the other 
change matrices created by subtracting the normalised mean confusion matrix from images taken one year after the forest 
loss event (Y1) from the matrix generated using images taken three years after the event (Y3), and the matrix generated 
using images taken two years after the event (Y2).

2.5.  Comparing multi-year and single-year classification

We also assess whether the temporal patterns exploited by Cam-ForestNet correspond with the ‘ideal timings’ identified 
with single-year classification models. We examine the distribution of the years, relative to forest loss events, in which the 

Fig 4.  Overview of the methodology used to the test the impact of the time difference between the forest loss event and when the image is 
taken on the performance of Cam-ForestNet.

https://doi.org/10.1371/journal.pone.0340610.g004

https://doi.org/10.1371/journal.pone.0340610.g004
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highest logit occurs. Specifically, we count the number of cases where the highest logit, which determines the final classifi-
cation, corresponds to the first, second, third, or fourth year following the forest loss.

2.6.  Choice of classification assessment metric

Typical performance metrics used for deep learning classification of land use include recall, precision and F1 score 
[9,16,17,19,21], and results can vary depending on metric choice. Considering true positives (TP), true negatives (TN), 
false positives (FP), false negatives (FN), these metrics are defined as [9]:

	
Recall =

correctly classified positives
all positives

=
TP

TP+ FN 	 (1)

	
Precision =

correctly classified positives
all classified as positive

=
TP

TP+ FP 	 (2)

	
F1 score = 2

Precision ∗ Recall
Precision+ Recall

=
2TP

2TP+ FP+ FN 	 (3)

In remote sensing applications, recall is also referred to as producer’s accuracy, while precision is equivalent to user’s 
accuracy [16,37–39].

These metrics can be derived for each class separately or for the whole dataset [16,21]. Overall (e.g., of the dataset 
as a whole), precision and recall need to be interpreted with some reservation when there is imbalance between classes 
[40], which is common in environmental applications. Instead, in that case, it is best to use macro averages, which treat all 
classes equally regardless of data size [9,17,41].

There have been discussions about how to choose and report performance metrics in the medical field depending 
on use cases [e.g., 42,43], but this debate is less mature in environmental contexts. In order to select the most relevant 
metric for comparing results, it is essential to understand how any results will be interpreted and implemented in real-
world scenarios [44]. Existing studies classifying deforestation drivers (such as those cited in the introduction) tend to 
report traditional measures of performance - F1 score, recall, precision – in a machine-learning context, without necessar-
ily evaluating or discussing which are more relevant given the nature of the data and specific real-world applications. By 
‘real-world applications’, we mean the practical use of the machine-learning models to provide outputs that are relevant 
and accessible for decision-making at national or local scales. For instance, recall minimises false negatives and precision 
minimises false positives, while F1 scores balances recall and precision [45], making the model’s objective crucial when 
choosing the appropriate metric. The costs, risks, and benefits associated with incorrectly classifying or confusing particu-
lar classes must be considered [46,47], whilst the lack of transparency and interpretability from deep learning models has 
been criticised as limiting their use for high stakes decisions [48]. Beyond standard machine learning performance mea-
sures, stakeholders’ preferences, the goal of the model and context-specific limitations or trade-offs need to be considered 
to guide the model toward producing outcomes that are interpretable, actionable and valuable for decision-making [46]. 
Determining the right performance metrics is therefore crucial to build confidence in a model.

To choose the performance metric to use to test our hypotheses, we need to consider if it is more important to avoid 
false negatives (recall), have positive predictions be highly accurate (precision), or to consider both as equally import-
ant (F1 score). Our model could be used in different contexts. Examples include: detecting illegal activities (e.g., illegal 
logging); land use planning and monitoring, especially for sustainable agriculture; preventing land encroachment and 
helping protect land rights; helping supply chain transparency. Limiting false negatives is important to avoid cases of 
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illegal activities going undetected, especially in regions with high biodiversity or high importance for local communities. 
However, more false positives could be an issue when detecting these illegal activities, resulting in a waste of resources 
for investigation but also potential risks on already marginalised communities who would face wrongful penalties. So, 
whilst maximising recall could be favourable for detection and prevention, maximising precision may be better for regula-
tion enforcement. Our model could be used in both scenarios, hence why we decide here to focus on F1 score to balance 
both. F1 score has also been used as the main metric for model comparison in similar studies [9,16,18,19]. Nevertheless, 
we recognise that this measure does not consider true negatives and other complementary metrics we are not discussing 
here could be useful for a more holistic view of model performance (e.g., fairness or ethical considerations) depending on 
the use case [45].

