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Abstract

We amend and extend the Chiarella model of financial markets to deal with arbitrary
drift in long-term value in a consistent way. This allows us to improve upon exist-

ing calibration schemes, opening the possibility of calibrating individual monthly time
series instead of classes of time series. The technique is employed on spot prices
of four asset classes from ca. 1800 onward (stock indices, bonds, commodities,
currencies). The so-called fundamental value is a direct output of the calibration,
which allows us to (a) quantify the amount of excess volatility in these markets, which
we find to be large (e.g. a factor ~ 4 for stock indices) and consistent with previous
estimates; and (b) determine the distribution of mispricings (i.e. the log-difference
between market price and value), which we find in many cases to be bimodal. Both
findings are strongly at odds with the Efficient Market Hypothesis. We also study in
detail the ‘sloppiness’ of the calibration, that is, the directions in parameter space
that are weakly constrained by data. The main conclusions of our study are remark-
ably consistent across different asset classes, and reinforce the hypothesis that the
medium-term fate of financial markets is determined by a tug-of-war between trend
followers and fundamentalists.

1 Introduction

The Efficient Market Hypothesis (EMH) maintains that market prices closely follow
fundamental values at all times. Although still a cornerstone of Financial Economics
and fiercely defended by some scholars — see, e.g., this interview for E. Fama’s latest
quips on this topic — contradicting evidence has accumulated since the early eight-
ies. Chiarella’s model can be seen as an explicit alternative to the EMH, opposing
Fama'’s peeve: Now the problem is that behavioral finance doesn’t have any mod-

els of its own. It’s just a criticism of other models. Among the most inconvenient facts
are (i) Shiller’s excess volatility puzzle [1], i.e. that market volatility appears to be
much too high to be explained by the volatility of fundamental values and (ii) the well-
documented trend following anomaly, that is, the statistically significant, persistent
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and profitable positive correlation between past trends and future trends, across all
asset classes [2—4] and refs. therein. Such correlations should not exist if markets
were efficient.

A competing theory, that has gained momentum (no pun intended) over the past
decades, is the order-driven view of market prices [5—8], a.k.a. the inelastic market
hypothesis. In such a picture, prices are “mechanically” impacted by order flow, inde-
pendently of fundamental value. Excess buy (resp. sell) pressure, even uninformed,
makes prices go up (resp. down), and such an impact persists over the medium to
long term. Therefore, accounting for price movements mostly means understand-
ing order flows. Of course, the reasons why people buy or sell are multifarious and
based on an infinite variety of incentives and trading signals. In order to model such a
complex ecology of market participants [9], Carl Chiarella, and several authors after
him, have proposed to retain only three main categories of traders [10—14]: “trend
followers” (who buy/sell when the price has gone up/down), “fundamentalists” (who
sell/buy when the price is above/below their perceived fair value), and “noise traders”
(who buy or sell for random reasons, i.e. all other reasons not captured by trend or
value). Chiarella’s model and its generalisations offer the simplest Heterogenous
Agent-based framework (HABM) that captures important stylized facts of financial
markets, including the excess volatility puzzle, volatility clustering, Black’s “factor 2”
of persistent mispricings [15,16], as well as the long-term ecological coexistence of
such strategies [14].

Using Bayesian filtering techniques, a full-fledged calibration of the Chiarella
model was undertaken for a variety of assets in [13], and clearly supported the co-
existence of trend-following and value mean-reversion in most markets, including
the possibility to a bimodal distribution of mispricings — meaning that markets have
a higher probability of being over- or under-valued than correctly valued. However,
our attempt to extend such a calibration scheme to single stocks revealed problems
and inconsistencies. The aim of the present study is to provide a new, more consis-
tent specification of the Chiarella model, and its calibration of the same universe of
assets as in [13]. This allows us to discuss in more detail the excess volatility puz-
zle and the issue of bimodality. We also apply the “sloppiness analysis” proposed by
Sethna et al. [17] to our calibration procedure, allowing us to identify the most impor-
tant features of the model that the data is able to identify. Nevertheless, the work in
Ref. [13] provides the theoretical and empirical groundwork, on which our contribution
is based.

In particular, our model differs from the one in [13] by an amendment of the
dynamical system that renders the price dynamics stationary with respect to the fun-
damental value process. In [13] the non-stationarity of the two quantities implies that
an asset price is not anchored by its fundamental value, which (unreasonably and
without real supporting economic evidence) yields processes that diverge over long
time scales. Further, a time-varying drift is introduced here instead of the constant
drift in [13], which is not supported by the data and, in fact, leaves their calibration
output imprecise. This requires a modification of the calibration scheme but allows
for the calibration of individual asset prices, whereas in [13] most model parameters
could only be determined for an asset class as a whole and not per asset.
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This new version of the model and its calibration opens the possibility of not only using Chiarella-type models as a proof-
of-concept, but in fact for a quantitative assessment of known stylised facts, such as excess volatility, or mispricing distri-
butions. The extension of our method to single stocks, as well as possible further generalisations of the Chiarella model,
will be detailed in forthcoming publications.

Related works in the literature involving behavioural economics HABMs with latent variables are [18], concluding that
financial instability cannot be explained by exogenous fluctuations alone but only with endogenous fluctuations due to the
speculative behaviour of different types of investors. Ref. [19] focuses on the emergence of cycles where different agents’
beliefs are the unobserved latent states. Like us, both deploy Kalman filtering to infer latent variables. Similar HABMs
have alternatively been successfully calibrated via Markov chain Monte Carlo (see, e.g., the works by Lux [20,21]), or
via simulated maximum likelihood [22]. For a survey on empirical validations of (H)ABMs see [23]. Ter Ellen et al. [24]
compare behavioural agent heterogeneity between asset classes and investigate their impact on market stability. For a
general overview of financial ABMs, see the survey by Hommes [25].

The outline of this paper is as follows: in Sect 2 the model is introduced and its possible dynamical phases are ana-
lytically derived. Sect 3 describes the time series data used in this study on which the model is calibrated, detailed in
Sect 4. The calibration results allow an investigation of excess volatility. To what extent prices typically depart from
values is detailed in Sect 5 through the mispricing distribution, in particular its bimodality. The “sloppy” character of our
calibration is discussed in Sect 6. Finally, a conclusion with an outlook is provided in Sect 7. More technical material and
supplementary empirical analyses are provided in Appendices.

2 A modified Chiarella model
2.1 Model specification

We assume the evolution of (log-)prices P; is governed by linear price impact as suggested in Kyle’s seminal work [26].
Although a linear price impact is ruled out on daily or intraday time scales (see, e.g [5]), it is thought to be appropriate
on longer, monthly time scales [6,7] which are of interest in the present work. This means that a price change in a (long
enough) time interval [, { + Af) is proportional to the total signed volume traded in that interval, where the total signed
volume is represented by a cumulative demand imbalance D(t,t + Af), i.e.

Pl‘+Af_P[:/1D(t’t+ At) (1)

Here 1 is Kyle’s lambda, which is inversely proportional to the liquidity of the traded asset. Thus, a product is consid-
ered liquid if its price change resulting from a certain traded volume or demand imbalance is relatively small.

The aggregate demand of all investors is of course diverse and abundant. However, studies reveal that the two types
of market participants accounting for a large share of demand imbalances are (a) fundamental value investors and (b)
chartists or trend followers (TFs), as done in [10,11,27] and empirically confirmed in [28].

For this reason, a model inspired by [10] was proposed in [13], but whose analytical shortcomings we seek to alleviate
in this new study. Like in the latter paper, the HABM-type model studied here contains three groups of investors or agents
(for other HABM specifications, and their calibration on the S&P500, see the mini-review of T. Lux [29]). Those are:

1. Fundamentalists: investors who believe in a rational fundamental (log-)value V; of a financial asset. They tend to
only step-in when the (log-)price P; is far away from its value V;: they buy when assets are underpriced (P; < V;)
and sell when they are overpriced (P; > V;). Fundamentalists’ cumulative demand is proportional to the mispricing or
price distortion 6; : = V; — P; with a factor ¥ quantifying their weight in the market:

t+At
DF(t,t+ At =% f (V, — P,)ds.
t
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We will use below the quantity x : = A%.
Usually, value traders resort to fundamental analysis for their valuation and we will model value dynamics with an
arbitrary (non-stationary) drift, g;, plus random changes o,d WtV:

dV, = gdt + o, dW).

