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Abstract 

Time use is compositional in nature because time spent in sleep, sedentary 

behaviour and physical activity will always sum to 24 h/day meaning any increase 

in one behaviour will necessarily displace time spent in another behaviour(s). Given 

the link between time use and health, and its modifiable nature, public health cam-

paigns often aim to change the way people allocate their time. However, relatively 

few studies have investigated how movement-behaviour compositions change 

longitudinally (with repeated measures), due to experimental design elements (e.g., 

intervention effects), or differences due to participant socio-demographic character-

istics (e.g., sex, socio-economic status) within clustered sampling designs. This may 

be because most mixed-model packages that account for the random effects do not 

natively support a multivariate outcome such as movement-behaviour composition. In 

the current paper we provide a practical framework of how to implement a composi-

tional multivariate-response linear mixed model that can be used to model the entire 

24h movement-behaviour composition as the dependent variable within a multi-

level framework. The method accounts for covariances across and within response 

variables at the grouping (individual, cluster etc.) and covariance between response 

variables at the observation level. Results are therefore invariant to the chosen 

log-ratio basis used to construct the response variables (i.e., mathematically equiv-

alent models). The method outlined is applicable to many designs including longitu-

dinal cohort studies, intervention trials, and clustered cross-sectional designs (e.g., 

students within schools, patients within clinics). In a worked example we show how 

this approach can be used to investigate how time is reallocated in children across 

the school year.
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1.0  Introduction

Time spent in daily movement behaviours (sleep, sedentary behaviour (SB), phys-
ical activity) has been linked with many health measures, ranging from adiposity to 
mental health, cognition and mortality risk [1]; largely investigated in cross-sectional 
or observational data. Due to its modifiable nature, intervention and health promotion 
efforts have long attempted to improve specific aspects of time use, such as increas-
ing time spent in physical activity [2,3], reducing sedentary time [4,5], or improving 
sleep [6]. Most statistical analyses of the effectiveness of such interventions consider 
only one activity in isolation, even though the constant sum constraint of a 24-h day 
means that other activity(ies) will necessarily undergo compensatory changes. As all 
the activities are important to health outcomes, they should all be considered when 
planning and executing movement behaviour interventions [7]. Understanding shifts 
in time use resulting from natural temporal (e.g., circadian and circannual) cycles and 
life transitions are also important considerations. It is imperative to be able to include 
the full 24-h composition of movement behaviours in the same statistical model when 
assessing the effectiveness of interventions. The inclusion of all raw 24-h movement 
behaviour variables (min/day) in statistical models has been problematic due to their 
constant sum constraint and inherent perfect multi-collinearity which may produce 
spurious results [8]. This has been overcome through the application of compositional 
data analysis (CoDA), whereby 24-h compositions are expressed as logratios prior to 
their inclusion in statistical models [9].

While CoDA is now commonly applied when 24-h movement-behaviour composi-
tions are considered as independent or predictor variables, fewer studies have used 
CoDA to consider movement behaviour compositions as dependent or response 
variables [10]. There is currently no accepted methodology for analysing movement 
behaviour compositions in a multi-level framework that could be used to, for example, 
assess whether mean compositions change over time with repeated measurements 
on individuals, if there are intervention or experimental group effects in compositions 
over time, or if compositions are associated with sociodemographic or environmen-
tal factors while accounting for clustered sampling designs. As such, researchers 
have generally used other approaches to investigate changes or group differences 
in compositions. Most have ignored the compositional nature of the data entirely and 
modelled minutes per day of each behaviour separately [11,12]. Some have tried to 
respect the compositional nature of their data and expressed the compositions as a 
set of orthonormal log-ratio (olr) coordinates which are iteratively used as the depen-
dent variables in multiple univariate models while accounting for the random effects 
of repeated measures on participants (as outlined further in section 1.2). Others have 
investigated how compositions change over time by creating a ‘change composition’ 
via perturbation. This reduces the data to a single observation and eliminates the 
need to model random effects. These are all useful approaches, however, they also 
all have drawbacks. The first approach ignores the compositional nature of the data 
completely; the second relies on interpreting individual olr coordinates which limited 
practical meaning; and the third lacks flexibility in its application. For example, it 
requires complete data and can only be used with two timepoints.
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This paper is structured as follows: in Section 1, we provide background on the rationale for CoDA for 24-h 
movement behaviours. Section 1.1 introduces the log-ratio methodology and how it is applied within regression 
modelling, and Section 1.2 describes previous frequentist approaches to analysing compositions as the dependent 
variables, noting the inability of these methods to include multivariate response variables when the data have a 
multi-level structure. In Section 2, we present a method for a compositional multivariate-response linear mixed model 
(CMRLMM). Section 3 provides an example of the application of our CMRLMM to real-world data of Australian school 
children’s movement behaviour patterns across various time points. We also compare the CMRLMM to both the uni-
variate response compositional linear mixed model and to the non-compositional linear mixed model fitted separately 
for each behaviour in raw minutes/day (e.g., Sleep, SB, light physical activity [LPA], moderate-to-vigorous physi-
cal activity [MVPA]). These comparators reflect common practice in the literature and illustrate the consequences 
of ignoring the correlations between olr coordinates/behaviours and the constant-sum constraint. In Section 4, we 
provide a concluding discussion on strengths and weaknesses of the new method, and areas for future development 
and research.

1.1  Brief overview of CoDA and application to 24-h movement behaviours

CoDA is used in behavioural epidemiology to analyse time spent across 24-hour movement behaviours, including 
sleep, SB, and physical activity. The log-ratio methodology transforms raw compositional data into orthonormal 
log-ratio (olr) coordinates (also known as isometric log-ratio coordinates [ilr]) before their inclusion in compo-
sitional regression models. However, current methods struggle to address a common issue in epidemiological 
studies: the multi-level structure of movement behaviour data caused by repeated measurements or clustered 
sampling designs.