3.  Results

3.1.  Hypothesis 1: ‘More data = a more accurate classification?’

We trained and tested Cam-ForestNet [26] with images in the first year after the forest loss event, then repeated this con-
secutively adding in images from each year up to four years after the forest loss event. Fig 5 shows the mean F1 scores 
obtained across the five folds, by class and overall, for each combination of years. S1 and S2 Figs show the mean recalls 
and precisions across fold for each combination of years, displaying similar trends as F1 scores.

For the purposes of results interpretation, we define a ‘notable’ change as when the F1 score varies by more than 5%. 
We categorise each class’s result into four categories: 1) similar results no matter the number of years included; 2) nota-
bly better results by having more years included; 3) varying results depending on the years included; and 4) notably worse 
results by adding more years beyond the first year following the forest loss event. We primarily discuss the classes where 
we consider having ‘enough’ data to draw conclusions (i.e., not identified with an asterisk on Fig 5, meaning there are 
more than 50 images for the class in the dataset; Table 2), but note that small classes show either similar or notably better 
results when including multiple years.

Using the previously defined categories, our results can be summarised as follows. We obtain similar results no matter 
the number of years included for ‘Timber plantation’, ‘Small-scale maize plantation’, ‘Other small-scale plantations’, and 
‘Other’. We obtain notably better results when we include data from multiple years after the forest loss event for the macro 
average, ‘Oil palm plantation’, ‘Selective logging’, ‘Hunting’ and ‘Mining’. We obtain varying results depending on the years 
we include for ‘Wildfire’, but which shows a notably better F1 score with four years combined compared with only includ-
ing the first year after the forest loss event. Similarly, we obtain varying results for ‘Small-scale oil palm plantation’, which 
shows a notably better F1 score with three years combined and a notably worse F1 score when looking across all four 
years. Finally, we do not obtain notably worse results for any class of interest when we include data from multiple years 
after the forest loss.

We found that standard deviations across folds were generally low for F1 scores compared with recalls and precisions 
(see S3-S5 Figs). The standard deviation of the macro-average F1 score remains below 5% in all tests. Among the large 
classes (i.e., > 50 images in the dataset), we obtain standard deviations above 15% only for ‘Oil palm plantation’ (Y1, Y1&Y2).

To better interpret the results above and understand which misclassifications increase or decrease by using 
images from multiple years after the forest loss event, we generate the change matrix on Fig 6, which shows the dif-
ference between the confusion matrices of classification using the first year only and the combination of four consec-
utive years after the forest loss event (normalised mean confusion matrices for each combination of years are shown 
in S11-S14 Figs).

Our results show that the effect of including additional images on misclassifications depends on driver types. We 
therefore split our interpretation of the change matrix in two groups: degradation drivers and all oil palm plantations. Here, 
we categorise ‘Mining’ as a driver of degradation. In Cameroon, mining mainly occurs through artisanal and small-scale 
mining (ASM), which primarily leads to forest degradation, though it can also contribute to deforestation [49–51].
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3.1.1.  Degradation driver classification improves with more data.  Combining images from multiple years had 
a notable impact on performance for degradation drivers (‘Selective logging’, ‘Wildfire’, ‘Hunting’) (Fig 5). We obtain 
notably better results when we include data from multiple years after the forest loss event for ‘Selective logging’ and 
‘Hunting’. Fig 6 shows that ‘Hunting’ is less confused with ‘Selective logging’ when combining images from four years 
versus the first year. Since they both involve selective rather than clear cutting, we observe a perhaps unsurprising high 
feature resemblance between ‘Selective logging’ and ‘Hunting’ (S11-S13 Figs). Here, having more data at different times 
increases the capability of Cam-ForestNet to distinguish between ‘Selective logging’ and ‘Hunting’, especially improving 
the identification of ‘Hunting’ which is typically harder to detect. We obtain varying results for ‘Wildfire’, but with notably 
better results with four years combined compared with using only one year.

Combining images from multiple years improved performance for ‘Mining’, demonstrating the importance of multi-year 
data for detection (Fig 5). Fig 6 shows that ‘Mining’ is less confused with ‘Selective logging’ and ‘Small-scale maize plan-
tation’ with more years combined. The higher confusion with ‘Selective logging’ in the first year after the forest loss event 
suggests that mining activities are not necessarily clear cutting and may happen in stages. In Cameroon, most mining is 
artisanal or small-scale mining, which is consistent with a longer time frame for distinctive features to emerge [49,52,53], 

Fig 5.  Multi-image model performance for different detailed drivers, categorised by general driver type (a-c) and macro averages of all classes 
(d). Each panel shows mean F1 scores obtained when taking into account images in the first year (Y1); in the first and second year (Y1&Y2); in the first, 
second and third year (Y1&Y2&Y3); or in the first, second, third, and fourth years (Y1&Y2&Y3&Y4) following the forest loss event. Asterisks * indicate 
classes with fewer than 50 images in the dataset (see Table 2).