The drift g; describes the long-term evolution of fundamental value and one should expect its variations to be slow;
any faster changes in value being captured by the random term dM.

2. Trend Followers: TFs’ trading behaviour is independent of a notion fundamental value. Instead, their investment
choices rely solely on past price dynamics. They buy, if the price moved up (relative to its long time drift) in the
recent past, such that the trend signal M; > 0 and sell if the price went down, M; < 0. Popular choices for such trend
signals are exponentially weighted moving averages (EWMAS) of past returns. The demand is given by an increas-
ing function of the signal M, that saturates for strong signals |M| (due to e.g. budget constraints or risk aversion [3]).
With § the weight of TFs and y the signal saturation sensitivity, we posit that the demand of TFs reads

t+At
DF(t,t+ A =0 f tanh(yM,)ds.
t

We will use below the quantity § := A8.

3. Noise Traders: NTs subsume all those traders that follow strategies uncorrelated to the previous two. One may think
of retail investors, or investors who trade on other signals or time horizons. Their cumulative demand is modelled as
a Brownian motion aNW;\‘, where the standard deviation oy describes their impact in the asset, i.e.

t+At
DNT(t, ¢+ Af) = aNf dwA,
t

where A&y =: oy. The standard Brownian motion W;\’ is independent from random, fast changes of fundamental
value described by W .

Thus, the overall cumulative demand leading to a price change is

D(t,t+ A = Di(t,t + AD), (2)

i€l

where | is the set of investor types (I = {F, TF, NT}).
In the following we assume that the trend signal M; is computed as an exponential moving average with a forget rate a.
Consequently, for At — 0, the price dynamics is described by the following set of stochastic differential equations

dP; = x(V; — Pydt + B tanh(yM;)dt + g,dt + GNdMV
th = —OCMtdt + a(dPt - gtdt) (3)
dV; = gdt + o, dWy.

The parameters a, x, 3, y are all non-negative.
The quantity M; denotes the trend signal, which is an EWMA of past drift-adjusted log-returns (which is similar to trend-
ing on mispricings as in [19]). In other words: we assume that trend followers react only to the excess returns of the asset,
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and do not trend on the secular drift. This would lead to absurd instabilities in the model we want to avoid. As such, this
specification is an improvement over the model proposed in [13], where a time-independent drift g appears only in the fun-
damental value V; and not in the definition of M;, nor in the dynamics of P;. As will be shown next, the stability and dynam-
ical phases of the system now become independent of the drift g;, whereas in Ref. [13] the dynamical analysis was only
valid for g = 0. This renders the dynamics and calibration improper for assets whose value can strongly drift upwards or
downwards, like stocks. In these cases, the specification of Ref. [13] may lead to a divergence between P; and V, entirely
caused by g; and not as a consequence of demand imbalances.

A way to mitigate such an effect and prevent the long-term divergence between price and value is to consider, as was
done in Ref. [13], a non-linear anchoring term of the form x3(V; — P,)®. They were the first to introduce non-linear funda-
mentalist demand functions within the Chiarella framework, which is also one of their most relevant contributions. The
calibration of such a non-linear model however comes at a higher computational cost and it is important to have a linear
model that makes sense and can be meaninfully calibrated before considering a non-linear extension (which we will have
to do anyway for reasons explained below).

2.2 Non-linear model

Schmitt and Westerhoff [12] and Majewski et al. [13] further introduced a model with a non-linear demand function for fun-
damentalists. They argue and show that the linear fundamentalists’ demand is not able to capture the complex nature of
value investing, most importantly the uncertainty of investors about fundamental value, which cannot be directly observed
but only estimated. It seems reasonable that the reaction of investors is not proportional to mispricing § = P — V, but much
weaker for small mispricings (in view of the uncertainty, leading to an almost flat curve for small §) and much stronger
when mispricing becomes conspicuous [13].

In order to accommodate these departures from linearity, a cubic demand term can be added to the linear term. Within
our adjustments the model then reads

dPt = f(Vt - Pt)dt + ‘8 tanh()/Mt)dt + gtdt + O'NdVV;V
th = —CfMtdt + oc(dPt - gtdt) (4)
th = gtdt + O'Vd th,

where f(x) = xx + x3x° describes the modified demand. For the model to be compatible with strong mean reversion for
large mipricing, one must impose x5 > 0.

2.3 Linear stability and bifurcation analysis

The deterministic equivalent to system (3), which can be analytically studied using methods from dynamical systems the-
ory is obtained by letting o) = o = 0 [30-32]. Since the mispricing § = P — V associated with the system (3) is indepen-
dent of the drift g;, it is mathematically convenient to study price relative to value in 5-M-space, effectively reducing the
dimensionality by one. The linear system (x; = 0) then reads

5[ = —'Kat + ﬁtanh(}/Mt)
Mt = —CCMt + 065 (5)
= —aM; + a(—x6 + S tanh(yMy)).

The &-nulicline is

) B tanh(yM,) (6)

= %
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and the M-nullcline is

M
5= gtanh(yMt - ?t (7)

which is a sigmoidal function for small |[M;| thanks to the tanh but for large +M; the function diverges to Fco.
2.3.1 Spiral fixed point. From the two nuliclines, which intersect exactly once, it follows that there is a single fixed
point (FP) at (M*, 5*) = (0, 0), the origin. The FP’s stability type can be inferred by inspecting the Jacobian

e By(1 — tanh’(yM,))
—ax  —a+ aBy(1 —tanh*(yM,))

of system (5) at the FP:

_ X By
JIm=0,6=0 = J* = (_m By - 1))- 9)

det(J*) = ax > 0 as the time scale a > 0, and mean reversion strength x > 0 for the dynamics not to diverge. This means
that there are no saddles but only asymptotically (un)stable FPs. Further, tr(J*) = —x + a(8y — 1). The fixed point is sta-
ble when tr(J*) < 0, i.e. when x > a(8y — 1). Consequently, tr(J*) — 4 det(J*) < 0, from which it follows that the FP is a spi-
ral (because the eigenvalues of J* then have non-zero imgaginary part). Hence, the bifurcation point at which the FP
becomes unstable and the flow in the §-M-plane changes qualitatively is

" X

a =‘8)/——1‘ (10)

That the fixed point is only stable when x > a(8y — 1) shows that when value investors dominate trading, the determin-
istic part of the price dynamics converges to the fundamental value, where it remains forever. When chartists dominate
trading, the FP becomes unstable and, in fact, a stable limit cycle emerges, such that there is a periodic motion of price
around value. The emergence of the limit cycle is proven in the next section.

The condition x > a(By — 1) coincides with the result found in [13], however, for their model the condition was only true
for g; = 0 (which is not compatible with empirical results), while in our model the condition holds true generically.

An example of such a stable spiral dynamics in the mispricing § = P— V, meaning that price converges to value, is
depicted in Fig 1 as a phase portrait in the §-M-plane alongside its price, value and trend signal trajectories in the deter-
ministic case. Its stochastic analogue using the same parameters is given in Fig 2.

2.3.2 Hopf-bifurcation: Emergence of a limit cycle. In this section it will be shown that a stable limit cycle emerges
when the FP loses its stability. This qualitative change of dynamics — the loss of a FP’s stability coinciding with the emer-
gence of a periodic motion — is known as a Hopf-bifurcation. It occurs when a pair of complex conjugate eigenvalues of
the Jacobian from the linearisation of the system around the FP crosses the imaginary axis in the complex plane as a
parameter crosses its bifurcation point.

