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Abstract 

With the expansion of urban public transport systems and the increasing integra-

tion of multiple modes, ensuring the reliability of composite public transport network 

has become a critical challenge. To overcome the limitations of traditional reliability 

research, which primarily relies on connec-tivity analysis, this paper proposes an 

innovative indicator system integrating connectivity reliability with a newly constructed 

transport capacity reliability dimension. The latter incorporates dynamic metrics 

such as passenger load and time delay to more comprehensively characterize 

actual operational conditions. By establishing a Coupled Map Lattice (CML) model 

to simulate the cascading propagation of node and line failures under multimodal 

coupling effects, this study reveals the failure mechanisms and recovery potential of 

complex networks under dynamic disturbances. Taking Changchun as a case study, 

the analysis reveals that both connectivity and transport capacity reliability experi-

ence minimal decline in the initial stages of disruption. When the scale of network 

damage exceeds 30%, transport capacity reliability shows a slight rebound. How-

ever, once the damage surpasses 50%, both indicators approach zero. The findings 

suggest that isolating faulty nodes in the early stages and prioritizing the recovery 

of high-betweenness nodes in the mid-stage can help maintain network operational 

efficiency. These results provide important theoretical guidance for enhancing the 

operational reliability and service quality of public transport systems. By applying 

complex network theory and data-driven methodologies, this research contributes to 

improving the resilience and sustainability of urban transport systems.

Introduction

Urban public transport systems are encountering a range of challenges: increasing 
congestion leads to reduced punctuality, unbalanced capacity allocation results in 
overcrowded lines, and the growing structural complexity of networks elevates the 
risk of failures. These issues severely compromise the reliability of urban public 
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transport. As conventional bus routes and urban rail transit systems continue to 
expand into interconnected networks, they play crucial roles in handling large-scale 
commuting flows. Analyzing reliability from the perspective of network structure and 
transport efficiency enables a deeper understanding of the latent capacity of compos-
ite public transport networks, helps prevent failure risks, and assists transport authori-
ties in enhancing network reliability.

Currently, the reliability analysis of public transport network still faces the following 
issues. Firstly, most reliability evaluations are limited to single subway networks or 
bus networks, without fully recognizing the interconnections within composite net-
works. These interconnections can sometimes manifest as complementary relation-
ships, while at other times, they may lead to cascading failures. Secondly, existing 
reliability assessments are primarily based on physical topological structures and fail 
to account for dynamic reliability issues arising from varying passenger loads and 
fluctuations in vehicle operation times. This can result in a situation where, despite 
physical structural connections, the system becomes dynamically unsustainable. 
Moreover, reliability issues are not always influenced by a single factor. The coupled 
effects of multiple influencing factors also require in-depth analysis.

This study tries to solve the above problems by the following research.

1.	  To develops an integrated reliability evaluation framework for urban public trans-
port composite networks accounting for the interactions between urban rail and 
bus systems.

2.	To construct a dual-layer reliability system combining connectivity and transport 
capacity by introducing passenger flow and temporal indicators to capture the 
dynamic operational characteristics.

3.	To model cascading failures by applying Coupled Map Lattice (CML) model to 
simulate the spatiotemporal evolution of disruptions with dynamic feedback.

The rest of the paper is organized as follows. Section 2 reviews the literature 
related to the study of transportation network reliability. Section 3 provides details 
of the measurement method and evolution analysis method for reliability of urban 
public transport composite network. Section 4 presents case analysis and simulation 
experiments. Finally, Section 5 summarizes the study and discusses future research 
directions.

Literature review

Early research on transportation network reliability primarily focused on connectivity 
reliability. Numerous scholars identified key factors influencing reliability by analyz-
ing the topological characteristics and statistical metrics of transportation networks. 
Connectivity reliability was initially proposed by Japanese scholars Kawai and Mine 
(1982) in the context of road networks. This concept solely examines network topol-
ogy, neglecting critical factors such as route length, traffic volume, and throughput 
capacity. It employs a binary (0–1) metric to determine whether links or nodes are 
connected, assessing the probability of reliable connections between network nodes 
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[1]. Regarding connectivity reliability assessment methods, researchers have endeavored to address challenges related 
to computational complexity and metric practicality. Fan et al. (2015) proposed the efficient Target Order algorithm for 
the NP-hard connectivity reliability problem, providing a feasible tool for evaluating large-scale real-world road networks 
[2]. Yang (2019) introduced a dynamic strongly connected reliability model based on Didi trajectory data, utilizing relative 
speed thresholds to screen connected segments and offering new insights for practical road network assessment [3]. 
Neila Bhouri et al. (2025) introduced four spatio-temporal reliability and accessibility metrics for public transit systems, 
providing quantitative foundations for optimized scheduling [4]. These methodological breakthroughs have also driven 
applications in complex scenarios involving multimodal transportation and multiple disasters. Leveraging efficient evalu-
ation algorithms and metrics, Wang et al. (2023) constructed a global directed network for crude oil maritime transport, 
precisely identifying critical shipping routes and assessing their vulnerability [5]. In disaster response, Qin et al. (2022) and 
Chen et al. (2021) developed post-disaster recovery and pre-disaster protection optimization models that deeply integrate 
constraints such as connectivity and temporal reliability, significantly enhancing the resilience and response efficiency of 
emergency logistics networks [6,7]. Wu et al. (2018) established a provincial expressway connectivity evaluation system, 
providing support for regional transportation infrastructure planning and protection [8].

With the increasing diversity of urban transport resources, it has become evident that focusing solely on connectivity 
reliability is insufficient for improving overall network reliability. Therefore, Shariat et al. (2010) subdivided transportation 
network reliability into connectivity reliability, capacity reliability, and travel time reliability [9]; Chen et al. (2013) defined 
capacity reliability as the probability that a transportation network can accommodate a certain level of transport demand 
while maintaining an acceptable service level, highlighting its crucial role in reflecting the service quality and efficiency of 
freight transportation networks [10]. Regarding capacity reliability research methodologies, Fang et al. (2019) quantified 
the impact of service quality on network reserve capacity using a two-layer planning model based on segment service 
level constraints and random user equilibrium [11]. Yuan et al. (2023) improved directed weighted centrality metrics and 
proposed a cascading failure suppression mechanism prioritizing downstream node redundant capacity during load 
diversion [12]. These methodological innovations directly drive the deepening of multidimensional application scenarios, 
continuously unlocking new contexts from traditional road networks to multimodal transport and intelligent connected 
systems. Li (2024) employed a derivative cutset algorithm to compare road network structures, demonstrating that grid-
like topologies exhibit lower capacity collapse under deliberate attacks than ring-radial networks due to their redundancy 
advantages [13]. Ma et al. (2018) combined network transformation methods with Monte Carlo experiments to achieve 
the first reliability assessment of integrated transport networks under random capacity fluctuations [14]. Hao et al. (2022) 
innovatively developed a CAV/HDV hybrid traffic flow allocation model for intelligent connected environments, revealing 
and confirming the significant enhancement of CAV technology on capacity stability [15].