https://doi.org/10.1371/journal.pone.0340610.g005

https://doi.org/10.1371/journal.pone.0340610.g005
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Fig 6.  Change matrix created by subtracting the normalised mean confusion matrix from images taken one year after the forest loss event 
(Y1) from the normalised mean confusion matrix generated using images from all four consecutive years following the forest loss event 
(Y1&Y2&Y3&Y4). ‘Notable’ changes are shown in colours. Any change higher or lower than 5% is not coloured as we consider it is not a ‘notable’ 
change. The colours show whether there has been a positive (green) or negative (red) impact on the confusion matrix by adding Y1&Y2&Y3&Y4 in the 
classification. On the diagonal, emphasised with grey borders and a larger font, a positive number shows an increase in correct classification (green) 
and a negative number a decrease in correct classification (red). In the rest of the matrix, a positive number shows there has been a higher confusion of 
two classes (red) while a negative number shows a decrease in the confusion of two classes (green). The green boxes highlight classes where we have 
an improvement in F1 score when comparing Y1 and Y1&Y2&Y3&Y4. We emphasise the values exhibiting significant variations (i.e., with colours) for 
classes of interest (i.e., with more than 50 images in the dataset, without an asterisk) in bold.

https://doi.org/10.1371/journal.pone.0340610.g006

https://doi.org/10.1371/journal.pone.0340610.g006
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which could explain the improved performance seen here. The higher confusion with ‘Small-scale maize plantation’ in 
the first year after the forest loss event may be explained by co-location of mining and smallholder agriculture, which is a 
documented phenomenon in the neighbouring Democratic Republic of Congo [25].

3.1.2.  Large-scale oil palm plantations need time series data.  Combining images from multiple years after the 
forest loss event improved performance for ‘Oil palm plantation’, demonstrating the importance of longer-term multi-year 
data to detect it (Fig 5). Fig 6 shows that ‘Oil palm plantation’ is less confused with ‘Mining’. We suppose it is because oil 
palm takes a long time to grow, with trees taking at least three years after planting to reach maturity [54,55].

We obtain varying results when we include data from multiple years after the forest loss event for ‘Small-scale oil palm 
plantation’, contrasting with the results for larger industrial areas of oil palm. Nevertheless, Fig 6 and S11-S13 Figs do not 
identify any class ‘Small-scale oil plantation’ is consistently confused with, though it shows high F1 scores for any year 
combination (above 0.90).

3.2.  Hypothesis 2: ‘The sooner the better?’

We trained and tested Cam-ForestNet [26] with images in each of the first four years after the forest loss event. Fig 7 
shows the mean F1 scores obtained across the five folds, by class and overall, for each year following the forest loss 
event. S6 and S7 Figs show the mean recalls and precisions across folds for each year, which show similar trends as the 
F1 scores.

As before, we consider there has been a ‘notable’ change when the F1 score varies by more than 5%, and as before 
we categorise results into four categories: 1) classes where we see no changes between the years; 2) classes where we 
see notably better results when looking close to the forest loss event; 3) classes where close to the forest loss event is 
when we get results among the best ones but we can see similar results at later times; 4) classes where we get notably 
better results by looking longer after the forest loss event. Here again, we focus interpretation on classes where we con-
sider having ‘enough’ data to draw conclusions (i.e., not identified with an asterisk on Fig 7, meaning there are more than 
50 images for the class in the dataset, see Table 2).

For all classes, the best or close to best result was obtained using images taken in the first year after the forest loss 
event. For some classes, results were similar for F1 scores for all years: ‘Timber plantation’, ‘Other small-scale plantation’, 
‘Small-scale maize plantation’, ‘Other’, ‘Wildfire’, whilst we obtain notably better results in the first year after the forest loss 
event for ‘Small-scale oil palm plantation’. Some classes had variable results, showing similar performance across mul-
tiple years without a clear pattern; ‘Oil palm plantation’ and ‘Selective logging’ obtain notably better F1 scores in the first 
and third year following the forest loss event compared to the second and fourth. The macro-average F1 score, ‘Mining’ 
and ‘Hunting’ shows similar results for all years, with slight decreases in the second, third and fourth year, respectively.

As before, we found that standard deviations across folds were generally low for F1 scores compared with recalls 
and precisions (S8-S10 Figs). The standard deviation of the macro-average F1 score remains below 6% in all tests and 
among the classes of interest (i.e., with more than 50 images in the dataset), we obtain high standard deviations, i.e., 
above 15%, only for ‘Oil palm plantation’ (all years).

To better interpret these results and understand which misclassifications increase or decrease using images at differ-
ent times, we generate the change matrix, which shows the differences between the first and fourth year after the forest 
loss event (Fig 8). The normalised mean confusion matrices for each combination of years are on S11 and S15-S17 Figs. 
Following the methodology outlined in Section 2.5., we compare these results with those from the previous section and 
examine the ‘best year’ (i.e., with the highest logit) identified by the model for each class in the multi-year classification 
(see S20-S22 Figs).