According to the Hopf-Bifurcation Theorem [31,32], two conditions on the eigenvalue pair of J*, which in this case are

/11/2=%(oc[s’y—a—xi\/(—aﬁy+a+1c)2—4oc7c>, (11)

have to be fulfilled:
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Fig 1. Typical dynamics of system (3) in the case where its limit set is a spiral, x > a(8y — 1), and without noise (oy = g, = 0). The parameters

are (x, a, 8, y) =(0.01, 1/7, 0.5, 2), and the system is initialised with (Py, Vi, My) = (26, 20, 1); the drift g is constant. Left: Phase portrait of the mis-
pricing & and the trend signal M together with its nullclines and a sample trajectory. The streamlines’ (blue) width and density encode the magnitude of

the velocity field. Right: evolution of the price P, value V and trend signal M.

https://doi.org/10.1371/journal.pone.0340409.9g001

1. The eigenvalue pair becomes purely imaginary at the bifurcation point:

1 Kﬁ]/ X %2
1/2( ) 2 ‘BV—1 ‘BV—1 ﬁV—1

=0

\ By =1

which is fulfilled since the condition involving tr(J*) in Sect 2.3.1 as 8y > 1 is a necessary condition for the FP to
become unstable.

2. The real part of the derivative of the eigenvalues with respect to the bifurcation parameter, evaluated at the bifurca-
tion point is non-zero:

RED (@) =y 140,

which is is true for the same reason.

The Hopf bifurcation may further be classified as supercritical.
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Fig 2. Same as Fig 1 but in the presence of noise (o) = 0.35 and oy = 0.2).

https://doi.org/10.1371/journal.pone.0340409.9g002

Note that the linear stability analysis of the center fixed point (0, 0) as well as the implications of the Hopf-bifurcation
theorem continue to hold for the model with the cubic fundamentalist demand (system (4)) as the Jacobian of the
linearised system evaluated at this fixed point is the same.

An example of the deterministic dynamics (analog. to Fig 1) including the phase portrait with the limit cycle in the -
M-plane, as well as the evolutions of price, value and trend signal is provided with Fig 3. In Fig 4 is a full, stochastic
example.

Thus, according to the model, price converges to value on long time scales if fundamentalists dominate trading, while it
may oscillate when the presence of TFs is strong enough.

3 Data

All data used for the subsequent calibration of the model are monthly spot prices. In order to show the generality of the
results, we study four different assset classes: Indices (IDX), Commodities (CMD), Bonds (BND) & Currencies (FXR).
In a subsequent paper, single name stocks will be further considered, which requires a model adaptation and modified
calibration scheme, wherefore they are not included here.

To show that our model is an improvement over the one in [13] and to demonstrate the generality of the model, which
can be applied to many asset classes, the model is calibrated on the same data set they used. The provider is Global
Financial Data (now named Finaeon) and the data set available covers the period 1791 to 2015. As in [13], we restrict
the asset pool to only those products with a long enough history, which in the case of indices, bonds, and currencies
means Australia, Canada, Germany, Japan, Switzerland, the UK and the US. Further, only exchange rates of the named
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Fig 3. Same as Fig 1 but in the case where the limit set is a limit cycle, x < a(8y — 1). The parameters are (x, «, 3, y) = (0.05, 1/7, 0.65, 10), and
the system is initialised with (Pgy, Vo, My) = (16, 12, 0.1).

https://doi.org/10.1371/journal.pone.0340409.g003

countries’ currencies against the US dollar are regarded. The considered commodities are copper, corn, crude oil, Henry
Hub natural gas, live cattle, sugar, and wheat.

Furthermore, as in [13], the time series of each asset is restricted to when it was publicly traded with high liquidity.
Thus, the used exchange rate series start in 1973 as from 1945 to 1973 all considered currencies were pegged against
the US dollar in the Bretton Woods system. Government bond prices are used only after 1920 for they were not liquid
before. For all commodities the prices during World War Il are excluded and additionally the period of 1939-1985 for crude
oil. Before 1986 oil prices were largely administered/regulated rather than discovered in a deep spot/futures market, so
the data are not comparable to modern oil prices (e.g. due to OPEC setting ‘official’ prices via long-term contracts and
Saudi Arabia acting as a swing producer). Equity index prices in particular display occasional extreme events as they are
strongly impacted by political events, wherefore World War Il is removed from the German and Japanese index’ price
series and World War | from the German and British ones. For Germany, the period around the so-called ’hyperinflation’ of
the Weimar Republic, which concerns the post WW | period is removed. Finally, the years 1973 and 1974, marked by the
fall of the Bretton Woods system, are excluded from the British index. Whenever a time series is discontinued, the left end
of the gap (with all the data preceding it) will be brought to the same level as the right end of the gap to avoid price jumps
for which the model is not designed.

In addition to that, index prices are inflation adjusted by multiplying their nominal price with the respective Consumer
Price Index (CPI) value belonging to that time stamp, normalised by (i.e. divided by) the final observed CPI value (such
that the last price has a CPI multiplier of 1). Commaodities are inflation adjusted with the US CPI in the same fashion.

Further details on the data set are provided in [3].
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Fig 4. Same as Fig 3 but in the presence of noise (o = 0.6 and o = 0.2). The parameters are (x, «, 3, y) = (0.01, 1/7, 0.35, 10), and the system
is initialised with (Py, Vo, Mg) = (26.5, 26, 0.1).

https://doi.org/10.1371/journal.pone.0340409.g004

4 Calibration

The two key steps in the calibration of a dynamical system of the type of (3) are a combination of the Expectation-
Maximisation Algorithm and Kalman filtering, as done in Ref. [13], where the full calibration scheme on which we rely is
derived. For further resources on Bayesian filtering and the EM algorithm, see, e.g., [33-36].

A discrete time version of system (3), where a time increment df = At = 1 corresponds to one month, is given by

Pre1 = Pe + (Ve — py) + Btanh(ymy) + g; + nk 4
My =1 —a)my 4+ a(py — Pr—1 — Gr) (12)

— v
Vigr = Vi + Gt + Nigqs

where we use small cap notation for discrete time variables, and #™/V are Gaussian white noise processes with variance
oﬁ,/v. Due to the model set-up in Majewski et al. [13] and its implications on the Kalman relations and EM-algorithm the
drift g; had to be fixed to a time independent value g. In our case, the (integrated) drift impacts price and value alike, our
model becomes more canonical and G; = fotgs ds may be removed from log-price series ex ante, allowing us to consider
any time-dependent g;. This improves the model as we do not generally find empirical evidence supporting the choice of
a constant drift, and deem it too restrictive. Fig 5 substantiates this claim for the US stock index whose evolution does not
justify the assumption of a constant drift.
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Fig 5. Evolution of the log-price p, the integrated drift G, and the de-drifted log-‘price’ p of the US index. G is estimated as a polynomial with one
order per decade of data, i.e. a 22" order polynomial here for data ranging from 1791-12 to 2014-12.

https://doi.org/10.1371/journal.pone.0340409.9g005

Denoting as p, 7, i the de-drifted versions of p, v, and m, the formulation simplifies to

Pri1 = Py + x(V, — py) + Btanh(yy) + nit 4
Mg = (1 — )My + a(p; — Pr-1) (13)

5 & v
Vigr = Vi + Ngyq-

The question how the drift g; is to be chosen is quite important, since one can obviously find a perfect fit to the data by
choosing g; = pry1 — p1, onyy =0, B =0, such that p; = v; at all times. This corresponds, in a sense, to the Efficient Market
limit, where the price evolution is fully explained by changes of value. However, the well-documented presence of auto-
correlation in the return time series (i.e. trend following on medium time scales and mean-reversion on long times scales
[2,3,15,16]) would mean that prices are not properly anticipated future values.