Compared to extensive research on road network reliability, existing studies focusing on public transport network reli-
ability account for only about 8% [16]. Liu et al. (2021) quantified urban rail transit network reliability as the proportion of 
successful trips and evaluated transport service quality by integrating average generalized trip cost with passenger com-
pletion rate [17]. In related work, Dong et al. (2023) introduced the concept of “link reliability” into road traffic performance 
analysis. By establishing link quality thresholds, they proposed a new perspective for assessing network resilience and 
provided theoretical support for analyzing the dynamic recovery capability of transportation networks under flood disrup-
tions [18].

Regarding metrics for measuring transportation network reliability, most studies focus on capturing complexity indica-
tors reflecting aggregate behavior and macro-topological features. For instance, Zhang et al. (2018) employed degree, 
degree distribution, clustering coefficient, and betweenness centrality as indicators for evaluating transfer reliability. They 
proposed an efficient method for calculating travel time between stations based on the accessibility matrix and assessed 
the transfer reliability of Jinan’s conventional bus network [19]. Zhou Jie et al. (2025) employed the spatial L-method to 
construct a multilayer transportation network. They established a comprehensive topological metric system encompassing 
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node overlap rate, node activity level, average path length, network diameter, clustering coefficient, betweenness central-
ity, multilayer participation coefficient, edge overlap rate, and edge intersection coefficient to analyze network structure 
and reliability [20]. Chen Ming et al. (2022) proposed a novel metric—travel time and connectivity reliability—to evaluate 
bridge network reliability under seismic scenarios. This metric comprehensively considers post-earthquake changes in 
travel time and network connectivity, thereby enhancing the completeness and practicality of assessments [21].

To characterize the reliability evolution of urban transportation networks under various disturbance scenarios, recent 
studies increasingly adopt a cascading failure framework to reveal how localized disruptions escalate into large-scale 
systemic risks. Early studies primarily focused on attack strategies and failure propagation mechanisms, simulating distur-
bance conditions through random attacks or deliberate removal (e.g., targeting highly connected nodes or nodes with high 
betweenness centrality). These studies typically employed load-capacity models or seepage theory to simulate cascading 
processes. However, such models often rely on static network topologies and overly simplified disturbance assumptions, 
failing to capture the inherent dynamic feedback effects and coupled evolutionary behavior of multimodal transportation 
systems.

To overcome these limitations, the Coupled Meshwork (CML) model emerged as a nonlinear dynamical modeling 
framework capable of simulating time-varying states of nodes and edges under perturbations. The CML model is partic-
ularly well-suited for characterizing failure propagation and recovery pathways in multilayer transportation systems. For 
instance, Xu et al. (2025) investigated the reliability of multi-state supply chain networks (MSCNs) under capacity and 
emission constraints by modeling transport routes with multiple operational states to reflect real-world uncertainties [22]. 
Zhu et al. (2021) constructed a Shanghai metro system model based on CML, introducing flow-weighted reliability met-
rics to evaluate cascading failure processes under different scenarios [23]. Furthermore, Wang et al. (2025) proposed a 
weighted CML model integrating structural connectivity and transport capacity to simulate the progressive degradation 
and system response of urban rail transit under cascading disturbances [24].

More recently, the CML framework has been extended to incorporate multilayer network coupling, adaptive flow redis-
tribution mechanisms, and dynamic recovery strategies, offering a more comprehensive and evolution-oriented modeling 
tool for simulating cascading failures in composite bus–rail transit systems.

In summary, the existing body of research presents the following key limitations.

1.	  Incomplete theoretical framework. Most studies lack a systematic reliability evaluation model and are confined to 
single-mode networks, failing to account for the synergistic effects between urban rail transit and conventional bus 
systems.

2.	Limited evaluation indicators. Current metrics primarily focus on topological reliability while neglecting dynamic char-
acteristics such as passenger flow distribution and travel delay, making it difficult to comprehensively reflect the actual 
operational state of the network.

3.	Limited representation of cascading evolution mechanisms. Current approaches primarily initiate disruptions through 
static attack strategies without embedding the dynamic feedback and spatiotemporal propagation characteristics that 
define real-world cascading failures. This constrains the ability to model how localized failures escalate into large-scale 
systemic disruptions within composite transit networks.

Methodology

Measurement method for reliability of urban public transport composite network

Definition.  In this study, the reliability of urban public transport composite network is defined as the network’s ability to 
meet both connectivity and transport service requirements within a specified time and capacity constraint under various 
random or targeted attacks.
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From the perspectives of complex network theory and data-driven modeling, the reliability of a composite public trans-
port network can be decomposed into two components: connectivity reliability and transport capacity reliability. Connec-
tivity reliability refers to the ability of the composite network to maintain inter-node connectivity under varying conditions, 
ensuring that alternative routes or transport modes are available to allow passengers to reach their destinations on time. 
Transport capacity reliability reflects the composite network’s ability to provide normal transit services within a required 
time frame, including the evacuation of passenger flows and the timely operation of bus and subway systems. The service 
quality and operational stability of the composite network are jointly characterized by indicators such as the spatiotempo-
ral distribution of passenger flows and vehicle delay times, etc.

Metrics. 

1.  Network connectivity reliability

The network connectivity reliability of an urban public transport composite network is defined as the average ratio between the 
number of effective paths for each OD (Origin-Destination) pair before and after network disruption. The formula is as follow:

	
ρij =

Qij
′

Qij 	 (1)

	
ρG =

∑S
s=1 ρij
S 	 (2)

Where ρij  is the ratio of effective paths for the OD pair after and before attack, Qij is the number of effective paths before 
attack, Qij

′ is the number after attack, S is the total number of OD pairs, ρG is the overall connectivity reliability. The value 
of ρG approaching 1 indicates high reliability. S =

{
(i, j)

∣∣Qij > 0
}

 denotes the set of OD pairs that have effective paths in 
the initial network.

The number of effective paths for each OD pair can be obtained using a valid path search algorithm. By aggregating 
these values across all OD pairs, the total effective paths of the network can be determined.