Indeed, a composition u is a vector in RD
+ where the only relevant information is contained in the ratios between its 

components, these components of the composition are aptly named compositional parts. In the context of time-use epide-
miology, these compositional parts typically represent the time spent in sleep, SB, LPA and MVPA. For example, the ratio 
of time spent in SB to time asleep within a 24-h window is invariant to whether those times are expressed as proportions 
of the day, hours or minutes and have specific properties due to the sample space. However, it is also worth noting that 
it is possible to conceptualise a time-use composition in a variety of ways. Instead of creating a time-use composition 
based on activity intensities, it is also possible to divide the day into time spent in contextual domains such as work, 
commuting, household activities, leisure etc. [13]. Compositions also exist in other fields within the behavioural and health 
sciences such as dietary macronutrient compositions (carbohydrate, fat, protein) [14] and body composition (fat, muscle, 
bone) [15]. In all these examples, a D-part composition can be expressed as a vector x = [x1, x2, . . . , xD], where all parts 
are non-negative (but ideally strictly positive) and sum to a positive constant κ. Typically, its sample space is mathemat-
ically written as SD =

{
x | x ∈ RD,

∑D
i=1 xi = κ, xi > 0

}
 where SD is known as the D-part simplex or D-simplex, a (D – 1) 

dimensional subset of real space RD [16]. Because compositions only contain relative information, a composition u can be 
closed to any positive constant such that

	
x = [x1, x2, . . . , xD] = C [u1, u2, . . . , uD] =

[
κ·u1∑D
i=1 ui

, κ·u2∑D
i=1 ui

, . . . , κ·uD∑D
i=1 ui

]
	 (1)

where C is the closure operation to the constant κ. For example, if the parts of the vector represent time spent in the 
behaviours sleep, SB, LPA and MVPA, the composition could equivalently be closed to κ = 1440 (min/day), κ =24 (hour/
day), κ =1 (proportion of day). When considering differences, or changes, in compositions, traditional algebraic addition 
and subtraction operations for Euclidean space, are not suitable as they are not scale invariant nor sub-compositionally 
coherent [17,18]. However, in the simplex space compositions can be perturbed such that x⊕ y= C [x1y1, x2y2, . . . , xDyD] 
which is analogous to addition in real space. In addition, the powering of x ∈ SD  by a constant α ∈ R, 
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α⊙ x= C [xα1 , x
α
2 , . . . , x

α
D ], which plays the typical role of the product of a vector by a scalar. Using these operations a linear 

regression model with compositional response can be formulated as

	 x̂=β0 ⊕ ( t⊙ β1)	 (2)

where the coefficients β0,β1 ∈ SD and t is a real covariate. Further, the neutral element 
1 = C[1, . . . , 1] = [k/D, k/D, ..., k/D] has the expected properties such that x ⊕ C[1, . . . , 1]= C[1, . . . , 1]⊕ x = x. 
Finally the inverse element of x, is defined as C[1/x1, 1/x2, ..., 1/xD], denoted as ⊖x. It can be shown that when a com-
position is perturbed by its inverse it will result in the neutral element such that x⊕ (⊖x) = (⊖x)⊕ x = C[1, . . . , 1]. While 
‘stay in the simplex’ algebra like that outlined above can be used to summarise or interpret CoDa, most multivariate sta-
tistical techniques are not suitable for raw CoDa and require expressing the raw data in terms of log-ratios of the parts. As 
such, most compositional techniques used in time-use epidemiology favour using the log-ratio approach, specifically the 
olr transformation [9]. While other log-ratio approaches have been proposed, such as the additive log-ratio (alr) or centred 
log-ratio (clr), these have drawbacks that limit their use within statistical models such as mixed models. Namely, alr coordi-
nates are asymmetric, meaning that distances are not preserved within the simplex space. This means results depend on 
the compositional part chosen as the denominator when constructing the coordinates. Unlike alr coordinates, clr coordi-
nates are isometric, meaning distances are preserved. However, the clr coordinates are also restrictive and spurious when 
used within statistical models because of the zero-sum constraint [9,19,20]. Neither of these issues exist when using the 
olr transformation which is generally preferred in most modelling applications, including within time-use epidemiology [9]. 
The olr transformation involves expressing D-part compositional vector of movement behaviour data that exist in the sim-
plex, x = [x1, x2, . . . , xD] ∈ SD, into D-1 olr-coordinates [21,22] that exist in real space, z = olr(x) = [z1, z2, . . . , zD–1] ∈ RD–1.  
That is, the vector z are the coordinates of composition x in an olr-basis. Importantly, these olr-coordinates can be used 
in standard multivariate statistical models [23]. For example, the linear regression model in Eq. (2) is expressed in olr-
coordinates as olr(x̂) =olr(β0) + t · olr(β1).

An olr-basis can be created using a data-driven method such as Principal Balances [24] or R-mode cluster analysis 
[25]. Alternatively, the knowledge of the researcher can be used to improve the interpretation of the models when creating 
the olr-basis by a sequential binary partition (SBP) process, which is generally preferred in time-use research [15]. An 
SBP process uses a (D – 1) x D dimensional sign matrix to iteratively divide the compositional parts until all groups consist 
of a single component [26].

The olr-coordinates of the general form can be defined as

	
zj =

√
pj.nj
pj+nj

ln
(xk1

··· xkpj
)
1/pj

(xl1
··· xlnj

)
1/nj

, j = 1, . . . ,D – 1
	 (3)

where the pj  and nj  are the number of parts in the j-th row of the sign matrix that are coded positive and negative, respec-
tively and k1, . . . , kpj are the indexes of parts in the numerator and l1, . . . , lnj are the indexes of parts in the denominator 
of each row of the sign matrix [26]. Note that the olr-coordinate in Equation (3) is a “balance” between the average of 
two sets of parts. Balance coordinates may be of use when a researcher is interested in distinct groups of behaviours 
[27]. In the context of 24-hour movement behaviours, this means that each olr-coordinate represents a contrast between 
groups of behaviours such as sleep vs. waking activities, or active vs. passive behaviours. Together, these coordinates 
fully describe how time is distributed across the day while preserving the relative nature of the data. If a researcher has a 
particular interest in one behaviour, they may use pivot coordinates of the general form

	
zj =

√
D–j

D–j+1 ln
(

xj
(xj+1 ··· xD)1/(D–j)

)
, j = 1, . . . ,D – 1

	 (4)
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Here, the first olr-coordinate (z1) reflects the dominance of one behaviour (x1) relative to the geometric mean of the 
remaining behaviours and is of use when a researcher has a particular interest in one behaviour. Note that 

z1 =
√

D
D–1 · ln

(
x1

D
√∏D

k=1 xk

)
, that is, the first olr-coordinate is proportional to the first clr-coordinate The remaining 

olr-coordinates, z2, . . . , zD–1, are then created in a similar manner with the denominator of the previous coordinate split 
with until no parts remain [28].