Following the main tenet of the Chiarella model, we rather assume that trend-followers and noise traders have a non-
zero impact on prices, i.e. > 0 and gy > 0. We also assume that the long-term drift of value g; changes smoothly over
time, higher frequency changes being captured by the noise term nY. Assuming a business cycle of ten years, we pro-
pose to extract the long-term drift by fitting the price time series with a polynomial of order k=|T/10|, where T is the
total length of the series in years. However, we do not want g; to capture fluctuations on scales shorter than 5 years or
s0, since these should emerge from the dynamics of Chiarella’s model itself. In fact, one should choose a time scale
T/k longer than ¥~ in order to self-consistently assume that prices follow value on long enough time scales. Calibration
will indeed suggest that =" is typically in the range 2-5 years, see Table 1. An example of log-price p, integrated drift
G and de-drifted price p is shown in Fig 5, corresponding the US stock index, with an order 22 polynomial fit over circa
220 years. We have checked that our results are very robust against changing k in a reasonable range. A case study
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Table 1. Calibration results for the fit of the de-drifted linear model (13) on the four asset classes (calibration step 3. in Sect 4.3). First group:
stock indices, second: commodities, third: bonds, fourth: currencies. The data for some of the assets, esp. commodities, goes back 200 years. £ is the
predictive log-likelihood normalised by the series length. Std. deviations for all values are listed in Table IV in Appendix B in S1 Appendices. By < 1 for
all assets.

% B 4 oN oy Vo £
us 0.027 0.076 4.168 0.043 0.011 0.017 1.723
UK 0.026 0.100 4.101 0.036 0.009 0.019 1.907
AU 0.028 0.079 4.238 0.039 0.010 0.012 1.823
CH 0.034 0.100 4.232 0.043 0.011 0.024 1.708
JP 0.028 0.095 4.147 0.058 0.015 0.128 1.398
CA 0.045 0.101 4.138 0.045 0.012 0.027 1.678
DE 0.036 0.125 4.279 0.044 0.011 0.025 1.702
SUGAR 0.063 0.146 2.246 0.073 0.020 -0.011 1.186
CORN 0.096 —-0.027 2.324 0.119 0.033 0.103 0.699
LCATTLE 0.270 0.381 2.198 0.045 0.013 0.004 1.276
WHEAT 0.081 —0.002 2.518 0.092 0.025 —0.066 0.960
COPPER 0.055 0.059 2.100 0.061 0.017 0.044 1.365
NATGAS 0.195 -0.111 2.321 0.174 0.048 0.104 0.300
CRUDE 0.089 0.276 2.766 0.106 0.029 -0.362 0.812
USBND 0.069 0.048 5.316 0.046 0.003 —0.002 1.644
UKBND 0.084 0.068 5.382 0.048 0.003 0.006 1.599
CHBND 0.062 0.089 4.802 0.051 0.004 —-0.004 1.546
JPBND 0.038 —-0.008 6.066 0.087 0.006 —-0.035 1.009
AUBND 0.066 0.067 5.849 0.045 0.003 —-0.001 1.645
CABND 0.068 0.064 4.901 0.036 0.003 —-0.000 1.896
DEBND 0.066 0.103 4.574 0.045 0.003 —0.005 1.668
CHFUSD 0.035 0.032 6.455 0.035 0.006 —-0.007 1.923
JPYUSD 0.033 0.057 6.451 0.032 0.005 -0.017 1.996
AUDUSD 0.040 0.028 7.011 0.033 0.005 —-0.002 1.980
GBPUSD 0.044 0.051 6.701 0.029 0.005 —-0.013 2.102
CADUSD 0.019 0.004 6.764 0.019 0.003 -0.013 2.510
EURUSD 0.025 0.030 6.403 0.032 0.005 -0.014 2.000

https://doi.org/10.1371/journal.pone.0340409.t001

demonstrating this is given in Sect 3 of Appendix B in S1 Appendices, where the values of calibrated parameters are
given for k= 14,22 and 30, on the example of the US stock index. Importantly, we further tested that our results are
robust when determining g; as a causal, backward-looking EWMA over 10 years. Such a determination of the drift allows
trend followers to compare medium term trend to long term trend and trade the difference, as is done in practice.

Finally, let us comment on the philosophy of our approach, where we let the data determine the “fundamental value”
of assets, taking stock of the fact that the true fundamental value of an asset is probably unknowable. Some theoretical
models, often based on questionable equilibrium assumptions, have been proposed for stocks, bonds and currencies. But
there are so many moving parts in these models that it is probably better to accept that the fundamental value must itself
be determined empirically — admittedly again using a theoretical framework to extract it from price time series, in our case
the Chiarella model.

The merit of this approach is that we leave maximum flexibility on the definition of fundamental value, allowing one to
apply our framework universally, including asset classes for which there are no obvious pricing models, like commodities
or even Bitcoin. Of course, as noted above, the EMH solution would be to say that price equals value at all times, end of
story. If one believes that this is not the case and that trend followers/value traders impact prices (following [5—8]), then
our framework provides quantitative information about mispricing and excess volatility, while leaving the best possible
chance to “value” to explain the price path.
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4.1 EM-algorithm

The estimation of the parameters and the de-drifted log-value methodology overlaps with the algorithm proposed in [13].
Thus, we only briefly describe the algorithm here as it coincides with the one of Ref. [13], but now with g = 0 since p, m, ¥
in Eqgs (13) are already de-drifted. Further, we propose methods different from those in [13] for the ex-ante estimation of
the trend parameters y and « (where in Ref. [13] they were rather motivated than calibrated) in Sect 4.2, which are then
fixed in our version of the EM-algorithm to reduce the number of parameter estimates from six to four and because there
exist simpler and more canonical ways of estimating them than through the EM-algorithm.

Note that were the parameters known, the unobservable fundamental value could be inferred as what is known in the
control theory literature as a hidden or latent variable via Bayesian filtering techniques [33]. Indeed, system (3) is linear
in v and the noise is assumed to be Gaussian, hence the optimal filter is a Kalman filter. If this was not the case, particle
filters could be used.

Having obtained a first value proxy by initialising the calibration, the EM-algorithm is used to obtain a set of optimal
parameters based on the current fundamental value by maximising an otherwise difficult to compute marginal log-
likelihood by instead maximising a joint log-likelihood. Each iteration follows a two step procedure:

1. E-step: calculation of a conditional expectation of the joint log-likelihood of the posterior distribution over the hidden
variable v, given past prices and the current best guess of the parameters.
2. M-step: calculation of the parameters by optimising the joint log-likelihood.

After each iteration there is a new estimate of the fundamental value v together with the set of parameters 6 = (x, 8, on, oy, Vo),
until the algorithm terminates when the increase in likelihood falls below a tolerance of ¢ = 1075.

For the model with a non-linear demand function of the fundamentalists, system (4), we also use the adapted version
(g = 0) of the algorithm presented in [13], utilising unscented Kalman filtering to treat the cubic fundamentalists’ demand.

The implementations of both the linear and non-linear model are provided in S2 Code.

4.2 Estimation of « and y

The trend time scale « is chosen as the time scale that maximises the Sharpe ratio of the assets’ de-drifted trend signal
m. Choosing m over m also undercuts the appropriate criticism of trend signals often used in the literature that are defined
on past returns directly, thus reflecting mostly the long-only bias (buying and holding an asset while its price and value
tend to increase over long horizons due to overall market growth), rather than the actual short-term to medium-term trend.
The Sharpe ratio is the expected return from a strategy in excess of a benchmark return (here: the return from the long-
only strategy) divided by the standard deviation of that excess return:

E[F]

where Fis the excess (log-)return of the signal. This quantifies the expected performance of an investment after adjusting
for its involved risk. To wit,

SR= (14)

a =argmax SR(m(a")). (15)

The typical EWMA time scale of the trend signals m that maximises the Sharpe ratio is a ~ 1/5. « could be dissected
further for each individual time series but we refrain from doing so as it varies as much over the centuries as over the
products. Further, we find (as in [13]) that results are almost invariant for « € {1/4, 1/5, 1/6, 1/7}. The sloppiness analysis
in Sect 6 will formalise this justification.
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Next, it is shown why the fundamentalists’ demand imbalances are chosen to be a hyperbolic tangent of the trend sig-
nal. Note, albeit, that the hyperbolic tangent is just an example of a function that saturates for relatively large values of the
signal. The necessary conditions that such a function should obey have been derived for the original Chiarella model in
Ref. [10].