We observe that the ‘optimal’ time to analyse imagery varies depending on the type of drivers, and that many of the 
drivers influenced by the combination of years (Section 3.1) were also affected by the choice of year. As before, we high-
light results in two groups: degradation drivers and all oil palm plantations.
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3.2.1.Degradation drivers are not easier to distinguish using later imagery alone.  Among degradation drivers, 
time difference between the forest loss event and image date had an impact on performance for ‘Selective logging’, 
‘Hunting’ and ‘Mining’, while ‘Wildfire’ is not impacted (Fig 7). ‘Selective logging’ and ‘Hunting’ show varying performance 
depending on the year we look at and we obtain notably better F1 scores in the first and third year following the forest loss 
event for ‘Selective logging’, and notably worse F1 scores in the fourth year following the forest loss event for ‘Hunting’. 
Fig 8 and S19 Fig show that variation in performance is linked to how strongly the two classes are confused with one 
another in different years. Looking at the ‘best year’ (highest logit; S22 Fig), we also see that Year 4 is less commonly 
chosen for ‘Hunting’.

‘Mining’ obtains similar results for all years, but with a decline in F1 score in the third year after the forest loss event 
(Fig 7). S18 Fig shows a higher confusion with ‘Small-scale oil palm plantation’ in Year 3 compared with Year 1. We previ-
ously found that combining images from multiple years improved performance for ‘Mining’ (Section 3.1.1). Looking at the 
‘best year’ (highest logit; S21 and S22 Figs) selected for the multi-year classification, we see that Year 3 is less commonly 
chosen for ‘Mining’, matching with the drop in performance we see with Year 3 in this section.

3.2.2.Small and large oil palm plantation are both well detected by the first year’s imagery.  ‘Oil palm plantation’ 
shows different performance depending on the years selected, showing the timing of the image impacts the identification 
of this class (Fig 7). ‘Oil palm plantation’ obtains notably better F1 scores in the first and third year following the forest 

Fig 7.  Mean F1 scores obtained when taking into account images in the first (Y1), second (Y2), third (Y3), or fourth year (Y4) following the 
forest loss event. The asterisk * indicates the classes with fewer than 50 images in the filtered dataset (see Table 2).

https://doi.org/10.1371/journal.pone.0340610.g007

https://doi.org/10.1371/journal.pone.0340610.g007
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Fig 8.  Change matrix created by subtracting the normalised mean confusion matrix from images taken one year after the forest loss event 
(Y1) from the normalised mean confusion matrix generated using images from the fourth year after the forest loss event (Y4). ‘Notable’ 
changes are shown in colours. Any change higher or lower than 5% is not coloured as we consider it is not a ‘notable’ change. The colours show 
whether there has been a positive (green) or negative (red) impact on the confusion matrix by adding Y4 in the classification. On the diagonal, empha-
sised with grey borders and a larger font, a positive number shows an increase in correct classification (green) and a negative number a decrease in 
correct classification (red). In the rest of the matrix, a positive number shows there has been a higher confusion of two classes (red) while a negative 
number shows a decrease in the confusion of two classes (green). The red boxes indicate the classes where we have a decline in F1 score when com-
paring Y1 and Y4. We emphasise the values exhibiting significant variations (i.e., with colours) for classes of interest (i.e., with more than 50 images in 
the dataset, without an asterisk) in bold.

https://doi.org/10.1371/journal.pone.0340610.g008

https://doi.org/10.1371/journal.pone.0340610.g008
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loss event, with more confusion with ‘Selective logging’ and/or ‘Small-scale oil palm plantations’ in other years (Fig 8 and 
S18 Fig). We previously found that combining images from multiple years improved performance for ‘Oil palm plantation’ 
(Section 3.1.1). Looking at the ‘best year’ (the highest logit; S21 and S22 Figs) selected for the multi-year classification, 
we see that Year 2 is less commonly chosen, matching with the drop in performance we see here when looking at single 
years.

‘Small-scale oil palm plantation’ is the only type of small-scale plantations impacted by the choice of year for images. 
We obtain notably better results in the first year following the forest loss event for this class. We previously found that 
combining images from multiple years also impacted ‘Small-scale oil palm plantation’ (Section 3.1.1). Looking at the ‘best 
year’ (highest logit; S20–S22 Figs) selected for the multi-year classification, we see that Year 1 is more commonly cho-
sen for ‘Small-scale oil palm plantation’, matching with the results here which show notably better results in the first year 
following the forest loss event for this class.