2.  Transport capacity reliability

Transport capacity reliability refers to the ability of the remaining network nodes to dissipate passenger flows and maintain 
punctual operation after partial network damage. It can be evaluated from two indicators: the weighted betweenness of 
network passenger flow and the standard deviation of network delay time [25].

•	  Passenger flow–weighted betweenness centrality

The passenger flow-weighted betweenness centrality reflects a node’s role in passenger flow dissipation. In an unweighted 
network, the standard betweenness centrality is defined as the number of shortest paths passing through a given node, 
which is often used to evaluate the centrality of node in the network. However, a node with high unweighted betweenness 
may not hold a central role in a weighted passenger network. Therefore, the passenger flow-weighted betweenness central-
ity [26] is defined as the product of normalized unweighted betweenness and actual daily passenger flow at that node.

	
CW
B (V) = WVCB(v) = WV

∑
s,t∈V

2θ (s, t|v)
(n – 1)(n – 2)θ(s, t)

	 (3)

	
WV =

nQv∑n
i=1Qi	 (4)
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C(V) =

1
n

n∑
v=1

∑
s,t∈V

WVCB(v)
	 (5)

The term CW
B (v) denotes the passenger flow weighted betweenness centrality of node v . Here, θ(s, t) represents the 

total number of shortest paths between nodes s and t, while θ (s, t|v) denotes the number of those shortest paths that 
pass through node v . When s = t , it is defined that θ(s, t) = 1. The parameter n denotes the total number of nodes in 
the network, and V represents the set of all network stations. Qv  indicates the actual number of passengers passing 
through node v  in the daily passenger flow of the network. WV  is defined as the ratio of Qv  to the average passenger flow 
across all nodes in the network, which is used to measure the relative magnitude of passenger flow at a given node. C(V) 
denotes the overall passenger flow weighted betweenness centrality of the network. This metric reflects the capability of 
the network to redistribute passenger flows. A larger value of C(V) indicates that the composite network possesses higher 
reliability.

•	 In unweighted networks, nodes exhibiting high betweenness centrality do not necessarily maintain prominent hub status 
once actual passenger-flow weights are incorporated. Compared with simple indicators such as raw passenger volume 
or unweighted betweenness, passenger-flow-weighted betweenness provides a more discriminative measure by iden-
tifying nodes that are structurally critical yet carry relatively low passenger demand, thereby preventing the overestima-
tion of the network’s effective transport capacity.Standard deviation of network delay time

Here, the Mahalanobis distance [26] is used to characterize temporal efficiency and reflect the reliability of transport 
service. It quantifies the deviation of observed delays from historical patterns, thus serving as an indicator of network 
performance.

	
µt =

∑
k x

k

|εt| 	 (6)

	
Qt =

|εt|∣∣εt∣∣ – 1
∑
k

(
xk

(
xk
)T

|εt|
– µk

(
µk

)T
)

	 (7)

	 Mt =

√
(xt – µt)

T Q–1 (xt – µt)	 (8)

Assume that within a given time interval t, the network consists of N stations. The delay observation vector for this period 
is defined as xt = [D

t
1,D

t
2, · · · ,D

t
N]
T
, where xk denotes the k-th observation vector in the historical sample set. Let µt 

represent the mean vector, εt  denote the historical delay dataset of the network, and Qt be the corresponding covariance 
matrix. The Mahalanobis distance Mt  is then computed, where a smaller Mt  value indicates higher network reliability. The 
probabilistic nature of the Mahalanobis distance enables a more rigorous identification of anomalous observations in noisy 
multivariate data, compared to directly analyzing raw delay data and applying heuristic thresholds to detect abnormal 
delays.

In a connected network, a significant reduction in transport capacity at key nodes can severely impair service quality 
and operational efficiency, even though the topological connectivity is maintained. Therefore, integrating flow-weighted 
betweenness and delay-time standard deviation enables the identification of nodes that, while critical in terms of connec-
tivity, exhibit relatively poor actual transportation capacity.
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Measurement process.  The detailed process for measuring the reliability of urban public transport composite network 
is illustrated in Fig 1.

Firstly, a multimodal composite network is constructed by integrating urban rail and bus systems into a unified trans-
port network structure. Then, a depth-first search (DFS) algorithm based on generalized cost and relative threshold is 
used to traverse the network and compute the ratio of effective OD paths before and after disruptions, from which the 
connectivity reliability index is derived. In addition, the Dijkstra algorithm is employed to calculate the shortest paths 
between OD pairs, while estimating node-level passenger flow and delay times to assess the transport capacity reliability 
of the network.

•	  Generalized travel cost function for network paths

The generalized travel cost index is used not only for path optimality judgment but also for determining the number of 
effective OD paths, which further reflects the level of network connectivity reliability. The generalized travel cost for a path 
in the composite network consists of two components: segment travel cost and node transfer cost.

The segment travel cost incorporates congestion-adjusted travel time and dwell time, and is formulated as:

	
Tkij =

[∑
eϵEm

tem(1+ Y(xem)) +
∑

i
Pmi

]
δi,je,k +

[∑
e∈Eb

teb(1+ Y(xeb)) +
∑

i
Pbi

]
δi,je,k	 (9)

Where Y(xem) and Y(xeb) are the congestion coefficients for rail and bus, tem and teb are the segment travel times, Pmi  and 
Pbi  are the dwell times at rail and bus stops, respectively.

Transfer walking time depends on corridor length L, pedestrian speed, and facility comfort; waiting time is typically 
modeled as half the headway H. To reflect passengers’ sensitivity to transfer time, transfer penalty coefficients φ1, φ2 are 
introduced to account for perceived costs. The formulas are:

Fig 1.  Flowchart of reliability measurement for urban public transport composite networks. 

https://doi.org/10.1371/journal.pone.0340590.g001

https://doi.org/10.1371/journal.pone.0340590.g001
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	 Ekij = φ1tw + φ2td 	 (10)

	
Ekij =

[
φ1σ

L
v
+ φ2

[
Pd

3H
2

+ (1 – Pd)
H
2

]](
ni,je,k

)γ1
+ φ3tf

(
ni,je,k

)γ2

	 (11)

	
ni,je,k =

∑
e∈E

δi,je,k
	 (12)

Where v  is walking speed(km/h), σ is comfort coefficients, 
(
ni,je,k

)
 denotes the cumulative number of transfers experienced 

by passengers along path k between nodes i and j. It reflects the continuity of passenger travel within the composite net-
work. The sharp increase in perceived transfer cost caused by the cumulative number of transfers can be represented by 
an amplification factor γ.