This functional relationship relating the (normalised) returns 7, and the trend signal m,, calculated from those returns
is depicted in Fig 6. Its shape is common to all regarded asset classes, serving an ex-post justification of Chiarella’s
assumptions. Fig 6 shows a slight departure from the hyperbolic tangent for large positive trend signals beyond two stan-
dard deviations. This phenomenon has been reported in the literature as trend-reversion [16,37]. However, practitioners
usually clip their signals at £2o, eliminating this effect. Because such strong trend signals are rare anyway, we deem the
tanh an appropriate parametric choice. The returns and trend signals had to be normalised in Fig 6 in order to make them
comparable among different assets that may show different levels of volatility and thus differently sized returns.

In order to estimate the parameter y per instrument, the function

h(x) = a + btanh(7x + ¢) (16)

is fitted to data from the sets of assets belonging to one asset class. For each product the slope y is then brought back
into its natural units via

y=—t— (17)

y/Var[m] ’

Var[m] is the variance of the trend signal. This is done for each product.
The y-values for each product are reported together with all calibration output in Table 1 and the respective standard
deviations in Table IV in Appendix A in S1 Appendices.
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Fig 6. De-drifted and normalised future returns 7, as a function of the trend signal m,, calculated from all returns from currencies against the
US dollar. The grey curve is a rolling average over 1000 consecutive points along the abscissa of the real data aggregated over all six FXR pairs, while
the solid black line is a parametric fit of Eq (16) over all data.

https://doi.org/10.1371/journal.pone.0340409.g006
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4.3 Calibration results and excess volatility

In order to improve the robustness of the calibration and because the algorithm generally exhibits difficulties in pinning
down gy, a multi-step calibration is used. The three step calibration can be summarised as follows:

1. Calibration of model (13) on the de-drifted log-price series p of each asset to get a first estimate of the parameters
(after ex-ante estimations of G, «, 7).

2. Calibration of the factor = = <—>aeﬂ per asset class A by maximising the cumulated likelihood of all the assets a in
one class (keeping all other parameters fixed).

3. Recalibration of model (13) (or non-linear model: Eqs (4)) per asset but with o, = EUN fixed.

Table 1 lists the calibrated parameters from the calibration of the model with the linear fundamentalist demand, sys-
tem (3); the standard deviations of those parameters are listed in Table IV in S1 Appendices.

The results of Table 1 reveal that indices show the highest level of trend following beyond the long-only bias as the cor-
responding trend following parameter, 3, averages the highest. This is also supported by paper-trading Sharpe ratios that
may be calculated for the different asset classes over different time horizons (see Appendix A in S1 Appendices), where
the Sharpe on indices clearly dominates. However, it is noteworthy that certain commodities, such as Crude, which trends
the most according to our calibration, or sugar, exceed the level of TF by index traders.

One of the highest level of value investing (next to commodities) may be found for bonds whose mean reversion or
value parameters consistently score high. This implies that for bonds large mispricings persist shorter than for other asset
classes (as the inverse of x has units of time) for investors realise returns from mispricings comparatively quicker. This is
supported by the Sharpe ratios from value investing that are higher on bonds than on the other asset classes. Such swift
reactions and mean-reverting corrections may be explained by a very low volatility in fundamental value (further demon-
strated by a very small g,/) due to a low uncertainty — or high consensus — among investors about what the fundamental
value is (as there are, e.g., widely used formulas for bond valuation). Perhaps surprisingly, commaodities also show very
high levels of mean reversion. This simultaneous existence of high values of x and § suggests a strong presence of both
TFs and value investors, possibly leading to frequent alternations between excursions due to the TFs and subsequent
mean-reversion; this variability of the price is also reflected in the large price volatility of commodities.

From Table 2 (center column), which lists the calibrated factor ~ between the two noise sources per asset class,
we infer that the contribution from noise traders is crucial and much exceeds the noise of the fundamental (log-)value
process V.

This may be interpreted as a quantification of the famous excess volatility puzzle, first formalized by Shiller in 1981 [1];
see, e.g., also [38]. Within our framework, this excess volatility is mostly due to excess trading from noise traders, which
has been reported on all asset classes studied here [1,39—41]. Trend-following activity, on the other hand, does not con-
tribute much to short-term volatility because the signal is computed over rather long time scales. However, trend-following
is responsible for further long term decoupling between price and value.

Table 2. Estimated ratio = = Z¥ between the two noise sources per asset class. The error is given by the standard deviation within one class. Left:

oy
linear model, right: non-linear. The value of Z is found to be nearly identical for the two models. Furthermore, replacing oy by op (price volatility) gives
almost indistinguishable results.

Asset Class % (linear) X (non-linear)
Indices 3.87 = 0.61 3.81+0.65
Commodities 3.62 + 1.62 3.35+1.13
Currencies 5.93 + 1.10 5.89+1.09
Bonds 13.94 + 4.46 13.82 £4.35

https://doi.org/10.1371/journal.pone.0340409.t002
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More precisely, we find (comp. Table 2) that the volatility of the price due to noise traders is significantly larger (by a
factor 4 to 14) than the volatility of the fundamental value in all cases. This is one of the central results of our study, and
justifies the title of this paper. In general, oy, is indistinguishable from o, the price volatility calculated via the dedrifted log-
returns, within the error margins, justifying its usage in determining the excess volatility. This also demonstrates that the
noise traders are responsible for the largest fraction of the price volatility.

For indices and commodities, oy, is typically around four times as large as o, suggesting that prices depart from value
due to strong excess trading. Such an amplification factor is compatible with other estimates from the literature, see e.g.
[42].

For exchange rates, the ratio between the noise trader volatility and fundamental volatility is higher, with a value around
6, twice as large as the value reported in [42]. The largest ratio is found for bonds, for which we report a ratio of almost 12.
However, such a high ratio for bonds is not due to an extreme amount of excess trading on that asset class, which would
correspond to a large oy that we do not observe, see Table 1. Instead, it stems from the fundamental volatility being par-
ticularly small for bonds, as expected since the fundamental value of bonds is expected to be much more stable than the
fundamental value of indices. Foreign exchange rates are in this sense intermediate.

As noted above, an important feature of this model and calibration is that it directly outputs a model-implied notion
fundamental value, V. The Kalman relations allow for two different notions of fundamental value: The first is the filtered
value, which is determined through the dynamical system and the information of past prices and values. The second is
the smoothed value, which takes both past and future information into account. As a result, the filtered value is the value
that could have been known to the fundamentalist at the time of trading, while the smoothed value is an ex-post best esti-
mate of what the true fundamental value really was.

As an illustration, the log-price p together with its filtered and smoothed calibrated fundamental values v are shown in
Fig 7 (top plot). The blue shaded area indicates one standard deviation of the smoothed value according to the Kalman
smoother relations. The bottom plot of Fig 7 provides the same insight but on the de-drifted (log-)price p and value V.

In addition to that, the calibrated parameters of the linear model in Table 1 are such that none of the assets satisfies
the bifurcation condition for oscillations as for all assets gy < 1, ensuring that x > a(Sy — 1). Similar results are reported in
[13]. It was further shown in Chiarella et al. [43] that the limit set being a cycle is a necessary condition for the distribution
of trend signals to be bimodal. Since we do find that for some assets the distribution of mispricing is bimodal (even with
By < 1, see Table 3) we are compelled to reject the linear specification of the Chiarella model and turn to the non-linear
version, see Eqgs (4), which has a much richer phase diagram that is in fact not yet fully explored analytically.