While hypothesis-driven construction of olr-coordinates may provide one way of interpreting findings from compositional 
models, there are limitations to how meaningful these contrasts are to everyday life. For example, the first pivot coordi-
nate (z1) must be interpreted as the relative increase of one activity, while the geometric mean of the remaining activities 
is reduced. In real life, changes in the geometric mean of a group of activities may be difficult to conceptualise, it is often 
easier to interpret findings within the simplex space [29]. Importantly, while the interpretation for individual olr-coordinates 
will change depending on the basis chosen when creating the olr-coordinates, collectively they are equivalent and will 
retain all relative information about the movement behaviour composition no matter how they are constructed such that 
x = olr–1 (z) for any olr-basis. This means in order to make inferences about the movement behaviour composition as a 
whole, the vector of olr-coordinates z = [z1, z2, . . . , zD–1] must be considered collectively. One option is to use the statisti-
cal model to compute point estimates for scenarios of interest, relevant to the research question. For example, if the logra-
tios are considered as predictors of a health outcome in a linear regression model, the model parameters can be used to 
estimate the value of the health outcome for a selection of different movement behaviour compositions that emulate the 
reallocation of time between activities [30]. If the logratios are considered as the dependent variables in a multivariate 
response linear regression model, the model parameters can be used to estimate what the logratios (and the correspond-
ing 24-h movement-behaviour compositions) would be at different levels/values of the predictor or independent variable. 
However, when considering compositional responses, standard multivariate response linear regression models are often 
unsuitable in epidemiological studies due to non-independence of observations resulting from repeated measurements 
on sampling units (e.g., participants; or clustered sampling designs, e.g., participants within health centres). In these 
instances, a linear mixed-effects model (LMM) that extends the general linear model to include both fixed and random 
effects that account for correlated observations is a popular and understood method. Importantly, commonly used statis-
tical software packages for LMMs within a frequentist framework (STATA, SPSS, SAS, R) do not support the inclusion of 
multivariate outcomes natively (without some data manipulation and model re-specification), such as movement behaviour 
composition expressed as logratios [31–33]. This difficulty explains why an approach previously, as described in Section 
1.2, to investigate longitudinal changes in movement-behaviour composition has been to use multiple univariate response 
LMMs, each with a different olr-coordinate as the outcome [34–38].

1.2  Compositional univariate-response linear mixed model

Previous studies investigating changes in movement-behaviour compositions with repeated measurements on the same 
individuals (i = 1,2,…,N) over T timepoints ti1, ti2, ..., tiT  have used a univariate compositional LMM of the form outlined in 
Equation (5). This model will have time as the level 1 response which is nested within individuals as the level 2 response 
and has been used by some researchers in the general form

	 zij = β0 + β1tij + b0i + εij, i = 1, 2, . . . ,N; j = 1, 2, . . . ,T;	 (5)

	
b0i∼ N

(
0, σ2

)
, εij∼ N

(
0, τ2

)
	

Where zij  is the response for an individual olr-coordinate, for the i-th subject at the j-th timepoint, β0 is the mean value for 

z when all predictors are equal to zero, b0i is the random intercept for i-th subject, β1 is the slope coefficient representing 
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the mean linear slope change over time, timepoint tij is the specific j-th time for subject i, and εijis the residual error. In the 
context of 24-h movement-behaviour research, this type of model has typically been used to assess whether time spent 
in specific behaviours, or balances of behaviours, changes across repeated measurement occasions (e.g., baseline, 6 
months, and 12 months), or differs between intervention and control groups. For example, a researcher may use Equa-
tion (5) to test whether the relative balance between active and sedentary time changes following a lifestyle intervention 
or investigate average trajectories in time-use composition in a longitudinal cohort study. Previously, researchers have 
generally investigated compositional outcomes within a multilevel framework using multiple models of the general form 
Equation (5) in one of three ways. Approach 1) has involved iteratively constructing D sets of pivot coordinates (Equation 
(4)), with z1 reflecting the dominance of a different behaviour in each instance and using this coordinate as the depen-
dent variable in D different LMM analyses. For example, this approach has been used previously to investigate interven-
tion effects on 24-h movement behaviours by fitting a separate model where z1 corresponds to the pivot coordinate for 
sleep, then for SB, LPA, and MVPA, respectively [34,35]. Alternatively, approach 2) similarly involves a ‘multiple models’ 
approach for each component in the vector of olr-coordinates constructed using a single basis [36–38], that is, a separate 
model for each element of the vector z = [z1, z2, . . . , zD–1] (Equation (3)) where each coordinate represents a particu-
lar balance of behaviours, for example, active vs passive behaviours. Approach 3) involves ignoring the compositional 
nature of the data and fitting separate models of a similar form to Equation (3) that treat each behaviour as an indepen-
dent outcome. That is, fit Equation (3) with raw minutes/day of each behaviour as the dependent variable. While this third 
approach is strictly not a compositional model, it is still the probably the most used approach currently by applied time use 
researchers, so we include it here for completeness.

These methods can be useful approaches; however, they also have limitations. Firstly, all three approaches may 
have an inflated type 1 error rate associated with running repeated analyses with the same data [39]. Moreover, while 
approach 1 may be useful if a researcher has a particular interest in a single behaviour, as described earlier the coef-
ficients for a single pivot coordinate are often practically less meaningful to interpret [40]. Similar difficulties exist when 
interpreting results for individual olr coordinates using approach 2, particularly for coordinates [z2, . . . , zD–1], where only 
some behaviours will be involved in their creation. Approach 2 may allow for results to be transformed back into the 
simplex to allow for more meaningful interpretations via model-based estimates. However, this requires estimates from 
multiple, independent models to be pieced together. While approach 3 is widely used, it disregards the structural linear 
dependence among compositional behaviours (e.g., guaranteed structural spurious non-zero correlation [41]. By treat-
ing each behaviour as independent, individually regressing behaviours in a univariate manner and cannot ensure that 
predicted time across behaviours sum to 24 hours (see Supplementary file for examples). Importantly, while approach 
2 does model each element of the complete vector of olr coordinates, it ignores any correlation structure among the 
olr-variables. By using D – 1 individual models of form Equation (5), we are assuming that the random effects and 
errors come from D – 1 separate, and unrelated, normal distributions. However, this is unlikely to be true in the case of 
CoDa, where the olr-coordinates are intrinsically multivariate in nature and are usually correlated. From an interpreta-
tion standpoint, this means our unrelated models provide no information on how behavioural trade-offs may occur to fit 
into the 24-h day, for example to see whether people who sleep more also accumulate relatively more PA within their 
waking day. Importantly, using the multiple models approach also means that once transformed back to the simplex, 
model-based estimates and residuals may differ depending on the sign matrix and associated olr-basis used to con-
struct the coordinates (see examples in supplementary material 1). This is a problem when working with compositional 
data, where invariance under change of olr basis is one of the fundamental principles [23]. Indeed, the use of multiple, 
independent models as outlined in approach 2 above implicitly assumes no relationships between olr coordinates. This 
is equivalent to specifying a diagonal matrix (heterogenous variance with zero correlation between elements) in the 
multivariate sense. However, if, after the change of basis, the model is solved again using the multiple-univariate model 
procedure outlined in approach 2, it is implicitly assumed that the matrices are diagonal, and therefore, the same result 
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as before the change of basis cannot be obtained. Simply put, the only way to obtain equivalent results before and after 
the change of basis is by using a multivariate procedure that accounts for the relationship between olr coordinates (see 
supplementary file for further details).

Moreover, while it is possible to test the effects on individual olr-coordinates using the multiple-models approach, there 
is difficulty in performing a single test of the joint effects on the complete vector of olr-coordinates [42], for example, to 
explore whether the composition of 24-h movement behaviours changed differently between intervention and control 
groups. In order to overcome these limitations a CMRLMM is required, as presented in Section 2.