The generalized travel cost for a passenger from node i to j along path k is:

	 ckij = Tkij + Ekij 	 (13)

•	  Effective path determination rules

In practical operations, passengers tend to select the path(s) with the lowest generalized travel cost. If all available paths 
exceed their cost expectations, they may switch to alternative transport modes. Effective path screening is foundational 
for passenger flow assignment and has been widely studied and applied. Due to high accessibility, multimodal service 
levels, and complex transfer structures, the effective path constraints in a composite network are more intricate than in 
single-mode networks. Therefore, a relative threshold method is adopted, which selects a set of effective OD paths whose 
generalized cost does not exceed a multiple of the minimum cost path. The constraint condition is expressed as follows:

	 Pij =
{
∀Pkij |(∀smij , snij ∈ Pkij , s

m
ij ̸= snij )and(c

k
ij ≤ cminij (1+ g))

}
	 (14)

Where ckij  is the generalized travel cost of the k-th path from node i to node j, cminij  is the minimum cost among all paths for 
OD pair (i, j), g is the relative threshold parameter. The default value of g is 1.5.

•	  Effective path search algorithm

Urban public transport composite network exhibit high complexity due to many nodes, edges, and transfer links. The 
depth-first search (DFS) algorithm is well-suited for path discovery in such networks. This study employs a relative-
threshold-based DFS algorithm to identify all effective paths between OD pairs. The detailed steps are as follows:

Step 1: initialize variables in the composite network; set the relative threshold value g.
Step 2: import failed nodes and remove corresponding nodes and edges from the network to update its topology.
Step 3: use the shortest path algorithm to calculate the minimum cost path for each OD pair.
Step 4: set the current node r as the root and traverse neighboring nodes s. If the path cost from r to s satisfies the 

threshold criterion in Equations (1–14), set s as the new current node and go to Step 5; otherwise, proceed to Step 7.
Step 5: if node s is not the destination, return to Step 4; otherwise, proceed to Step 6.
Step 6: record the valid path.
Step 7: backtrack to the previous level. If the root node r has not yet been revisited, return to Step 4. Otherwise, discard 

the path and end the traversal.
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Analysis method for reliability evolution of urban public transport composite network

Coupled map lattice evolution model.  The cascading failure process of the composite network can be modeled 
using the Coupled Map Lattice (CML) [27], a dynamic system framework capable of capturing complex spatiotemporal 
behaviors in nonlinear systems. The CML model is traditionally utilized to capture the state evolution of nodes through 
local coupling rules. In this study, we extend the CML framework to model not only node states but also link states [28], 
which is justified by the tightly coupled nature of nodes and links in composite public transport networks. The state of 
a link (e.g., passenger flow, delay) is directly influenced by the functional state of its adjacent nodes, while link failures 
also propagate disruptions back to nodes—a feedback mechanism that aligns with the dynamic coupling principles of 
CML. This bidirectional state dependency makes it reasonable to incorporate both nodes and links within the same 
CML-based dynamical system, thereby enabling a more holistic simulation of cascading failures across the network. 
In this model, node state variables are continuous, while time and space are discrete. The state variable at time t is 
defined as:

	
xi(t+ 1) = (1 – ε)f (xi(t)) + ε

∑n

j=1

𝟋𝟋xj(t)
ki 	 (15)

Building upon the classical CML framework, the measurement index of transport capacity reliability is introduced and the 
scalar state variable is extended to a multi-dimensional vector. A dynamic coupling mechanism is proposed as:

	
xi(t+ 1) = (1 – ε)f (xi(t)) + ε

∑N

i=1

CW
B (vi)
Cmax
B

· 𝟋𝟋xi(t)
ki 	 (16)

	
ε =

n∑
i=1

ki
n

	 (17)

Where xi(t) is the state variable of network node i at time t, Cmax
B  is the maximum passenger flow–weighted betweenness 

centrality in the entire network, ki is the degree of node i, n is the total number of nodes in the network, 𝟋𝟋 is the function 
representing the coupling form between network nodes, which may be linear coupling 𝟋𝟋(x) = x or nonlinear coupling 
𝟋𝟋(x) = g(x), where g(x) is a nonlinear function.

Nodes with higher degree exert greater influence on their neighborhoods, reflecting the dominant role of hub nodes 
during cascading failures. By incorporating passenger flow–weighted betweenness, the functional significance of nodes is 
accurately represented, enhancing the model’s ability to capture key nodes in failure propagation.

Identification of node and edge states. 

1.	 Node state

Attack strategies are used to simulate station-level failures. General attacks lead nodes to transition from normal to sat-
urated states, while severe attacks result in complete failure. According to the passenger flow redistribution assumption, 
flow from saturated or failed nodes is rerouted to nearby normal nodes or links. In practice, travelers prefer proximate 
alternatives to minimize travel cost.

Let an external disruption be applied to node v at time t, then its state variable is expressed as:

	
Si(t+ 1) =

∣∣∣∣(1 – ε1) f (Si(t)) + ε
∑NG

j=1,j̸=i

Fijf (Si(t))
Ii

∣∣∣∣
	 (18)
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	 Si(t) = [Sstructi (t),Scapi (t)]	 (19)

	
Scapi (t) =

CW
B (vi)
Cmax
B

· M
threshold

Mt
i 	 (20)

Here, Si(t+ 1) and Si(t) denote the state variables of node i  at time t+ 1 and t, respectively. Assume that:

	




When 0 < Si(t) < 1, the node is in a normal state and not under attack;
When Si(t) = 1, the node is in a saturated state due to a general attack;

When Si(t) > 1, the node is in a failed state due to a severe attack.	 (21)

Where Si(t) is the state variable of node i at time t , Sstructi (t) ∈ [0, 1] denotes structural state of node i, Scapi (t) ∈ [0, 1] 
denotes transport capacity state of node i, Mthreshold is the threshold of historical delay standard deviation, ε is the coupling 
strength between network nodes, NG is the number of nodes in the largest connected component of the network, Fij  is the 
passenger flow on edge eij (persons/hour), Ii  is the passenger flow at node i (persons/hour).

Based on Equations (17–20), the state of a node within the composite network at a given time instant can be character-
ized. The absolute value operator in the equation ensures the non-negativity of the node state variable. Due to the inher-
ent chaotic nature of traffic flow, it can be effectively modeled using the Chaotic Logistic Map, defined as f(s) = 4s(1 – s), 
0 ≤ s ≤ 1. This mapping function f  enables the representation of each node in the composite network as a chaotic 
dynamical system, thereby facilitating the simulation of localized dynamic behaviors observed in practical bus composite 
networks.