4.  Discussion

4.1.  Understanding misclassifications beyond model errors

Misclassifications described above may be explained by land use dynamics specific to certain drivers. Unlike ‘Small-scale 
oil palm plantation’, large-scale ‘Oil palm plantation’ showed notable improved performance with multi-year classification. 
These large-scale plantations tend to have a more consistent and predictable progression compared with small-scale 
plantations, which typically have more irregular development patterns [25,37,55], which may explain the difference in 
these results.

With single-year classification, ‘Hunting’ might perform worse in Year 4 because its subtle disturbance signals may be 
fully overgrown by that time and harder to detect, making it more likely to be misclassified as ‘Selective logging’. While we 
do not have direct long-term studies on the regrowth of hunting roads in Cameroon, we infer from analogous studies on 
logging roads [56] that abandoned forest access routes are subject to natural vegetation recovery. Since hunting paths 
are typically narrower and less intensively cleared than logging roads, it also suggests that regrowth may occur even more 
rapidly. ‘Mining’ might perform well in Year 1 and 2 because it leaves clear visual traces, such as bare soil and irregular 
clearings [25,57,58], that might be easier for the model to detect soon after forest loss. The better performance in Year 
1 for ‘Oil palm plantation’ may be due to the distinct appearance of newly established plantations (e.g., bare soil, regular 
planting rows, sharp boundaries) [37,59]. The lower performance for ‘Small-scale oil palm plantation’ after Year 1 might 
be explained by the fact that these sites are transitioning or mixed-use areas in later years, since smallholder plantations 
such as oil palm frequently undergo land-use changes and intercropping or mixed cropping in Cameroon [60–63]. Overall, 
this highlights the importance of incorporating contextualised land-use dynamics in modelling, as classification confusion 
may not necessarily result from model errors.

The interpretations above are hypotheses informed by common land-use patterns observed in the region, rather than 
confirmed land-use transitions for our specific data.

4.2.Overall, combining images in multiple years following the forest loss event is the best choice

While there are differences in best approach for our individual classes, the macro averages of F1 scores improve when 
we combine data from multiple years after the forest loss event (Fig 5). Including multiple years in training exposes the 
model to the full range of visual variation the different classes take over time and the logit-based selection during test-
ing allows the most confident year-specific prediction to drive the final classification. Combining multiple years may also 
improve model performance by increasing training volume, however we did not find this resulted in better performance for 
all classes (Fig 5).

For the overall classification, our first hypothesis that combining data from multiple years will improve performance 
was found to be generally correct and there is no class where we obtain notably worse results when we include data from 
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multiple years after the forest loss event. We also find convincing evidence for our second hypothesis, that we obtain one 
of the highest performance close to the forest loss event, since all classes and macro averages get one of their best F1 
scores (+/- 5%) using images in the first year after the forest loss event when looking at single-year analyses. However, 
our highly curated dataset [27] targets direct drivers, using only forest loss events with recorded land use in the same 
year; which may explain the high performance in the year following the forest loss event.

Previous studies have shown improvements using time series for other locations [9,18,19], which is confirmed here for 
Cameroon at a national scale and for a more detailed classification of drivers (e.g., no detail about crop types in [9] and 
only ‘Palm Plantation’ in [18]).

4.3.Degradation drivers and ‘Oil palm plantation’ benefit the most from the multi-year analysis

Classes with distinct and evolving visual patterns over time, i.e., ‘Selective logging’, ‘Hunting’, ‘Wildfire, ‘Mining’, and ‘Oil 
palm plantation’, tend to benefit from multi-year training, as the model may learn to generalise across different disturbance 
stages and environmental contexts. With single-year training, these classes often show varying performance depending 
on the specific year, likely due to both their temporal dynamics and intra-class visual variability. In such cases, the model 
can only learn how a class appears at a particular point in time and may struggle when that appearance changes or lacks 
distinction from other classes.

Previous studies have similarly shown that the performance for these classes is influenced by the timing of the imag-
ery. For example, in Suriname, the Republic of Congo, and the Democratic Republic of Congo, extending the period 
for analysing satellite imagery from 1 month to 6 months after logging slightly improved the ability to accurately detect 
selective logging, likely because signs of disturbance became more visible over time [25]. Another study showed that 
attention-based spatio-temporal models relied on a single image shortly after wildfire events to detect them, rather than 
multiple images later in the year following the loss [18]. Mining detection has been shown to improve with spatio-temporal 
models compared to single-image approaches for pan-tropical studies [18]; and when waiting longer after the disturbance 
in Suriname, the Republic of Congo, and the Democratic Republic of Congo [25]. Immature oil palm has been found to be 
confused by other classes, and for example could not be identified in the first three years after planting from other imma-
ture monoculture classes such as banana and rubber [55].

4.4.  Implications and significance

Our results highlight a trade-off between timeliness and accuracy in detecting deforestation drivers, depending on the 
length of the observation window.