2.  Compositional multivariate-response linear mixed model

We propose extending the univariate mixed model above in Equation (5) to the multivariate case where response vectors 
are not modelled with implied independence. By taking the univariate equation above and adding subscript r to indicate 
the specific olr-response in question (i.e., r = 1, 2, ..., D – 1), the dependence between response vectors can be more 
easily specified. Our multivariate formula now becomes:

	 Zrij = β0r + β1rtrij + b0ri + εrij 	 (6)

where Zrij is response r  for the i th participant at the j th timepoint; β0r  is the fixed intercept specific to response olr-
coordinate; β1r  is the fixed ‘slope’/contrast between time-point j  and time-point 1 specific to response olr-coordinate r. 
Note, the general formula outlined here assumes a linear change over timepoints and is used for simplicity in notation. 
In instances where this is not true, β1rtrij can be replaced to estimate olr-responses over the T timepoints via an indicator 
function as follows 

∑T
j∗=2 I (j∗ = j) β1rj, where I(a) is an indicator function that is equal to 1 when the argument a is true, 

0 otherwise. So far, this appears similar to the previous formula. However, unlike Equation (5), in Equation (6), the ran-
dom effects and error will be of length D – 1, and are now assumed to come from a single multivariate normal distribution, 
rather than multiple unrelated univariate distributions, as follows:

	

b0i =




b01i
b02i
...

b0(D–1)i


 ∼ MVN (0D–1, G)

	

where b0ri are potentially differently varying and correlated random intercepts for each response olr-coordinate r , specific 
to person i ; and

	

εij =




ε1ij
ε2ij
...

ε(D–1)ij


 ∼ MVN (0D–1, R)

	

where εrij  are potentially differently varying and correlated random errors for each response olr-coordinate r , specific 
to person i  at time-point j  for each response olr-coordinate r ; with group- and residual-side variance and covariance 
(D – 1)× (D – 1) matrices

	
G =

[
ρ
(g)
ij σiσj

]
, i, j = 1, 2, . . . ,D – 1

	 (7)

and
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E =

[
ρ
(e)
ij τiτj

]
, i, j = 1, 2, . . . ,D – 1

	 (8)

Respectively. Or, written more fully in expanded form

	

G =




σ21 ρ
(g)
12 σ1σ2 · · · ρ

(g)
1(D–1)σ1σ(D–1)

σ22 · · · ρ
(g)
2(D–1)σ2σ(D–1)

. . .
...

σ2(D–1)



	 (9)

and

	

E =




τ21 ρ
(e)
12 τ1τ2 · · · ρ

(e)
1(D–1)τ1τ(D–1)

τ22 · · · ρ
(e)
2(D–1)τ2τ(D–1)

. . .
...

τ2(D–1)



,

	 (10)

where correlations ρ at the differing levels of model are differentiated with the (g) and (e) superscripts, where 
ρ
(g)
ii = ρ

(e)
ii = 1. Note that both matrices are symmetrical, that is, Gij = Gji and Eij = Eji  for any (ij) entry.

Unlike in Equation (5), this model accounts for the correlation between each olr-coordinate by estimating covari-
ances between random effect and residual error terms as shown in the off-diagonal elements above which are con-
strained to be equal to zero when using the multiple models approach outlined earlier. Thus, the model outlined in 
Equation (6) allows olr-responses to flexibly vary (and covary) for each olr at both the group (participant) level and 
residual level. Estimates can then be made for olr-coordinates while respecting the multivariate nature of the data. Just 
like in the model outlined in Equation (5) the estimates at all levels of the model, including the residuals, will be specific 
to the basis chosen when constructing the olr-coordinates. However, when (uniquely) transformed back in the simplex 
space using the inverse transformation olr–1 (β), the compositional coefficients, and any time-use estimates made using 
the model, are invariant to the basis used to construct the original olr-coordinates. Currently, in a frequentist framework, 
the multivariate response linear mixed model of Equation (6) cannot be fitted in R in the most popular linear mixed 
model packages nlme [43] and lme4 [44]. However, there are two potential solutions to this problem: (a) use a Bayes-
ian framework to fit the multivariate response linear mixed model. For example, using brms::brm(); or (b) re-define the 
data structure to fit an equivalently specified (frequentist) univariate response linear mixed model using nlme::lme() 
and lme4::lmer(). Each paradigm has advantages and limitations. Bayesian methods are highly flexible, can naturally 
accommodate multivariate outcomes, and provide full posterior distributions of parameters for richer uncertainty quan-
tification. However, they are typically more computationally demanding and require appropriate prior specification. Fre-
quentist approaches, by contrast, enable formal hypothesis testing and are computationally efficient in some scenarios. 
However, problems can sometimes arise when fitting models with complex random-effects structures, where conver-
gence or boundary fit issues may occur. Specifically, in the case of (near) zero variance components that cause bound-
ary fit issues, Bayesian estimation can offer greater numerical stability through proper priors of the variance parameters 
where sampling at 0 poses no issues. In practice, the frequentist framework (knowingly or unknowingly) is also cur-
rently the most familiar statistical approach used by time-use and other CoDA researchers. The popularity of frequen-
tist methods has motivated the formalisation of this approach in the hope to create a template for future compositional 
response linear multilevel models for repeated observations or clustered data as (although choosing one approach 
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should not be mutually exclusive of the other). For the interested reader or CoDA practitioner, Bayesian CMRLMMs can 
be fit natively on “wide format” (discussed below) multivariate responses data using the R package `multilevelcoda` that 
also contains a discussion of Frequentist vs Bayesian approaches [45].

In order to be able to fit Equation (6) using the frequentist framework, the data have to be restructured so that all 
olr-coordinate responses are in a single column to be used as the dependent variable. We term the re-defined data struc-
turing to fit an equivalently specified univariate response linear mixed model the “stacked response” linear mixed model 
approach. This terminology is borrowed from the limited online resources [46,47], and even fewer published descriptions 
[48,49], and of course how the multivariate response vectors are stacked to make a univariate response vector. Additional 
dummy variables are then needed to specify the olr-coordinate response in question, that is, a dummy variable for each 
response r = 1,2,…,D-1  Our original dataset which was of length ij (i individuals over j timepoints each), now becomes 
length ijr with one row per olr-coordinate, per participant, per timepoint. We can then specify a single model that allows for 
individual changes in each olr-response, while accounting the structure of the random effects and error terms as specified 
in Equations (9) and (10). An example of the stacking process is outlined below for r = 1, 2, 3 in Tables 1 and 2. In the 
restructured dataset the vector of olr-coordinates is contained in a single column along with the dummy variables

The dummy variables are binary variables representing which olr-response is being considered. By expanding Equa-
tion (5) we can now fit Equation (8) where the response is the notionally ‘univariate’ response associated with the stacked 
vectors of responses

Table 1.  The original data in general form in wide format for the ith individual.