2.	 Edge state

In urban public transport composite networks, the states of nodes and edges are mutually dependent, yet most existing 
studies focus primarily on node failures while overlooking edge conditions. Research indicates that under general attacks, 
saturated nodes may retain edge connectivity but are unable to transport passengers; under severe attacks, failed nodes 
cause their associated edges to fail, and the failure of any connected node will likewise result in edge failure. In practi-
cal operations, unexpected incidents leading to service interruptions often trigger metro or bus suspensions, shortened 
routes, or skip-stop operations, thereby inducing partial network failures. Consequently, the state of edges in urban public 
transport composite networks is jointly affected by both their own conditions and the states of the connected nodes, and 
can thus be expressed as:

	
yij(t+ 1) =

{∣∣∣∣(1 – ε)f (yij(t)) +
ε

2

[∑N

p=1,p̸=i,j

Fipf (yip(t))
Ii

+
∑N

q=1,q̸=i,j

Fjqf (yjq(t))
Ij

]
,Si(t),Sj(t)

∣∣∣∣
}

	 (22)

	 yij(t) = [ystructij (t), ycapij (t)]	 (23)

	

{
0 ≤ yij(t) < 1, the edge eij is in a normal state, unaffected or under mild attack

yij(t) ≥ 1, the edge eij is in a failed state due to a severe attack	 (24)

Where yij(t) denotes the state variable of edge eij  at time t, ystructij (t) ∈ [0, 1] denotes the structural state (normal/failure), 
ycapij (t) ∈ [0, 1] denotes the dynamic weight based on passenger flow Fij  and delay time, Fip and Fjq denote the passenger 
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flows on edges eip and ejq respectively (persons/hour), Ii and Ij  denote the passenger flows at nodes i  and j  respectively 
(persons/hour).

The state of edge eij is influenced not only by its own condition but also by the states of nodes i  and j . Let Si(t) and 

Sj(t) denote the states of nodes i  and j  at time t, respectively. If Si(t) > 1 or Sj(t) > 1, then yij(t+ 1) > 1, indicating that 
if either of the connected nodes is in a failed state, the corresponding edge also enters a failed state. Furthermore, if 
0 < Si(t) < 1 and 0 < Sj(t) < 1, but yij(t) > 1, then yij(t+ 1) > 1 still holds, implying the persistence of edge failure under the 
influence of prior edge failure and non-failed node states. Based on these relationships, the state of an edge in the com-
posite network at a given time can be determined.

Passenger flow redistribution rules.  Following an attack, the states of nodes and edges within the composite 
network may undergo significant changes. The resulting passenger flow redistribution can be categorized into three 
scenarios: node oversaturation, node failure, and edge failure. Set isolated nodes and edges resulting from node or edge 
failures to a failed state, and remove the transferred passenger flow. The three types of passenger flow redistribution rules 
are as follows.

•	  Redistribution rule for node failure

Step 1: identify node i in a failed state, indicating that it is no longer operational. Passengers are unable to travel to, 
from, or through this node via any mode within the composite transit system.

Step 2: remove node i  and all edges eik connected to it from the network.
Step 3: redistribute the passenger flow Ii  of node i  (defined as the sum of passenger flows on all edges connected to 

node i) to all neighboring nodes j that remain in a normal operating state.
Step 4: update the passenger flows on edges ejl connected to node j as follows:

	 F′
jl = Fjl +∆Fjl	 (25)

	
∆Fjl =

Fij · Fjl
Ii – Fij 	 (26)

Step 5: determine whether all nodes have been traversed. If so, terminate the process; otherwise, repeat Steps 1–4.
Lows:

•	  Redistribution rule for node oversaturation

Step 1: identify node i that is in a saturated state, meaning that although the node remains operational, no additional pas-
sengers can enter it.

Step 2: remove node i from the node set, but retain all adjacent edges to preserve the structural integrity of the network 
routes.

Step 3: redistribute the passenger flow of the saturated node i to its adjacent normal edges eik and ejl, where the flow 
on edge eik is updated as follows:

	 F′
ik = Fik +∆Fik	 (27)

	
∆Fik =

Fij · Fik
Ii – Fij 	 (28)

Step 4: change the passenger flow on edge ejl  as same as that on edge eik .
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Step 5: Determine whether the traversal is complete. If so, terminate the process; otherwise, repeat Steps 1–3.

•	  Redistribution rule for edge failure

Step 1: identify failed edge eij in the network, which is no longer operational. This results in route disruption within the 
composite network and may cause service interruption for both transit modes.

Step 2: remove the failed edge eij  from the network.
Step 3: redistribute the passenger flow previously carried by edge eij  to adjacent normal edges eik and ejl, with the flow 

on edge eik updated as follows:

	 F′
ik = Fik +∆Fik	 (29)

	
∆Fik =

Fij · Fik
Ii – Fij 	 (30)

Step 4: change the passenger flow on edge ejl  as that on edge eik.
Step 5: determine whether the traversal is complete. If so, terminate the process; otherwise, repeat Steps 1–4.
The passenger flow redistribution mechanism ensures that total network flow remains conserved during each iteration. Math-

ematically, the inflow and outflow of each node satisfy,thereby preventing artificial gain or loss of passengers in the simulation.

Case study

1.	 Construction of urban public transport composite network

This study selects the core area of Nanguan District in Changchun City as the case study area. There are three urban 
rail transit lines within this area: Metro Line 1, Metro Line 2, and Light Rail Line 3. 16 rail transit stations are in the study 
area, with 8 stations on Line 1, 4 on Line 2, and 5 on Line 3. There are two transfer stations: Jiefang Avenue Station, 
which serves as an interchange between Lines 1 and 2, and Weixing Square Station, which connects Lines 1 and 3, as 
illustrated in Fig 2. In addition, there are 105 bus routes, covering 77 bus stops within the composite network. Although 
this area features highly integrated rail transit and conventional bus services, a complete network struc-ture, and dense 
passenger flows—effectively representing the typical operational characteristics and failure modes of a composite public 
transport network, it does not cover the entire city network. This limitation may somewhat affect the generalizability of the 
research conclusions. Future work will expand to a more comprehensive urban road network to further enhance the repre-
sentativeness and applicability of the study.

Based on rail transit and conventional bus route information obtained via the Gaode Map API, Python web crawling 
techniques were employed to extract inter-station connectivity data. The information was then georeferenced and anno-
tated on a panoramic map to construct the base topology of the urban transport network, as illustrated in Fig 2.

Composite node identification rules were set as follows: if the average daily transfer passenger flow between a rail transit 
station and a bus stop exceeds 1000, or if they share three or more bus routes, the rail transit station and bus stop are consid-
ered as a composite node. Using this rule, 12 composite nodes, such as Weixing Square and Jiefang Avenue, were identified, 
as listed in Table 1. This function-oriented node aggregation approach can accurately capture the intermodal coordination 
relationships within the multimodal transit system, providing a realistic network foundation for cascading failure analysis.