We have seen that overall, the best-performing model (macro-average F1 score: 0.88) is obtained when combining 
four years’ imagery after the forest loss event, with all classes studied having an average F1 score above 0.80 across the 
folds, except for ‘Oil palm plantation’. However, this approach will not allow for quick detection following forest loss events, 
but rather serve longer-timescale analyses and planning. This is especially relevant for land-use change monitoring, long-
term landscape management, and post hoc reporting for policy.

In the case of single-year analysis, we saw that looking at the year following the forest loss event is the most effec-
tive approach (macro-average F1 score: 0.78). This result is promising because it would help monitor drivers of active 
deforestation. Knowing the driver behind a deforestation event relatively quickly could help determine whether a ground 
intervention such as deploying forest rangers or anti-logging patrols would be useful and so help use resources more 
efficiently. This makes single-year approaches more appropriate for near-real-time monitoring or enforcement-focused 
applications such as detecting illegal mining, logging, or agricultural encroachment. This also simplifies processing meth-
odology and reduces the resources needed for memory, image processing, and model training time compared to time 
series classification. Depending on the goal, the most adapted approach could vary between single-year and multi-year 
methodology.
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Our results also raise questions about the most useful way to define the ‘direct driver’, which is particularly challenging 
when we see dynamics such as transitions in small-scale plantations [60–63]. What we see immediately after the forest 
loss does not necessarily correlate with the long-term or even medium-term use of the land. It is therefore important to 
ask, from a policy point of view, what the purpose of monitoring is. If our single-image model gives us accurate information 
about the follow-up land use after forest loss, it might still be useful to look at time series to better understand land-use 
dynamics and the longer-term drivers behind deforestation and forest degradation.

For six classes out of fifteen, having time series data proved to be especially effective. This is notably the case for 
‘Selective logging’ (+10% performance with all four years’ imagery compared with only the first), ‘Hunting’ (+20%), ‘Min-
ing’ (+18%) and ‘Oil palm plantation’ (+10%). ‘Selective logging’, ‘Hunting’ and ‘Mining’ reach an F1 score above 0.80 
only with the multi-year combination, and ‘Oil palm plantation’, ‘Hunting’, and ‘Mining’ perform particularly poorly with 
only Year 1 (i.e., F1 score < 0.65). This suggests that satellite-based monitoring in the first year following the forest loss 
event is unlikely sufficient to accurately detect these drivers, which could be an issue for the timely identification of illegal 
activities which ‘Mining’ and ‘Hunting’ commonly are in Cameroon [64,65]. ‘Selective logging’, also often associated with 
illegal activity in Cameroon [66], records an average F1 score below 0.80 when using only Year 1 data, which also may 
limit its detectability in the context of illegal land use tracking [66]. For these classes, using only images in the first year 
after the forest loss event, we may find improvements with 1) other data, such as additional auxiliary parameters to detect 
them (e.g., proximity to water for ‘Mining’ [25], proximity to known oil palm concessions for ‘Oil palm plantation’, wildlife 
or poaching risk layers for ‘Hunting’, known existing logging roads for ‘Selective logging’); or 2) a confidence score to 
help assess the performance of the classification. Indeed, it is unlikely that the single-image model would be usable for 
decision-making otherwise.

4.5.  Limitations and future research direction

In this study we use a dataset developed using all open data identifiable, and after discussion with many experts and 
stakeholders [27], and which is the largest open dataset of direct drivers of deforestation in Cameroon that we are aware 
of. However, our dataset is still relatively small, and some features are likely missing. For example, due to the data 
sources used, we only capture a specific set of land uses, and we likely miss most smaller-scale, illegal or uncontrolled, 
and quick land-use changes. For instance, in this study, it is interesting to notice that, as time passes, ‘Small-scale maize 
plantation’ is not particularly confused with other small-scale plantations. Maize grows quickly and is useful to claim land 
quickly [67,68], which then gives occupancy rights to the users of the land [69,70]. There is evidence indicating that once 
a land is used and its de facto rights acquired, smallholder farmers in Cameroon may choose to diversify or switch from 
maize to more lucrative crops when opportunities arise, often a few years later [63,71,72]. In the time frame we look at 
and with the dataset we have, we do not notice this tendency, but it could be either because we do not look long enough 
after the forest loss event, or because the data sources we used for labelling maize show longer-standing maize plan-
tations. In addition, we recognise that data availability is skewed towards the dry season, and specific ecozones due to 
cloud cover, which introduces biases in ecological and spatial representation and can affect the generalisability of the 
results. As in other studies of tropical forests using optical imagery (e.g., [73,74]), our use of dry-season imagery reflects a 
common methodological constraint caused by cloud cover during the rainy season. Here, we do not use a cloud masking 
algorithm and only focus on high quality imagery with low cloud cover using a 20% threshold. This approach prioritises 
data quality and interpretability, but we acknowledge that it may introduce seasonal sampling bias, especially impacting 
rainfed and short-cycle agricultural classes.