The calibration results for the non-linear model using the unscented Kalman filter with the cubic fundamentalist demand
are detailed in Table V in S1 Appendices. As for the linear model, the results are illustrated on the US stock index, which
is illustrated in Fig 8 — see Appendix A in S1 Appendices , in which the estimated filtered and smoothed fundamental val-
ues from the cubic model are shown with an error bar alongside the de-drifted log-price and the linear comparison. As
was also noted in [13], we find a small, often negative value of x (enhancing trend-like behaviour for small mispricing) and
a stauchly positive value of x3, confirming that mean-reverting behaviour only becomes appreciable for large mispricings.
The noise ratios X are listed in the right column of Tab. 2; they are very similar to those for the linear model, which means
that oy, is estimated similarly in both models (note that for the non-linear model oy, is fixed to the value obtained from the
linear model).

In conclusion of this section, we have shown that it is now possible to calibrate meaningfully our modified versions
of Chiarella’s model, both linear and non-linear, on individual time series, while it was previously only possible to jointly
calibrate classes of similar time series, i.e. conduct a joint calibration of an entire asset class instead of an individual
contract [13].
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Fig 7. Top: Evolution of the log-price p together with the filtered and smoothed fundamental values vFiter and vSme°th for the US stock index.
AvSmooth dengtes the confidence interval obtained as one standard deviation of the value from the Kalman relations. Bottom: same for the de-drifted
log-price p and values.
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5 Mispricing distribution and bimodality

The asset price dynamics described by Eqgs (3) may be further classified by the shape of the resulting mispricing distribu-
tion p(8) (where again § = p — v), in particular with respect to its uni- or bimodality.

For the classical Chiarella model (without drift) this was numerically investigated by Chiarella et al. in [43], where the
conditions for p to be bimodal were established. Empirically, bimodal distributions of price distortions independent of
Chiarella-type models were reported in [12]. Majewski et al. confirmed this finding for a modified Chiarella model with a
constant drift in the fundamental value v for a wider range of asset classes [13]; see also [29] for further discussions.

As alluded to above, the Chiarella model can only generate bimodal mispricing distributions if x < a(Sy—1), that is when
the limit set is a stable limit cycle [43]. It was then shown in Majewski et al. that in the latter case, the distribution of the
trend signal is also bimodal [13]. Still empirical results are at odds with these predictions: not only one finds bimodality of
mispricing even when the calibrated parameters are such that Sy < 1, but one does not necessarily find a corresponding
bimodality in the trend distribution. The non-linear version of the model does not suffer from these limitations. The mis-
pricing distribution results presented in this section are restricted to the model (4) with a cubic demand function, where
bimodality can occur without a bimodal trend signal distribution when x3 > 0 and x < 0.

For the analytical stationary probability density is unknown, we probe bimodality via Silverman’s test for multimodal-
ity [44], which tests for a distribution having a minimum of k+ 1 modes, while the null hypothesis is a distribution with at
most kK modes. Consequently, we perform the test with k= 1, such that a rejection of the null hypothesis is tantamount
to rejecting a unimodal distribution, hence suggesting bimodality. More than two modes is not possible within the models
investigated here, and there is no such empirical evidence either. A significance level of 0.02 is chosen; this means the
null-hypothesis of unimodality is rejected when the p-value is below 0.02.
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Table 3. p-Values of the Silverman test for bimodality (column 2 and 3). The null hypothesis is unimodality with a significance level of 0.02. The test
is on the mispricing &, once with the empirical filtered fundamental value and once with the smoothed. X: acceptance of the unimodal null hypothesis for
both empirical time series, v: twofold rejection (bimodality), «~: inconclusiveness. Center Right (Numerical): modality test results of simulated time series
of the non-linear model, using parameters from Table V in S1 Appendices. Right: Jensen-Shannon (J-S) distances between the empirical and numerical
mispricing distributions. A J-S distance of 0.2 corresponds to a Kolmogorov-Smirnov distance of 8% (i.e. the maximum distance between two cumulative
distributions functions). For comparison, the J-S distance between LCATTLE and AU is 0.19.

Filtered Smoothed Bimodality Bimodality J-S
(Empirical) (Numerical) Distance
us 0.364 0.353 X v/ 0.128
UK 0.011 0.010 v v 0.136
AU 0.001 0.001 v v 0.164
CH 0.031 0.098 X v 0.152
JP 0.001 0.001 v v 0.202
CA 0.067 0.182 X 4 0.148
DE 0.019 0.047 “ v/ 0.200
SUGAR 0.007 0.001 v v 0.304
CORN 0.002 0.001 v v 0.172
LCATTLE 0.639 0.898 X X 0.115
WHEAT 0.706 0.258 X v 0.166
COPPER 0.099 0.040 X v 0.257
NATGAS 0.074 0.313 X 4 0.245
CRUDE 0.001 0.785 - X 0.214
USBND 0.362 0.346 X X 0.149
UKBND 0.023 0.014 - X 0.136
CHBND 0.233 0.026 X v 0.224
JPBND 0.002 0.001 v v 0.203
AUBND 0.331 0.306 X X 0.158
CABND 0.322 0.341 X X 0.123
DEBND 0.004 0.073 - v 0.148
CHFUSD 0.077 0.277 X v 0.247
JPYUSD 0.175 0.275 X X 0.138
AUDUSD 0.738 0.117 X v 0.168
GBPUSD 0.890 0.643 X X 0.151
CADUSD 0.855 0.452 X X 0.133
EURUSD 0.024 0.165 X 4 0.270

https://doi.org/10.1371/journal.pone.0340409.t003

Silverman’s test is performed on two different kinds of empirical mispricing series & for the simple reason that the
Kalman relations allow for two different notions of fundamental value v. The first kind of mispricing is derived from the
asset log-prices and the filtered fundamental values, and the second kind from the smoothed ones.

Those results are summarised in the first three columns of Table 3, which focus on the empirical mispricing distribu-
tions, i.e. those from the real log-prices p and the two types of calibrated log-values v. If both types of empirical mispric-
ings suggest bimodality within the given significance, we mark the series as empirically bimodal (v). If none of the two
reject the null-hypothesis of unimodality, the asset is classified as empirically unimodal (X). And if one accepts and one
rejects the null-hypothesis, the test is marked as inconclusive (-).

Table 3 shows that there is in many cases clear empirical evidence for a rejection of unimodality. At the 2% significance
level, the empirical mispricing distributions of stock indices are bimodal in nearly half of the cases. For commodities there
is further empirical evidence for bimodality in the cases of sugar and corn. In addition to that, the test is inconclusive for
Crude QOil, UK Bonds and German Bonds.

It is however known [45] that the Silverman test suffers from a conservatism bias — especially for small samples like
we have here — where the null-hypothesis is falsely not rejected. Therefore, we have repeated the test on data gener-
ated from numerical simulations of the non-linear model (4) using the calibrated optimal parameters listed in Table V in
S1 Appendices. Simulating the model for a total duration of T= 10° with time increments of dt = 0.01, yields N = 107 data
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Fig 8. Same as Fig 7 but for the non-linear (cubic) model. The smoothed value from the linear model is given for comparison (orange).
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points per product and alleviates the data scarcity problem. Indeed, the test on simulated data yields very accurate results
even for weak bimodalities, i.e. when the system is close to the critical bifurcation point. The results are given in the sec-
ond rightmost column of Table 3. It shows that in all the cases where the test suggests bimodality based on the empiri-
cal data, it finds bimodality based on the numerical data, confirming the results as well as the success of the calibration
from a different angle. Furthermore, in the cases where the test on empirical data is inconclusive, the test on numerical
data leans towards bimodality (except for one asset, crude oil). The numerical study also finds bimodality in some cases
where the empirical one did not. Strikingly, the numerical test suggests bimodality for all indices, for most commodities
and around half of the bonds and currencies. Note that our flexible definition of the long-term drift, which allows for low-
frequency oscillations akin to “business cycles”, tends to lessen any sign of bimodality.

Hence, bimodality appears to be the rule rather than the exception. This is interesting for two reasons: first, it sug-
gests that in many cases assets are more often under- or overpriced than correctly priced. According to numerical data
this holds true for all considered indices — a stunning albeit not necessarily surprising result, and in line with the result
reported in [12] for the S&P 500, and in [13] for the US and Canadian stock markets. Second, it provides evidence that in
such cases prices perform noisy oscillations around value, at least according to the studied model, and even after having
accounted for business cycles.