2.	 Calculation of connectivity reliability

Based on the generalized travel cost function, effective path determination rules, and path search algorithms, the connec-
tivity reliability of the composite network can be evaluated.
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In the composite network, the generalized travel cost of a path consists of two components: segmental travel cost and 
node transfer cost. Firstly, using data from the Gaode Map API, the travel time and distance between stations are obtained 
by analyzing inter-station distances and durations. These values are then used to construct a weighted adjacency matrix 
that reflects the connectivity of the bus network. This adjacency matrix captures the link relationships among nodes and 
serves as the input for subsequent calculations. Using Equations (19) through (1–13), the generalized travel costs for all 
feasible paths are computed in MATLAB. A subset of the path travel costs is presented in Table 2. By analyzing these path 
costs, the connectivity reliability of the entire network can be further assessed.

Effective path filtering in the composite network refers to identifying travel paths within the network topology that satisfy 
the constraints of the generalized travel cost function. Based on the effective path determination rules and the applied 
search algorithm, the relative threshold method is used to extract valid paths, as summarized in Table 3.

3.	 Calculation of connectivity reliability

By assigning passenger flows to the study composite network, the dynamic interaction between network structure and 
passenger demand can be simulated. According to statistical data released by the Changchun Municipal Transportation 

Fig 2.  Schematic diagram of the urban composite bus network in the core area of Nanguan District.

https://doi.org/10.1371/journal.pone.0340590.g002

Table 1.  Example of composite nodes (Metro Line 1).

Metro Line 1 – Subway Stations

Subway
Station

Victory 
Park

People’s 
Square

Liberation 
Avenue

Northeast Normal 
University

Workers’ 
Square

Prosperity 
Road

Satellite Square (Municipal 
Government

Bus 
Station

Beijing 
Avenue
Victory 
Park

Chongzhi 
Mall
Banruo 
Temple
Min’an Road
People’s 
Square

Liberation Ave-
nue South
Liberation 
Avenue
North
Liberation 
Avenue

Northeast Normal 
University
Scholar’s 
Bookstore

South Lake 
Avenue
Workers’ 
Square
Nanhu Swim-
ming Area

Huning Road
Prosperity 
Road

Weixing Guangchang 
South Entrance
Weixing Guangchang 
North Entrance
Expressway Coach 
Terminal

Provincial 
Library
Municipal Party 
Committee
Municipal 
Government

https://doi.org/10.1371/journal.pone.0340590.t001

https://doi.org/10.1371/journal.pone.0340590.g002
https://doi.org/10.1371/journal.pone.0340590.t001
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Bureau, in 2023, the average daily passenger volume of Changchun’s conventional bus system was 2 million trips and the 
average daily passenger flow of rail transit is 500,000 trips. The allocation of average daily passenger flows for both transit 
modes to individual nodes and links follows a defined rule: firstly, the number of public transit routes passing through each 
network edge (i.e., the multiplex coefficient of the edge) is counted; then, the proportion of each edge’s multiplex coeffi-
cient relative to the total is calculated; by multiplying this proportion with the total daily ridership of each transit mode, the 
passenger flow on each edge is obtained; and finally, the passenger flow of a node is determined by summing the flows of 
all edges connected to it.

The passenger flow at each node is calculated accordingly, and the proportion of the top ten nodes ranked by passen-
ger flow is shown in Table 4.

The actual passenger flow at a given station v is statistically obtained and used as the weighting factor in the calcula-
tion of flow-weighted indicators. The passenger flow at each network node reflects the relative importance of that node 
in terms of traffic demand. Based on this, node betweenness is calculated using Dijkstra’s shortest path algorithm. The 
results of the transport capacity reliability analysis for the composite network are presented in Table 5.

Table 5 presents the transport capacity reliability indicators for individual stations within the network. High-reliability 
stations such as Weixing Square (0.80), Jiefang Avenue (0.78), and Renmin Square (0.72) demonstrate strong resilience 
in maintaining transport operations even under network disruptions. These stations are located at critical positions within 
the network, exhibiting strong connectivity and redundancy. Due to their higher reliability, these nodes are more capable 
of sustaining stable passenger service during emergencies or service failures. In contrast, low-reliability stations such as 
Fanrong Road (0.55) show relatively weak transport capacity reliability, indicating greater susceptibility to disruptions or 

Table 3.  Set of effective routes.

Path ID Node Sequence (Origin → … → Destination)

1 GONGNONG Square→NANHU Avenue→XINWENHUA Newspaper Office→HUNING Road→→Prosperity Road→North 
Entrance of Satellite Square→Changchun University)→University of Science and Technology (Bus-to-Metro Transfer)→-
WEIGUANG Street→Convention and Exhibition Center→WEIXING Road

https://doi.org/10.1371/journal.pone.0340590.t003

Table 4.  Passenger flow share ranking in the composite network.

Node Name Flow Share Rank

Satellite Square 0.25 1

Jiefang Avenue 0.22 2

Jiefang Avenue 0.14 3

Prosperity Road 0.10 4

Yatai Avenue 0.05 5

Victory Park 0.05 6

…… …… ……

https://doi.org/10.1371/journal.pone.0340590.t004

Table 2.  Generalized travel cost of paths in the composite network.

Path ID Origin Destination Segment cost (min) Transfer cost (min) Total cost (min)

1 Victory Park Yitong River 18 4 22

2 Jiefang Avenue Northeast Normal University 8 0 8

3 Jilin Univ. (Nanling) Yatai Overpass 16 2 18

4 Linhe Street Dongwan Peninsula A Zone 16 0 16

https://doi.org/10.1371/journal.pone.0340590.t002

https://doi.org/10.1371/journal.pone.0340590.t003
https://doi.org/10.1371/journal.pone.0340590.t004
https://doi.org/10.1371/journal.pone.0340590.t002
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failures. Such stations are located at the periphery of the network or have fewer direct connections to other nodes, result-
ing in a higher likelihood of service interruption or delay during network failures.

The average delay time at each station v is extracted by crawling real-time data from Gaode Map for the composite net-
work. This delay time is used as an input for computing the Mahalanobis distance of each node. According to the transport 
capacity reliability evaluation model, a MATLAB program is developed to perform the reliability calculation. The results 
show that the standard deviation of network delay time is 0.1%, indicating a high level of temporal reliability and good 
operational stability within the network.