There are various methods for time-series classification and whilst here we chose the highest logit approach to clas-
sify images and combine different years, this is not the only available approach. We use our original Cam-Forest CNN 
approach to test whether time series provide improvements, using post-hoc aggregation of single-image classifications 
and not temporal modelling, but we do not explore other techniques such as attention mechanisms or 3D-CNNs for 
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instance, which have been used in other studies [9,18,19]. Nevertheless, our analysis of performance with single images 
in different years (Section 3.2.) shows that these approaches most likely would not provide improvements using the same 
timeframe, as we do not see any class where we get notably better results compared with the first year after the forest 
loss event. In addition, we already achieve high F1 scores across most classes (above 0.80, except for ‘Oil palm planta-
tion’), suggesting that the use of a more complex model may not yield substantial benefits. Our results are shown based 
on F1 scores to assess performance, which may not always be the most suitable approach depending on the application 
the model is used for and the needs of the users (though we present results for precision and recall in the appendix and 
find little qualitative difference).

To improve applicability for real-world applications, future work could focus on generating confidence scores to assign 
for each forest loss event classified, as deep learning has been criticised for not providing interpretable models with 
accessible outputs that can be used for decision making [48]. A recent study to classify oil palm provided map outputs 
showing the probability of oil palm in a given pixel to display the model certainty [75]. Such an output could help the use 
Cam-ForestNet for decision-making at national or local scales. Further research is needed to find the most suitable way 
to assess the confidence in the model and have a better understanding of uncertainty. Promising options to generate a 
confidence score include the classification logits, using a softmax function on the classification logits, looking at multiple 
top classification logits instead of only the highest one, or other techniques to assess uncertainty such as Monte Carlo 
dropout or Bayesian Neural Networks.

5.  Conclusion

Understanding the drivers of deforestation and forest degradation is essential for designing effective responses, whether 
for enforcement, conservation planning, or sustainable land use governance. This study contributes to that goal by 
demonstrating how incorporating multi-year Earth observation imagery into the Cam-ForestNet approach enhances the 
classification of direct deforestation and degradation drivers.

The findings indicate that using imagery from up to four years after a forest loss event significantly improves model per-
formance, with a five-fold cross-validation approach yielding average F1 scores above 0.80 for all classes except ‘Oil palm 
plantation’. Performance particularly improves for degradation drivers, ‘Mining’, and slow-growing large-scale plantations 
(i.e., ‘Oil palm plantation’), which exhibit both high temporal dynamics and high intra-class visual variability. However, this 
approach does not support rapid monitoring of deforestation and forest degradation. When considering single-date mod-
els, results from using imagery from the year immediately following forest loss were also promising and produced some 
of the strongest results across all classes. This suggests that timely detection of deforestation drivers is feasible and can 
support more immediate monitoring and response efforts. Nevertheless, challenges remain for degradation drivers (‘Hunt-
ing’, ‘Selective logging’) and long-maturing drivers (‘Oil palm plantation’, ‘Mining’), which appear to require additional data.

This research highlights the trade-offs between approaches that prioritise rapid detection and those that aim for more 
comprehensive, long-term analysis. It provides useful guidance on how model design can be aligned with different policy 
goals, such as forest law enforcement, land use planning, or results-based conservation finance. Beyond performance 
metrics, we also recognise the importance of building models that are transparent, reliable, and usable in real-world con-
texts. To that end, our future work will focus on improving model interpretability, incorporating uncertainty measures, and 
ensuring alignment with operational forest governance needs in Cameroon.

Supporting information

S1 Table. Number of locations in each fold. The values correspond to the single-year analysis. When combining 
multiple years, the number of images is equal to the number of locations listed here multiplied by the number of years 
combined.
(XLSX)
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S2 Table. Number of images per month and per dry/rainy season as a function of years after the forest loss event, 
both in total and disaggregated by driver class. 
(XLSX)

S1 Fig. Mean recalls obtained when taking into account images in the first year (Y1); in the first and second 
year (Y1&Y2); in the first, second and third year (Y1&Y2&Y3); or in the first, second, third, and fourth years 
(Y1&Y2&Y3&Y4) following the forest loss event. The asterisk * indicates the classes with fewer than 50 images in the 
filtered dataset (see Table 2).
(PNG)

S2 Fig. Mean precisions obtained when taking into account images in the first year (Y1); in the first and sec-
ond year (Y1&Y2); in the first, second and third year (Y1&Y2&Y3); or in the first, second, third, and fourth years 
(Y1&Y2&Y3&Y4) following the forest loss event. The asterisk * indicates the classes with fewer than 50 images in the 
filtered dataset (see Table 2).
(PNG)