Olr-response vector Predictor

z
1i1

z
2i1

z
3i1

t
i1

z
1i2

z
2i2

z
3i2

t
i2

z
1i3

z
2i3

z
3i3

t
i3

z
1i4

z
2i4

z
3i4

t
i4

… … … …

https://doi.org/10.1371/journal.pone.0340373.t001

Table 2.  The restructured dataset in general form in long format for the ith individual after ‘stacking’ the 
multivariate olr-response variable.

Olr value olr1/Response 1 indica-
tor dummy variable (δ1)

olr2/Response 2 indica-
tor dummy variable (δ2)

olr3/Response 3 indica-
tor dummy variable (δ3)

predictors

z
1i1

1 0 0 t
i1

z
2i1

0 1 0 t
i1

z
3i1

0 0 1 t
i1

z
1i2

1 0 0 t
i2

z
2i2

0 1 0 t
i2

z
3i2

0 0 1 t
i2

z
1i3

1 0 0 t
i3

z
2i3

0 1 0 t
i3

z
3i3

0 0 1 t
i3

z
1i4

1 0 0 t
i4

z
2i4

0 1 0 t
i4

z
3i4

0 0 1 t
i4

… … … … …

https://doi.org/10.1371/journal.pone.0340373.t002

https://doi.org/10.1371/journal.pone.0340373.t001
https://doi.org/10.1371/journal.pone.0340373.t002
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  zij = δ1 [β01 + β11tij + b01i + ε1ij] + δ2 [β02 + β12tij + b02i + ε2ij] + ...+ δD–1
[
β0(D–1) + β1(D–1)tij + b0(D–1)i + ε(D–1)ij

]
	 (11)

Or more succinctly expressed as

	
zrij =

D–1∑
k=1

δkβ0k +
D–1∑
k=1

δkβ1ktij +
D–1∑
k=1

δkb0ki +
D–1∑
k=1

δkεrij, r = 1, 2, . . . , D – 1.
	 (12)

Where δ1, δ2, ..., δD–1, are the olr (or response index) indicator variables associated with each olr-response as specified 
in Table 2 where the value of δr  = 1 for the rows of data containing the dependent variable r , and 0 otherwise. Thus, the 
dummy variables act as an additional level to the model which simply defines the response structure. Of note, when com-
pared to the univariate mixed model in Equation (5), the multivariate model in this form also no longer has an overall inter-
cept. Instead, the intercept for each olr-response is estimated separately based on the dummy coding used. Equation (11) 
can now be used to estimate the vector of responses simultaneously while respecting the multivariate nature of the data. 
Expanding the formula to include additional demographic predictors such as socio-economic status, body-mass index etc. 
is then relatively simple. These can be included in the model call by including interaction terms between the dummy cod-
ing used and variables of interest to allow each fixed effect to have a specific response (index) associated estimate.

Multivariate test on fixed effects

Another key advantage of the CMRLMM is the ability to perform a multivariate test on the fixed effects, such as a multivar-
iate F test or Wald chi-square test to test for significance in changes in composition across timepoints, between groups, or 
other variables of interest. When using the multiple models approach outlined in Section 1.2, it is only possible to perform 
univariate tests on individual olr-coordinates. However, when using a CMRLMM, it is also possible to conduct tests that 
are multivariate in nature because the model includes the complete vector of olr-coordinates zij = [z1ij, z2ij, . . . , z(D–1)ij]. 
Moreover, because the covariances between are accounted for at both levels of the model, the compositional representa-
tion of the model is equivalent regardless of the basis chosen when constructing the olr-coordinates, meaning results will 
be consistent.

3.  Example

In this section we use data from the Life on Holidays (LoH) study, for which a full protocol describing data collection 
methods has been published previously [50]. LoH was a longitudinal cohort study based in Adelaide, Australia, that aimed 
to track changes in 24-h activity composition, diet and weight status of primary school-aged children during the school 
year and summer school holiday periods (n = 241). Ethical approval was obtained from The University of South Australia 
Human Research Ethics Committee (200980), the South Australian Department of Education and Child Development 
(2008–0055) and the Adelaide Catholic Education Centre (201820) for the original Life on Holidays study. Time use was 
measured using wrist-worn GENEActiv accelerometers at five timepoints across two school years between February 1st 
2019 – November 30th 2021: Timepoint 1, at the start of Grade 4 (February-March); Timepoint 2, at the end of Grade 4 
(October-November); Timepoint 3, during the summer holiday period; Timepoints 4 & 5, at the start and end of the Grade 
5 school year, respectively. Time-use composition was conceptualised as a 4-part composition (D = 4) consisting of time 
spent in sleep, SB, LPA, or MVPA. Each minute of the day was classified as either SB, LPA or MVPA from the accelerom-
eter recordings using validated cutpoints [51] with sleep time distinguished from waking time using a validated algorithm 
[52]. Unconditional CMRLMM was initially created without the addition of any covariates. Baseline categorical socio-
economic status as determined by parental income, and continuous BMI z-score were then included in the full model as 
an example of how to include time-invariant covariates.
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Children’s movement-behaviour compositions at each study time-point (index j currently ignored for clarity) were 
expressed as olr-coordinates using the SBP and sign matrix shown below, where the 4-part compositional vector 
x = [x1, x2, x3, x4], reflected time spent in sleep, SB, LPA and MVPA, respectively. Conceptually, the SBP matrix is a 
representation of a (divisive) clustering dendrogram starting with the entire set of behaviours and recursively partitioning 
the (sub)sets of behaviours until each leaf/node contains only a set of two or less behaviours. In the accompanying sign 
matrix, each row represents an olr coordinate, + 1 identifies behaviours in the numerator group of the log ratio, –1 identifies 
those in the denominator group of the log ratio, and 0 indicates that the behaviour is not part of that specific olr coordinate. 
Note: when considering the raw compositional coefficients, time-use estimates and interaction effects for the complete 
vector of coordinates, the choice of SBP is arbitrary.