Overall, there are certain disparities in the transportation capacity reliability across different sites, indicating an uneven 
level of stability among them when facing network failures. High-reliability stations typically serve as major transport hubs 
or critical nodes, whereas low-reliability stations tend to be peripheral or less connected within the network.

4.	 Reliability evolution simulation

•	  Simulation settings

Reliability evolution simulations are conducted with the following goals:

1)	 to investigate the impact of different attack strategies on the reliability of urban public transport composite network;

2)	 to examine the influence of network coupling strength on the network’s reliability.

The simulation scenarios are designed as shown in Table 6.
In this study, the disturbance intensity is quantitatively classified following the conventions of complex network robust-

ness analysis (Albert et al., 2000; Berche et al., 2009; Zhang et al., 2020). Specifically, light attacks correspond to 10–20% 

Table 5.  Passenger flow-weighted betweenness centrality in the composite network.

Node Name Flow-Weighted Betweenness

Satellite Square 0.85

Jiefang Avenue 0.82

People’s Square 0.72

Yatai Avenue 0.70

Fanrong Road 0.55

…… ……

https://doi.org/10.1371/journal.pone.0340590.t005

Table 6.  Simulation scenario settings.

Scenario Analytical objective Attack strategy Attack intensity

Ⅰ Analyze the impact of 
different attack strategies 
on composite network

Random attack Severe attack
Mild attack

Targeted attack Severe attack
Mild attack

Traffic congestion Severe attack
Mild attack

Sudden surge in 
passenger flow

Severe attack
Mild attack

ⅠⅠ Investigate the influence 
of network coupling 
strength on network 
reliability

Random attack Mild attack

Targeted attack Mild attack

https://doi.org/10.1371/journal.pone.0340590.t006

https://doi.org/10.1371/journal.pone.0340590.t005
https://doi.org/10.1371/journal.pone.0340590.t006
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node or link removal (or ≤20% capacity reduction), moderate attacks to 20–40%, and severe attacks to 40–50% removal 
or ≥50% capacity degradation at key nodes or links.This classification provides a consistent standard for comparing the 
effects of different attack strategies and facilitates the interpretation of cascading behavior under varying disruption levels.

The simulation process is as follows. Firstly, the initial state values of all nodes and edges in the composite network are 
set within the range [0,1]. Secondly, the failure processes of network nodes or links are simulated under various attack 
strategies. Finally, the reliability measurement model of the composite network is applied to calculate the reliability out-
comes, followed by visualization of the results. The overall simulation process for evaluating the reliability of composite 
network is illustrated in Fig 3.

•	  Analysis of reliability evolution results

1)	 Impact of different attack strategies on network reliability

Random attack strategies with varying intensities—severe attacks and mild attacks—are applied to the study composite 
network. The objective is to analyze how the network’s reliability indicators change as different numbers of nodes are 
affected by the attacks. In addition, targeted attack strategies are implemented with both severe and mild levels of dis-
ruption. Nodes are ranked in order of importance based on their degree centrality, as shown in Table 7. During targeted 
attacks, nodes are targeted according to their degree ranking. The impact on network reliability is then analyzed under 
varying degrees and quantities of node failures.

When the composite network is not under attack, all stations remain connected, and the network reliability is 100%. As 
shown in Fig 4, the effects of random attacks and targeted attacks on the composite network differ significantly. Under ran-
dom attacks, the decline in network reliability is relatively gradual. Under mild attacks, network reliability drops to zero only 
after 70% of nodes fail, while under severe attacks, reliability reaches zero after 50% of nodes fail. This is because most 
randomly targeted nodes tend to be peripheral or isolated, thus exerting limited impact on overall network performance. 
In contrast, under targeted attacks, network reliability decreases sharply. Under severe attacks, reliability falls to zero 
after just 40% of nodes fail, while under mild attacks, it drops to zero after 60% node failures. This is due to the targeting 
of highly connected nodes, which substantially reduces the number of effective paths following passenger flow redistri-
bution, resulting in near-total network paralysis. Moreover, severe attacks have a greater impact on network reliability, as 
they directly cause station failures and route disruptions. Mild attacks, on the other hand, have a lesser impact since the 
affected stations merely enter a saturated state and the network remains structurally connected.

Random attack strategies of both severe and mild intensity are applied to the composite network, to analyze how the 
transport capacity reliability indicators evolve as nodes are progressively compromised, as shown in Fig 5.

In Fig 5, the two charts reveal that under mild and severe attack scenarios, the standard deviation of network delay 
time exhibits a gradual downward trend over time. In both cases, the network’s flow-weighted betweenness centrality 
decreases during the initial iterations (from 0 to 4), with a steeper decline observed under severe attacks. Between itera-
tions 4 and 6, it gradually recovers to around 0.8, indicating that the network’s capacity for passenger flow redistribution 
suffers significant disruption but also possesses a certain degree of resilience. These indicators reflect the network’s 
self-recovery capability facing disruptions. However, the final reliability level in both scenarios does not return to the origi-
nal baseline, suggesting that the network incurs a degree of permanent damage.

Interestingly, the simulation results show a rebound in transport capacity reliability when the network damage exceeds 
approximately 30%. This phenomenon can be attributed to two main factors. First, the removal of certain redundant or 
congested nodes reduces flow concentration at bottlenecks, leading to a temporary improvement in the efficiency of flow 
redistribution. Second, after the elimination of these low-efficiency or structurally fragile components, the remaining net-
work exhibits a more balanced load distribution, which mitigates overload pressure on critical nodes. This nonlinear effect 
is consistent with the “adaptive reconfiguration” mechanism observed in self-organized criticality of transport systems, 
where partial disruptions may lead to short-term performance gains before overall degradation dominates.
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Fig 3.  Simulation flowchart for reliability analysis of composite network.

https://doi.org/10.1371/journal.pone.0340590.g003

https://doi.org/10.1371/journal.pone.0340590.g003
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In summary, the results demonstrate the evolution of transport capacity reliability and connectivity reliability during 
the cascading failure process. Throughout the simulation, transport capacity reliability generally declines, though a slight 
increase in flow-weighted betweenness centrality is observed during iterations 2–6. This implies that the failure of certain 
redundant nodes may enhance overall network connectivity. The overall decline in connectivity reliability aligns with the 
cascading failure dynamics, indicating that the uniformity of passenger service across network nodes is relatively less 
affected by the cascading process. Transport capacity reliability proves to be more sensitive to disruptions than connectiv-
ity reliability. Under severe targeted attacks, the failure of just 20% of key nodes results in a 60% drop in transport capac-
ity. Under the same level of attack intensity, the degradation rate of transport capacity is 1.8 times that of connectivity 

Table 7.  Degree ranking in the composite network.