One example of an empirical and its respective numerical mispricing distribution in the case where the distribution is
unimodal (live cattle) and another one in the bimodal case (Australian stock index) is given in Fig 9 alongside one of the
cases (US stock index) where the empirical and numerical distributions suggest a different type of modality (even though
the bimodality in the numerical data is extremely weak). Schmitt et al. [12] report a more pronounced bimodality based
on monthly historic S&P 500 prices. This may be due to differences in estimation of fundamental value where they apply
Shiller's method based on discounting the index’ real dividend payments [46], instead of our flexible definition of a time
varying drift with low-frequency oscillations. It might also be due to their overestimation the trend signal, which is defined
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in S1 Appendices for the commodity live cattle (LCATTLE) and the US and Australian (AU) stock index. Numerical: mispricing distribution from a
simulation of system (4) with T=10%, dt = 0.01 and the same parameters.

https://doi.org/10.1371/journal.pone.0340409.g009

on log-returns directly, instead of returns in excess of some benchmark, such as the long-term drift (as done in our study),
or the sectorial or market drifts as often done in practice, esp. for stocks. The extreme bimodalities obtained from simulat-
ing several models based on the trend signals of [12] may be a symptom of this.

The comparison of the empirical and numerical distributions show that the mispricings can be captured rather well, con-
sidering that non-linear model (4) is a highly schematic model with only three investor types. More importantly, the calibra-
tion relies on price trajectories and is unaware of the empirical mispricing distribution, so a good match with the predicted
mispricing distribution can be seen as an independent validation of the model. Jensen-Shannon (J-S) distances between
the empirical and numerical distributions are given in the rightmost column of Table 3 to quantify the similarity between
numerical and empirical distributions for all assets [47].

The J-S distance is the square root of the J-S divergence, which is a symmetrised and smoothed version of the well-
known Kullback-Leibler divergence. It has the benefit of being a metric that can be interpreted as a distance measure.
Another merit is that it remains well-defined if there are bins with observations for only one of the two discrete distribu-
tions. The distance’s lower bound of zero means identical distributions, while the upper bound indicating maximal differ-
ence is one [47]. As the J-S distance requires the same domain support and binning for both distributions, the domain
is chosen to be between the minimum and maximum of the empirical and numerical distribution with the number of bins
being the square root of the length of the empirical time series. This is important as the length difference between both
series is many orders of magnitude, such that using the length of the shorter series is critical to have an empirical distribu-
tion that is not zero for many intervals in the domain.

Before calculating the J-S distances, we have made sure that the mean and the variance of the empirical distributions
exactly match those of the numerical simulation. This is only approximately true with the parameters obtained from the
calibration, but a small shift of these parameters in the direction of the gradient of the variance allows us to fix this issue
with a minimal change of the log-likelihood of the calibration (less than 5% in most cases).
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6 Sloppiness analysis

The so-called sloppiness analysis is based on the Fisher information matrix, with the aim of gaining some insight about
the hierarchy of parameter importance in a model or in a dynamical system, see [17] and [48] for more recent develop-
ments. In this context, a parameter (or combination of parameters) is termed sloppy if a perturbation in its direction does
not change the model output significantly: the model is insensitive to the exact value of that parameter, further implying
that it is hard to estimate empirically — parameter uncertainty is high, as encapsulated by the Cramer-Rao bound. Like-
wise, a stiff parameter (or combination of parameters) leads to significant changes in a model’s output upon perturbation,
implying that it can be estimated well on empirical data.

The crux of the method lies in calculating the eigen-decomposition of the Hessian matrix of a loss function £, where
the loss is a quantifier of the change in model output upon perturbation of the set of model parameters 6 to 8’ =6(1 + A),
where A is small. Here, the loss function is defined as the (normalized) L, distance between the realizations of observable
y measured before and after a perturbation is applied:

T A2
£(6,6") = ;z(M) , (18)
t=1

g

where t are increments of the simulation time T. Note that the random seed must be fixed in this analysis to only measure
the loss due to the parameter perturbation and not due to noise. Further, the beginning of each time series may want to
be dropped due to stationarity. o is the standard deviation over time of y;(6). In the following we will choose the mispricing
é as the observable y.
The model sensitivity to parameter variations may then be regarded through the Hessian of the loss, a.k.a. the Fisher
information matrix:
d?£(6,9")

i~ dlog(®,) d Iog(ej))efze’ (19)

where it is standard to take log-derivatives to regard relative parameter changes as parameters usually have inconsis-
tent units and their magnitudes may span multiple decades. Subsequent analysis of J via its eigendecomposition corre-
sponds to an approximation of the surfaces of constant model deviations as N-dimensional ellipsoids [17]. Numerically,
Jt; can be computed using only first derivatives of y(0), see e.g. [49].

A model is termed sloppy if its sensitivity eigenvalue spectrum spans multiple decades in a rather consistent manner,
in other words that the eigenvalues decay very quickly with rank, meaning that only very few parameters (or linear com-
binations thereof) can be identified. Applying this rationale to the mispricing § = p — v in the linear model 13 over N=6
parameters 0 = (x, 83, y, a, oy, o) with optimal parameters from Table 1 and A = 10~2, strong evidence for sloppiness is
reported as the sensitivity spectra span from five to nine decades (comp. Fig 18 in S1 Appendices). The same is reported
for the non-linear model with the additional parameter x5 (Fig 21 in S1 Appendices). For the linear model and the asset
class commaodities, this is depicted in Fig 10 exemplarily.

Next, the eigenvectors of the Hessian in Eq (19) for the linear model are analysed. Since it is not sensible to regard
each time series’ eigenvectors standalone and because financial time series within one asset class share many key
characteristics, we analyse the average Hessian within one asset class.

The eigenvectors of the Hessian point in the eigendirections in parameter space. Thus, one can infer from those
whether the eigendirections coincide with individual parameter axes, or whether parameter combinations determine a
system’s dynamics and how it reacts to perturbations. Since the Hessian of the loss of the system perturbed from its opti-
mal parameters 6 is determined, those eigendirections (descendingly with the magnitude of the corresponding eigen-
value) denote the direction in which the fit is degraded the quickest, i.e. it orders the directions towards which the model
dynamics are most sensitive.
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For stock indices, the normalised eigenvectors of the Hessian F of the linear model perturbed around its optimal
parameters (comp. Table 1) and ranked by their eigenvalues are given in Fig 11. Interestingly, the eigenvectors for other
asset classes (commodities, currencies, bonds) are qualitatively very similar compared to Fig 11. Overall it is clear at first
glance that the eigendirections in parameter space do not generally align with the parameter directions because most
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Fig 11. The 6 normalised eigenvectors for stock indices, ranked by eigenvalue magnitude (in increasing order) of the average Hessian for the
linear model. The observable in the loss £ (comp. Eq 18) is the price distortion § = p — v. The total number of observations is N = 104,

https://doi.org/10.1371/journal.pone.0340409.g011
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modes are mixed, except for o, which has its own isolated mode for all four asset classes (mode four, corresponding

to the fourth largest eigenvalue, in all classes except currencies, comp. Fig 11). Moreover, the eigenvectors of all asset
classes show that the contribution of 8 and y to the eigendirections is always the same. This is no surprise considering
that the local linearisation of the model as well as the bifurcation condition depend solely on the product Sy and not on the
parameters individually (comp. Sect 2.3). More generally, the different eigenvectors (or modes) can be interpreted in the
context of the model.