	

olr coordinate\composition x1 x2 x3 x4
z1 +1 –1 –1 –1
z2 0 +1 –1 –1
z3 0 0 +1 –1	

According to the sign matrix above the resultant olr-coordinates z = [z1, z2, z3] were then calculated as follows (ignoring 
the person I at timepoints j notation for simplicity), where the first coordinate z1 represents the ratio of sleep to the geo-
metric mean of all waking behaviours combined; the second coordinate, z2, represents the ratio of SB to active behaviours 
(LPA + MVPA), and the third coordinate, z3, contrasts LPA to MVPA as outlined below.

	
z1 =

√
3
4
ln

Sleep

(SB · LPA · MVPA)1/3 	

	
z2 =

√
2
3
ln

SB

(LPA · MVPA)1/2 	

	
z3 =

√
1
2
ln
(

LPA
MVPA

)

	

For person i = 1, 2, . . . , 241 and time-point j = 1, 2, . . . , 5, the corresponding three response (r = 1, 2, 3) olr-coordinates 

zrij  were then modelled as

	
zrij = β0r +

5∑
j∗=2

I (j∗ = j) β1rj + b0ri+ ∈rij
	 (12)

where β0r  is the fixed intercept specific to response olr-coordinate r ; I(a) is the indicator function that is equal to 1 when 
the argument a is true, 0 otherwise; β1rj  is the fixed ‘slope’/contrast between time-point j(= 2, 3, 4, 5) and time-point 1

 specific to response olr-coordinate r ; b0i =



b01i
b02i
b03i


∼ MVN (03,G) are potentially differently varying and correlated 

random intercepts for each response olr-coordinate r , specific to person i ; ∈ij =



∈1ij

∈2ij

∈3ij


∼ MVN (03,E) are potentially 

differently varying and correlated random errors for each response olr-coordinate r , specific to person i  at time-point j ; 

with group- and residual-side variance and covariance matrices respectively defined according Equations (9) and (10).
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It is noteworthy that In the LoH study, a linear relationship between the follow-up timepoints and each olr-response 
cannot be assumed as time use was hypothesised to differ during the school holiday period when compared to the 
in-school timepoints. Therefore, categorical timepoint indicators, contrast to the first study time point, were used. How-
ever in a more general case of J  repeated measures (or even Ji  repeated measures per person i ) over time that may 
not be equally spaced but a linear relationship between the follow-up timepoints and each olr-response, one would 
replace the somewhat notationally clumsy 

∑5
j∗=2 I (j∗ = j) β1rj terms simply with β1rtij for each response r  where tij is 

potentially continuous and unique time value for the jth repeated measure for person i . This principle is equally appli-
cable when time is not the predictor of interest, for example in cross-sectional clustered designs adiposity could be 
treated as continuous (zBMI) or categorical (overweight/obese status). The choice between categorical or continuous 
predictors does not alter the core structure of the model. An additional level of nesting to account for nesting of par-
ticipants within schools was also tested, however the variance components for this level of the model were very low, 
suggesting little school-to-school variation. The school-level random effects were subsequently dropped in the interest 
of model parsimony. In order to fit Equation (12), the three response variables were then stacked into a single column 
to be used as the dependent variable as described earlier. Models were fitted using R package the nlme::lme() [43]. 
R code along with alternate model specification using the lme4::lmer() package [44] are provided in supplementary 
material 1.

Table 3 presents parameter estimates and standard errors for the fixed effects of Equation (12). p values are reported 
using the ‘inner outer’ approximation of degrees of freedom as is default in nlme::lme() [43]. The accurate estimation of 
degrees of freedom and p values in multilevel models is often discussed [53]. Other degrees of freedom approximation 
methods have been proposed, including the Satterthwaite and Kenward–Roger approximations [54], along with other 
methods of quantifying uncertainty (e.g., bootstrapping). However, a detailed comparison of these methods is beyond 
the scope of this article. Results suggest higher values for all three olr-coordinates over time, in particular for timepoint 
3. zBMI was positively associated with z3 representing the balance of LPA to MVPA suggesting the ratio of LPA to MVPA 
increased as zBMI increased.

The estimated level 2 random effects (between individual) variance/covariance matrix as described in Equation (9) are 
shown below:

Table 3.  Fixed effect estimates for the CMRLMM.

z1 z1 z1

Estimate (S.E) t-statistic p value Estimate (S.E) t-statistic p value Estimate (S.E) t-statistic p value

Intercept 0.83 (0.02) 48.0 <0.01 0.94 (0.04) 22.8 <0.01 0.93 (0.04) 26.2 <0.01

Timepoint (vs. T1)

T2 0.01 (0.01) 0.7 0.48 0.01 (0.02) 0.49 0.63 −0.01 (0.02) −0.34 0.74

T3 0.09 (0.01) 6.7 <0.01 0.22 (0.03) 8.5 <0.01 0.21 (0.03) 7.5 <0.01

T4 0.03 (0.01) 2.1 0.03 0.09 (0.02) 3.8 <0.01 0.01 (0.03) 0.4 0.71

T5 0.04 (0.01) 2.9 <0.01 0.12 (0.03) 4.6 <0.01 0.05 (0.03) 1.7 0.09

zBMI 0.01 (0.01) 0.7 0.45 0.003 (0.02) 0.2 0.87 0.05 (0.01) 3.1 <0.01

Income (vs. middle)

High −0.001 (0.02) −0.1 0.96 0.01 (0.05) 0.1 0.92 −0.07 (0.04) −1.6 0.12

low 0.03 (0.02) 1.4 0.16 0.10 (0.05) 2.1 0.04 0.03 (0.04) 0.8 0.41

Abbreviations: S.E = standard error; zBMI = body mass index z-score (a measure of adiposity).

https://doi.org/10.1371/journal.pone.0340373.t003

https://doi.org/10.1371/journal.pone.0340373.t003
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Ĝ =



σ̂21 ρ̂

(g)
12 σ̂1σ̂2 ρ̂

(g)
13 σ̂1σ̂3

σ̂22 ρ̂
(g)
23 σ̂2σ̂3
σ̂23


 =



0̂.11

2
0̂.75∗0̂.11∗0̂.29 0̂.64∗0̂.11∗0̂.22

0̂.29
2

0̂.49∗0̂.29∗0̂.22

0̂.22
2


 =



0̂.012 0̂.024 0̂.016

0̂.082 0̂.032

0̂.050



	

And the estimated level 1 residual (within individual and time-point) error variance/covariance matrix as described in 
Equation (10):

	

Ê =



τ̂21 ρ̂

(e)
12 τ̂1τ̂2 ρ̂

(e)
13 τ̂1τ̂3

τ22 ρ̂
(e)
23 τ̂2τ̂3
τ̂23


 =



0̂.12

2
0̂.68∗0̂.12∗0̂.24 0̂.64∗0̂.12∗0̂.26

0̂.24
2

0̂.64∗0̂.24∗0̂.26

0̂.26
2


 =



0̂.014 0̂.019 0̂.019

0̂.057 0̂.039

0̂.065



	

Positive correlations for all three olr-coordinates were observed in both the within- and between-person covariance 
matrices. Importantly, these correlations are overlooked when using the multiple univariate response modelling approach 
outlined earlier. Practically, this impacts our results in multiple ways. Firstly, the covariance components offer additional 
insight into how people allocate their time and can offer behaviourally meaningful inferences depending on the sign matrix 
used to construct the coordinates. For example, the positive correlation between olr1 and olr2 in the between-person G 
matrix suggests that those individuals who on average spend more time in sleep vs awake (olr1), also tend to spend more 
of their waking day accumulating SB than active time (olr2). These insights are lost when fitting multiple unrelated models 
to either individual olr coordinates or raw min/day of each behaviour. Likewise, the correlations between the fixed effect 
parameters allow for valid joint uncertainty for the full olr vector (supplementary material). Additionally, the model fit sta-
tistics and statistical power will improve when compared to a multiple models approach used previously. To demonstrate 
this, we can fit the equivalently specified multivariate response model with the random effect and residual covariance 
matrices assumed to be diagonal matrices (covariances constrained to zero), referred to as the multivariate unrelated 
outcomes model. This model will provide the same estimates at all levels of the model as those provided by the multiple 
univariate models. However, because the multivariate unrelated outcomes model is nested within the fully multivariate 
model outlined above, it can be compared via a likelihood ratio test. Results of the likelihood ratio test suggest that the 
addition of the covariances between olr coordinates at both levels of the model improves model fit (Table 4).