S3 Fig. Means and standard deviations of F1 scores for all folds by class when taking into account images in the 
first year (Y1); in the first and second year (Y1&Y2); in the first, second and third year (Y1&Y2&Y3); or in the first, 
second, third, and fourth years (Y1&Y2&Y3&Y4). 
(PNG)

S4 Fig. Means and standard deviations of recalls for all folds by class when taking into account images in the 
first year (Y1); in the first and second year (Y1&Y2); in the first, second and third year (Y1&Y2&Y3); or in the first, 
second, third, and fourth years (Y1&Y2&Y3&Y4). 
(PNG)

S5 Fig. Means and standard deviations of precisions for all folds by class when taking into account images in the 
first year (Y1); in the first and second year (Y1&Y2); in the first, second and third year (Y1&Y2&Y3); or in the first, 
second, third, and fourth years (Y1&Y2&Y3&Y4). 
(PNG)

S6 Fig. Mean recalls obtained when taking into account images in the first (Y1), second (Y2), third (Y3), or fourth 
year (Y4) following the forest loss event. The asterisk * indicates the classes with fewer than 50 images in the filtered 
dataset (see Table 2).
(PNG)

S7 Fig. Mean precisions obtained when taking into account images in the first (Y1), second (Y2), third (Y3), or 
fourth year (Y4) following the forest loss event. The asterisk * indicates the classes with fewer than 50 images in the 
filtered dataset (see Table 2).
(PNG)

S8 Fig. Means and standard deviations of F1 scores for all folds by class when taking into account images in the 
first (Y1), second (Y2), third (Y3), or fourth year (Y4) following the forest loss event. 
(PNG)

S9 Fig. Means and standard deviations of recalls for all folds by class when taking into account images in the 
first (Y1), second (Y2), third (Y3), or fourth year (Y4) following the forest loss event. 
(PNG)
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S10 Fig. Means and standard deviations of precisions for all folds by class when taking into account images in 
the first (Y1), second (Y2), third (Y3), or fourth year (Y4) following the forest loss event. 
(PNG)

S11 Fig. Mean confusion matrix for all folds when taking into account images in the first year following the forest 
loss event. 
(PNG)

S12 Fig. Mean confusion matrix for all folds when taking into account images in the first and second years follow-
ing the forest loss event. 
(PNG)

S13 Fig. Mean confusion matrix for all folds when taking into account images in the first, second, and third years 
following the forest loss event. 
(PNG)

S14 Fig. Mean confusion matrix for all folds when taking into account images in the first, second, third, and 
fourth years following the forest loss event. 
(PNG)

S15 Fig. Mean confusion matrix for all folds when taking into account images in the second year following the 
forest loss event. 
(PNG)

S16 Fig. Mean confusion matrix for all folds when taking into account images in the third year following the forest 
loss event. 
(PNG)

S17 Fig. Mean confusion matrix for all folds when taking into account images in the fourth year following the 
forest loss event. 
(PNG)

S18 Fig. Change matrix created by subtracting the normalised mean confusion matrix from images taken one 
year after the forest loss event (Y1) from the normalised mean confusion matrix generated using images from the 
third year after the forest loss event (Y3). The colours show whether there has been a positive (green) or negative (red) 
impact on the confusion matrix by adding Y3 in the classification. On the diagonal, a positive number shows an increase 
in correct classification (green) and a negative number a decrease in correct classification (red). In the rest of the matrix, a 
positive number shows there has been a higher confusion of two classes (red) while a negative number shows a decrease 
in the confusion of two classes (green). Any changes higher or lower than 5% is in white as we consider it is not a ‘nota-
ble’ change.
(PNG)

S19 Fig. Change matrix created by subtracting the normalised mean confusion matrix from images taken one 
year after the forest loss event (Y1) from the normalised mean confusion matrix generated using images from 
the fourth year after the forest loss event (Y2). The colours show whether there has been a positive (green) or nega-
tive (red) impact on the confusion matrix by adding Y2 in the classification. On the diagonal, a positive number shows an 
increase in correct classification (green) and a negative number a decrease in correct classification (red). In the rest of the 
matrix, a positive number shows there has been a higher confusion of two classes (red) while a negative number shows a 
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decrease in the confusion of two classes (green). Any changes higher or lower than 5% is in white as we consider it is not 
a ‘notable’ change.
(PNG)

S20 Fig. Years with the highest logit chosen in the test step when taking into account images in the first (Y1) and 
second (Y2) years following the forest loss event. 
(PNG)

S21 Fig. Years with the highest logit chosen in the test step when taking into account images in the first (Y1), sec-
ond (Y2), and third (Y3) years following the forest loss event. 
(PNG)

S22 Fig. Years with the highest logit chosen in the test step when taking into account images in the first (Y1), sec-
ond (Y2), third (Y3), and fourth (Y4) years following the forest loss event. 
(PNG)
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