» The first mode reflects the quick degradation in quality of fit when (oy, 8, ¥) are perturbed in one direction and « in the
other. The first three parameters control the dispersion between price and value. In particular, when they are increased
(decreased), the dispersion increases (decreases) as gy is the largest influence on the variance of the price and both 8
and y are parameters associated with trend following, also increasing the departure of price from value when increased.
Meanwhile, x has the opposite effect, describing mean reversion towards value. Hence, decreasing (increasing) « also
results in larger dispersion from value. The first mode may thus be termed the variance mode. In total, it can be con-
cluded that this mode governs the variance of the price distortion; it is also the stiffest parameter direction in the sys-
tem to which it is most sensitive and which can be calibrated most reliably (which is confirmed, e.g., by the small errors
on oy and x in Appendix A in S1 Appendices). In all other asset classes the first mode looks qualitatively similar. Quan-
titatively it can additionally be deduced through comparison of the first modes in Fig 18 in S1 Appendices that for cur-
rencies the contributions of the parameters associated with trend following, § and y, are almost negligible, which sug-
gests relatively weak trend following in currency markets, compatible with the results of [3] but not really born out by
the analysis of [4]. For commodities the opposite is visible: § and y — and thus trend following in general — are the most
pronounced, a further known fact for after all almost the entire CTA industry was built on this strategy [50].

» The second mode in Fig 11 may be termed the critical or bifurcation mode as it depends on the parameters occurring in
the bifurcation condition (comp. Sect 2.3). The mode shows that an increase (decrease) in mean reversion strength (by
x) accompanied by a simultaneous increase (decrease) in trend following (through Sy and «) leads to a deterioration of
the fit even though there is no direct implication on the level of the price distortion as the effects counterbalance each
other. The bifurcation condition — and therewith the overall dynamical state — is however sensitive to such perturbations
as the different parameters do not enter the condition equally but in a non-linear way.

» The third mode is similar to the first mode in composition, except for a stronger contribution of a. As in the first mode, oy
is the dominant contributor. x seems to be a larger contributor in this mode in all asset classes than on mode one. The
relative sign of x and Sy are inverted compared to the first mode, as a consequence of the orthogonality condition acting
on the different eigenvectors.

» The fourth mode, the value noise mode, is the only case in which a parameter direction coincides precisely with an
eigendirection. It describes the response of the price distortions to perturbations in oy. Its eigenvalue is however two
orders of magnitude lower than that of the first mode. This implies that one needs to perturb the system /1,/4, = 10
times as hard in that direction to achieve a comparable variation in model output. This, of course, implies that g is
relatively loosely constrained, which makes its estimation ten times harder. At the same time it means that the exact
value of gy, is less relevant compared to oy, x, 5 and y.

» The fifth mode can be interpreted as the frend speed mode as it is mostly determined by «a. Its small associated eigen-
value confirms our previous statement that changes in « (that we have hard-coded to 1/5) do not change the results
significantly, neither qualitatively, nor quantitatively (comp. the footnote in Sect 4).

» The sixth and last mode is a pure trend following mode as it only depends on the trend parameters § and y. It is the only
mode in which the two have different orientations. This mode can be interpreted as the trend saturation mode. It is the
consequence of the breaking of the linear dependence of the trend signal on Sy as higher order terms of the tanh func-
tion become relevant. This mode has the smallest impact as the sloppiest direction for only returns beyond two standard
deviations fall in this saturation regime, which is rare, such that the overall influence is comparatively small. Principally,

PLOS One | https://doi.org/10.1371/journal.pone.0340409 January 23, 2026 23/ 27



https://doi.org/10.1371/journal.pone.0340409

PLOR. One

it shows how an increase (decrease) in 8 accompanied by a decrease (increase) in y reduces the quality of fit, which
is an immediate consequence of the tanh and its contributions that are O(8y®) and ensures that 8 and y can both be
estimated and not just their product — albeit not with very high precision.

The non-linear model, Egs (4), whose sloppy analysis is detailed in Appendix B in S1 Appendices, naturally has one more
eigendirection as it has an additional parameter, k5. As it turns out, the mode interpretation is very similar to the linear
model. The addiotional seventh eigendirection can be interpreted as a value mode, quantifying the response to perturba-
tions in (x, x3), and ranks as the sixth mode, whereas the sixth from the linear model becomes the final seventh mode.

7 Conclusion

In this paper the dynamical interplay between trend and value anomalies that pervade (almost) all financial markets was
revisited. Specifically, the generalized Chiarella model proposed by Majewski et al. [13] was corrected for its analytical
shortcomings, which also impacted its calibration. We proposed a new self-consistent model, in which the stability con-
ditions for the dynamically possible phases exactly match the model dynamics — even for non-zero, arbitrary long term
value drift. This was achieved by letting the trend signal and price dynamics, and not only the fundamental value, be drift-
dependent. The idea is to define the trend signal on mispricing returns rather than on standard returns, removing any long
term bias, which should not be considered as part of the trend.

Our model is therefore able to accommodate arbitrary time-dependent drifts, whereas previously only linear drifts were
allowed, which we deem unsatisfactory. A calibration scheme adapted to this new model was proposed and implemented.
This leads to a notable estimation improvement as it enables one to calibrate the model on individual price time series,
whereas previously only asset-class-wide calibrations were possible. As in the literature, this was performed on a model
that is linear in the fundamentalist's demand as well as one that is non-linear (cubic). We find that only the non-linear
model is consistent with many of the stylised facts, including the bimodality of the mispricing distribution while the trend
signal remains unimodal.

One important output of the calibration is the fundamental value of an asset. By proposing a new price vs. value vari-
ance estimation technique, the ratio between the noise trader induced volatility and the value volatility could be estimated
per asset class. This ratio sheds light on the long-standing excess volatility puzzle as it confirms and quantifies by how
much price volatilities are amplified over volatilities in value and that changes in value do not justify the amplitude of price
changes whatsoever, putting the rationality and efficiency of prices into question. Our estimate of an amplification of a
factor 4 for stock indices is comparable to other estimates from the literature, including Shiller’s original paper [1]. Differ-
ences in excess volatility per asset class could be qualitatively accounted for. It was possible to separate the variance
contribution of noise traders and of fundamental value for each asset individually.

Besides, the distribution of instantaneous mispricings was empirically and numerically analysed for the non-linear
model. Statistical tests confirm the existence of bimodality, which have been previously reported [12,13]. In fact much
stronger evidence was found than in Majewski at al. [13], especially for stock indices and commodities, while for bonds
and currencies less so. This finding shakes the Efficient Market Hypothesis to its core for it suggests that assets are more
likely to be mispriced than correctly priced — but it also pinpoints markets (bonds and currencies) that are closer to effi-
ciency.

A Hessian or sloppy analysis allowed for a systematic multi-parameter sensitivity study of the model to small changes
in parameter combinations, defining a strong hierarchy in the eigenvalues of the Fisher information matrix. This analy-
sis, on the one hand, justifies why certain parameters are difficult to estimate, but on the other hand also suggests that
their exact value may not be crucial to the model’s dynamical signature. It may also be interesting from a regulatory stand-
point as it can quantify which market contributors and effects can affect the price dynamics most notably. We were able to
explain these parameter directions in the context of market perturbation modes.
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This research opens the path to several follow-up questions and topics: first, it would be interesting to see how the
parameters have evolved over centuries. This may be a difficult endeavour as the dynamical time-scales are on the
order of decades, making sequential calibrations difficult in many cases due to data scarcity. However, it could elucidate
whether prices and markets have become more efficient with time and whether levels of mispricing have grown or shrunk,
see also [37]. Second, an extension of the model towards single stocks would be worthwhile in order to understand their
level of mispricing for different economic sectors, and to study the excess volatility puzzle further through our lens and
in its original context. We will tackle this question in a subsequent publication. It would also be interesting to repeat this
analysis on crypto assets, which, as noted above, do not have a tangible notion of fundamental value. Finally, a more
micro-founded model of demand leads to an enhanced version of the Chiarella model that we are currently investigating.

Supporting information

S1 Appendices. Supporting Information to the Paper. The supporting information contains appendices with further
analyses, verifications and results that support and underpin the findings of this work.

S2 Code. Computer Algorithm Implementations. This supporting information contains the algorithms used in this study,
implemented in Python3.
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