Another important difference is that the results for the CMRLMM will be invariant to the basis used to construct the olr-
coordinates. This is not the case when constraining the covariances to be diagonal matrices as is the case when fitting inde-
pendent models on each olr coordinate. To demonstrate this, we can see in Fig 1 the fitted values for 10 randomly sampled 
level-2 units that have been transformed back to their compositional representation when using the CMRLMM and those 
from multiple, independent models with olr coordinates that were constructed using two different orthonormal bases. It can 
be seen that the compositional representation is equivalent for the two CMRLMMs. However, results using the independent 
models approach differ depending on the basis used to construct the olr coordinates. Importantly, both also differ from those 
provided from the CMRLMM. Further model comparisons are provided in supplementary file S1, S2, S3 Files.

Table 4.  likelihood ratio test comparing CMRLMM to the multivariate unrelated outcomes model with assumed diagonal covariance matrices.

Model df AIC BIC loglik L ratio p value

CMRLMM 36 −1261 −1048 666 (1 vs 2)

Unrelated model 30 −104 74 82 1169 <0.0001

Abbreviations: CMRLMM = compositional multivariate response linear mixed model; df = degrees of freedom; AIC = Akaike information criterion; 
BIC = Bayesian information criterion; loglik = log-likelihood.

https://doi.org/10.1371/journal.pone.0340373.t004

https://doi.org/10.1371/journal.pone.0340373.t004
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When compared to fitting four separate and independent non-compositional models on raw minutes/day additional ben-
efits are seen when using the CMRLMM. In addition to providing no information on the relationships between behaviours 
as described above by not explicitly modelling covariances, the non-compositional models do not respect the constant 
sum constraint of the data (supplementary file S1, S2, S3 Files).

Unlike the multiple models approach used previously, the multivariate mixed model also allows for a single test of the 
fixed effects for the joint effect on the vector of olr-coordinates which will be invariant to the basis chosen when construct-
ing the olr-coordinates. The results of the multivariate F-test are presented in Table 5. Using ‘inner-outer’ approximation of 
denominator degrees of freedom [55], the F statistic for interaction between the vector of olr-coordinates and timepoints 
(F(12, 2475) = 9.832, p < 0.001) shows that the fixed effects of the model suggest movement-behaviour composition is 

Fig 1.  Fitted values for 10 randomly selected level-2 units with coordinates constructed using two different olr bases. Abbreviations: 
mrlmm = multivariate response linear mixed model; urlmm = univariate response linear mixed model.

https://doi.org/10.1371/journal.pone.0340373.g001

https://doi.org/10.1371/journal.pone.0340373.g001
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significantly different across timepoints. Results also suggest that there was a significant interaction between zBMI and 
movement-behaviour composition (F(3,2475) = 4.44, p = 0.004), whereas parental income and movement-behaviour 
composition were not significantly associated (F(6,2475) = 1.86, p = 0.08). The ability to perform multivariate tests such 
as these is limited when creating separate models for individual olr coordinates. Three-way interactions between olr-
coordinates, timepoint and covariates were also tested, but were not significant, suggesting children followed a similar 
pattern of across all timepoints.

While the results of the multivariate F-test suggest movement-behaviour compositions are different across timepoints, 
they do not give an indication of which timepoints differ, on which components in what direction. In order to investigate 
this, the estimates presented in Table 3 which are specific to the basis chosen when constructing the olr-coordinates 
z = [z1, z2, z3], need to be back-transformed to their corresponding raw compositional representation x = [x1, x2, x3, x4], 
using βx = olr–1 (βz). For example, back transforming the vector of intercept estimates olr–1

([
β̂01, β̂02, β̂03

])
, will result in 

the estimated mean movement-behaviour composition at baseline (assuming zBMI of zero and reference SES group), as 
below

	
x̂·1 =

[
x̂1·1, x̂2·1, x̂3·1, x̂4·1

]
= olr–1

([
ẑ1·1, ẑ2·1, ẑ3·1

])
= olr–1

([
β̂01, β̂02, β̂03

])
	 (13)

Once transformed into the simplex space, the compositional coefficient estimates are now invariant to the basis chosen 
when constructing the olr-coordinates for both the fixed effects and random effects. After back transforming the estimates 
for timepoints T2 to T5, the compositional coefficients can be interpreted as the perturbation vector for that timepoint when 
applied to the baseline composition (which has been closed to 1440 min/day in Table 6) to obtain estimates for a given 
timepoint. The perturbation vector can be interpreted substantively as relative reallocations for each behaviour when 
compared to the neutral perturbation vector, subject to closure as outlined in Section 1.1. For example, with a four-part 
composition, as in our demonstration, the neutral perturbation vector [1/D, …, 1/D] is [0.25, 0.25, 0.25, 0.25]. When the 
compositional coefficients for timepoints 2–5 are compared to the neutral perturbation vector we can see that in our exam-
ple dataset time appears to be reallocated away from MVPA (values <0.25) and towards SB (values >0.25) as children 
age across the timepoints, with the largest changes occurring during T3 (the school holiday period).

While compositional coefficients are meaningful, it may be preferred to make model-based point estimates for the 
compositions, and differences, across timepoints using the fixed effects from the CMRLMM. Fig 2 provides estimated 
movement-behaviour compositions at the five timepoints (for a participant of mean zBMI and income category) via 

Table 5.  Multivariate F test for the CMRLMM.

Numerator DF Denominator DF F-value p-value

Z 3 2475 868.9 <0.001

Z:time 12 2475 9.8 <0.001

Z:zBMI 3 2475 4.4 0.004

Z:Income 6 2475 1.9 0.084

https://doi.org/10.1371/journal.pone.0340373.t005

Table 6.  Compositional coefficient estimates for fixed effects.