Node Name Degree

Satellite Square (composite node) 14

People’s Square (composite node) 12

Culture Square (composite node 10

Jiefang Avenue (composite node) 9

…… ……

Guangming Road (bus) 2

Nanhuancheng (bus) 2

https://doi.org/10.1371/journal.pone.0340590.t007

Fig 4.  Connectivity reliability of the composite network under different attack strategies.

https://doi.org/10.1371/journal.pone.0340590.g004

https://doi.org/10.1371/journal.pone.0340590.t007
https://doi.org/10.1371/journal.pone.0340590.g004
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reliability. It highlights that the traditional evaluation systems focusing solely on connectivity significantly overestimate the 
actual service capacity of the network.

2)	 Impact of different coupling coefficients on the network reliability

Coupling coefficient ε represents the average number of coupling edges per node in the composite network. It character-
izes the degree of interconnection between the different layers of the network and quantifies the strength of interactions 
between nodes in the network. A higher coupling coefficient indicates stronger interdependencies among nodes, resulting 
in greater susceptibility to disturbance propagation. Conversely, a lower coupling coefficient implies weaker inter-node 
influence and reduced transmission of disruptions. The value of coupling coefficient also significantly affects the extent to 
which failures can propagate through the network [29].

Based on calculations, the coupling strength of the composite network can be determined as 0.63.
The following simulation analyzes how variations in coupling strength affects network reliability. The simulation scenar-

ios are set in Table 6, where random and targeted attacks of mild intensity are adopted as attack strategies. The objective 
is to observe the impact of different coupling strengths on the network reliability. When ε is set to 0, 0.2, 0.4, 0.6, 0.8, 1.0, 
and 1.2 respectively, the resulting effects on network reliability are shown in Figs 6 and 7. These results are derived from 
1,000 simulation iterations, and the results are shown in Table 8.

As shown in Figs 6 and 7, when ε ≤ 0.60, and the number of attacked nodes remains constant, the network reliability 
gradually decreases as the value of ε increases, regardless of the attack strategy. Since ε reflects the coupling strength 
between the urban rail transit and conventional bus networks within the composite system, a higher coupling strength 

Fig 5.  Transport capacity reliability of the composite network under different attack strategie.

https://doi.org/10.1371/journal.pone.0340590.g005

https://doi.org/10.1371/journal.pone.0340590.g005
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(when ε  ≤ 0.60) leads to greater vulnerability and lower overall network reliability. However, when ε > 0.60, and the number 
of attacked nodes remains unchanged, further increases in ε lead to improved network reliability.

To mitigate the stochastic effects inherent in the CML model and the cascading failure process, 1000 independent 
simulation runs were conducted for each attack scenario. All simulations were performed under identical network topology 
and initial load conditions, while the selection of disturbed nodes and the corresponding load redistribution were allowed to 
vary randomly. As shown in Table 8, the final reliability results adopt the standard deviation (Std) and the 95% confidence 
interval (CI) as statistical indicators to ensure statistical significance and robustness.

Conclusions

The study of reliability in urban public transport composite networks is critical to ensuring urban safety. The limitations 
of traditional study on public transport network reliability are the lack of dynamic transport capacity evaluation and the 
insufficient modeling of cascading failures. This article proposes a dual-layer measurement framework that integrates 
both connectivity reliability and transport capacity reliability. A novel dynamic evolution model based on the Coupled Map 
Lattice approach is constructed, which innovatively incorporates multidimensional parameters such as network topology, 
spatiotemporal passenger flow distribution, and node delay times. This model enables simulation-based exploration of 
the interaction mechanisms between node failures and passenger flow redistribution. By introducing transport capacity 
reliability, this study uncovers the dynamic phenomenon where localized node failures can temporarily enhance overall 
network efficiency through passenger flow redistribution. It’s an insight that static topological analysis cannot capture.

Fig 6.  Impact of random attacks on network reliability under ε from 0 to 1.2.

https://doi.org/10.1371/journal.pone.0340590.g006

https://doi.org/10.1371/journal.pone.0340590.g006
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Taking the composite network of Nanguan District in Changchun City as a case study, the empirical results demonstrate 
that node passenger volume and delay time are key factors affecting network reliability. The findings reveal that passen-
ger flow–weighted betweenness centrality significantly influences network performance, and that high coupling coefficients 
accelerate the cascading failure process. Compared to connectivity reliability, transport capacity reliability decays more 
rapidly. When the scale of network disruption exceeds 50%, connectivity reliability approaches zero, indicating a steep 
decline in the network’s structural integrity. Interestingly, within a 30% disruption threshold, transport capacity reliability 
exhibits a slight anomalous rebound, while beyond 50%, system reliability drops off sharply, confirming the critical impor-
tance of early-stage intervention to suppress fault propagation. Mid-stage optimization, such as rerouting or prioritizing 
repairs of critical nodes, may help sustain operational efficiency.

The proposed framework integrating timeliness and dynamic passenger flow reliability reveals the evolutionary pat-
terns of urban transport systems under disturbances and provides a quantitative basis for route optimization, hub capacity 

Fig 7.  Impact of targeted attacks on network reliability under ε from 0 to 1.2.

https://doi.org/10.1371/journal.pone.0340590.g007

Table 8.  Statistical results of reliability indicators based on 1000 simulation runs.

Attack Scenario Indicator Standard Deviation (Std) 95% CI (Lower) 95% CI (Upper)

Random attack (mild) Connectivity reliability 0.052 0.052 0.052

Random attack (severe) Connectivity reliability 0.046 0.046 0.046

Intentional attack (mild) Transport capacity reliability 0.061 0.061 0.061

Intentional attack (severe) Transport capacity reliability 0.039 0.039 0.039

https://doi.org/10.1371/journal.pone.0340590.t008

https://doi.org/10.1371/journal.pone.0340590.g007
https://doi.org/10.1371/journal.pone.0340590.t008
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planning, and timetable design. Future work can extend this approach to multimodal transportation systems to support 
integrated planning and emergency management. The research findings provide theoretical support for intelligent trans-
portation systems. In the future, an expanded evaluation framework could incorporate multidimensional indicators such 
as passenger satisfaction and environmental carrying capacity. Furthermore, by integrating digital twin technology and 
reinforcement learning, real-time early warning systems can be developed. This would enable resilient simulation under 
complex scenarios, such as extreme weather events or large-scale public gatherings, ultimately facilitating a paradigm 
shift in public transport network reliability, from static assessment to dynamic monitoring and intelligent control.
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