Timepoint Sleep SB LPA MVPA

Intercept β̂0
584 483 294 79

T2 0.252 0.251 0.247 0.250

T3 0.266 0.289 0.256 0.190

T4 0.255 0.267 0.240 0.237

T5 0.257 0.271 0.243 0.228

https://doi.org/10.1371/journal.pone.0340373.t006

https://doi.org/10.1371/journal.pone.0340373.t005
https://doi.org/10.1371/journal.pone.0340373.t006
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predicted olr-values that have been back transformed into the simplex space S4, 95% percentile intervals for the composi-
tions were estimated using non-parametric ‘cases’ bootstrapping procedure with 1000 replicates, which resamples level-2 
observations (participants) [56,57].

We can see that Timepoint 3 during the school-holiday period appears to have the largest differences, particularly in 
relation to the time spent in SB and MVPA. It is also noteworthy that despite timepoints 3,4 and 5 being significantly and 
positively associated with z1 (Table 3), suggesting more sleep across these timepoints, we can see that the proportion 
of sleep is relatively stable across all timepoints, and in fact estimated to be lower in timepoints T3 and T5 than at base-
line. The seemingly contradictory results are due to the way z1 must be interpreted. As mentioned in Section 1.1, the first 
pivot coordinate represents the dominance of sleep relative to the geometric mean of SB, LPA and MVPA. Despite sleep 
remaining relatively stable across all timepoints, there is a significant change in z1 across timepoints due to the change 
in the sub-composition of the remaining behaviours (increased contribution of SB and decreased MVPA). This demon-
strates why the CMRLMM is preferred to the previously used method of trying to draw inferences about time spent in 
each behaviour from pivot coordinates in univariate models as has been done previously [34,36]. In order to estimate 
differences between timepoints we can use the approach suggested by Martín Fernández, Daunis-i-Estadella [58] to 

Fig 2.  Estimated movement-behaviour compositions for an average participant across the five timepoints. Sleep: range 581-586 min/day. SB: 
range 481-520 min/day. LPA: range 280-298 min/day. MVPA: range 55-77 min/day.

https://doi.org/10.1371/journal.pone.0340373.g002

https://doi.org/10.1371/journal.pone.0340373.g002
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determine group differences. Here, we use the fixed effects of the model to calculate the log-ratio difference in the predicted 
movement-behaviour compositions between timepoint 3 and other timepoints with bootstrapped percentile intervals as 
shown in Fig 3.

These findings suggest that children’s movement behaviour compositions change as they age, with distinct differences 
evident during the school-holiday period. These changes are characterised by lower contributions of MVPA and higher 
contributions of SB. Given the unfavourable associations reported between reallocating time away from MVPA to SB [1], 
this indicates the school holiday period may be a key intervention point for future public health initiatives.

4.  Discussion

Key strengths of the CMRLMM outlined in this paper is its ability to include all daily time-use components as depen-
dent variables in a single analytical model, within a multi-level framework. A multi-level framework is relevant for 
many applications where compositional outcomes are required in epidemiological and behavioural sciences, includ-
ing both observational and experimental study designs. For example, observational cohort studies that investigate 
how movement-behaviour compositions change longitudinally over time with repeated measurements on participants 

Fig 3.  Estimated log-ratio difference in compositional parts for each timepoint when compared to timepoint 3 (school holidays). Note: values 
above the horizontal line indicate relatively higher proportions of that component during the in-school timepoint compared to the school-holiday period; 
values below the horizontal line indicate relatively lower proportions of that component during the in-school timepoint compared to the school-holiday 
period.

https://doi.org/10.1371/journal.pone.0340373.g003

https://doi.org/10.1371/journal.pone.0340373.g003
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(as in our example) or experimental studies with repeated measurements such as randomised-control trials that aim 
to evaluate compositional effects of a targeted behaviour-change program. Researchers may also be interested in 
investigating how activity compositions differ among different groups of participants in clustered cross-sectional study 
designs where participants are sampled within higher-level units such as schools, health-care providers, or worksites. 
For example, how activity compositions differ amongst different occupational groups when workers are sampled within 
worksites [59]. In each case, the model’s multilevel structure allows random effects to be defined at relevant grouping 
levels (e.g., participant, school, or site), thereby accounting for intra-cluster correlation while preserving the composi-
tional dependency between behaviours. This flexibility supports consistent, compositionally valid inference across a 
wide variety of research designs.

A key benefit of the CMRLMM is that it provides consistent results regardless of how the compositional time-use 
behaviours are ordered in the model. The CoDA log-ratio transformation overcomes the issue of perfect multi-collinearity 
between the time-use components, and the variable stacking procedure outlined in this paper enables all the log ratios 
to be considered as dependent variables simultaneously. Another strength of the analytical pipeline presented in this 
paper is the interpretability of the model log-ratio coefficients in the original compositional units (minutes/day) via a back-
transformation. As we have demonstrated, specific research questions regarding meaningful differences in time use (e.g., 
comparing children’s time use during school terms to the holidays) can be explored by post-hoc comparisons, and hypoth-
eses via bootstrapping.

There are limitations to the CMRLMM which should be considered. First, the CoDA olr transformation cannot be imple-
mented if there are zero values in any of the time-use components, as the logarithm of zero is undefined. However, this 
is true of all CoDA techniques, and there are published methods for dealing with zero values in compositional variables, 
which are beyond the scope of this paper. In terms of the implementation of the CMRLMM in the R environment, it should 
be considered that these models can have long run times, and convergence issues can arise. However, these issues can 
be addressed by following recommended troubleshooting procedures (e.g., rescaling and centring continuous variables, 
trying various optimisers, increasing the maximum number of iterations) [53]. High performance computers may also 
reduce runtime when fitting models, particularly when modelling compositions with many parts, and parallel processing 
will drastically reduce runtime when conducting bootstrap inference. Importantly, the CRLMM expressed in compositional 
coefficients is not more complicated than univariate response models used previously, so the benefits justify the greater 
computational complexity.

The use of CoDA in time-use epidemiology has grown at a rapid rate in recent years, leading to a paradigm shift in 
the way that people view the relationship between time use and health. For example, the acceptance that all time-use 
behaviours are interrelated and jointly contribute to health has led to various countries adopting integrated 24-hour move-
ment behaviour guidelines that promote an optimal mix of these behaviours for different age groups [60–62]. Similarly, 
multi-component intervention studies now accept the co-dependent nature of time use and aim to simultaneously change 
time spent in multiple behaviours [7]. Our proposed CMRLMM provides the tools required to allow researchers to better 
understand how time use changes longitudinally due to natural interventions (such as in the example given in this paper), 
or in experimental designs. The CMRLMM approach will also support analyses that explore how different personal and 
sociodemographic factors may be related to different time reallocation patterns. This knowledge will allow more targeted 
public health initiatives that may aim to block unfavourable reallocations (such as from MVPA to SB as in the current 
example), or alternatively nudging people to make favourable reallocations.
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