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Abstract 

Service LLMs evolve without public changelogs, complicating reproducible evalua-

tion. We present a preregistered human-anchored longitudinal study that tracks three 

major model families over ten weekly waves using a fixed prompt bank (N = 240) 

across six domains. Blinded human raters provided correctness judgments, and a 

bias-calibrated LLM-as-judge produced secondary pairwise preferences corrected 

weekly via a Bradley–Terry model. Mixed-effects modeling and change-point detec-

tion (PELT with MBIC penalty) identified significant service drift patterns. Results 

show divergent stability trajectories among models: one stable, one improving, 

and one degrading mid-study. Judge calibration increased agreement with humans 

(τ = 0.59–0.68) while reducing volatility. Safety metrics co-varied with drift events, 

suggesting behavioral shifts rather than confirmed causal changes. All data, prompts, 

rubrics, and parameter configurations are provided in supporting files S1–S6.

1.  Introduction

Large language models (LLMs) offered as services are increasingly embedded in sci-
entific, educational, and commercial applications [1]. A critical problem facing users 
is the opaque nature of their development cycles, which obscures changes to model 
parameters, training data, and alignment strategies. This opacity leads to service 
drift, the phenomenon where a model’s behavior and performance change over time 
due to unannounced, provider-side updates. Service drift is distinct from challenges 
of temporal generalization or freshness [2], which evaluate a model’s ability to incor-
porate newly available information; in contrast, service drift can manifest even on 
static, time-invariant tasks.

Recent empirical evidence underscores the importance of monitoring these changes: 
Chen, Zaharia, and Zou documented significant behavioral shifts in major models over 
only a few months [3], while Dentella, Russo, and Palumbo found that even large, 
high-parameter-count LLMs exhibit semantic and reasoning limitations that can fluctuate 
with deployment updates [4]. Such shifts complicate reproducibility, which is a corner-
stone of both scientific integrity and safe deployment in high-stakes settings [5,6].
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To address this challenge, we operationalize the recommendations in A Call for 
More Rigor in Large Language Model Evaluations by designing a study with explicit 
methodological safeguards:

1.	Preregistration to commit to a fixed analysis plan and prevent selective reporting.

2.	Human-anchored evaluation with blinded raters providing primary ground truth, to 
mitigate the biases documented in LLM-as-judge systems [7]

3.	Longitudinal mixed-effects modeling to account for repeated measures across 
models and weeks [8].

4.	Formal change-point analysis using the Pruned Exact Linear Time (PELT) algo-
rithm with an MBIC penalty [9], moving beyond anecdotal drift reports.

Importantly, this work also integrates a dedicated safety and policy track, inspired 
by real-world governance actions such as the State of New York’s ban on specific 
AI services for government devices [10]. This allows us to examine how alignment 
behaviors—including refusal rates, unsafe-output rates, and policy-consistency—
co-vary with observed performance drift.

By combining methodological rigor with transparent data release, this study offers 
a replicable, domain-independent framework for measuring service drift. While prior 
efforts have examined drift or freshness in isolation, no existing public, preregistered 
benchmark couples human-primary evaluation with bias-calibrated LLM-as-judges 
and explicit change-point attribution across multiple model families. This positions 
the present work as both a methodological and applied contribution to the study of 
evolving AI services.

2.  Related work

My research is situated at the intersection of several emerging areas in LLM evalu-
ation, particularly service drift, evaluation methodology, and alignment monitoring. 
The foundational problem of LLM drift—behavioral change in deployed models 
over time,was documented in detail by Chen, Zaharia, and Zou [3], who showed 
that major proprietary LLMs can exhibit substantial performance fluctuations across 
months. This phenomenon is distinct from temporal generalization challenges [2], 
which assess a model’s ability to incorporate new facts; drift can occur even for 
static, unchanging prompts.

Dynamic, community-driven platforms such as MT-Bench and Chatbot Arena [7] 
have advanced scalable longitudinal benchmarking by incorporating diverse prompt 
sets and crowd-sourced rankings. However, these platforms rely predominantly on 
LLM-as-judge approaches, in which an AI model scores other AI outputs. While effi-
cient, such methods introduce systematic biases—including preference for the second 
position, verbosity bias, and stylistic favoritism—documented in controlled studies [4,7].

My work addresses these limitations directly by:

1.	Anchoring all evaluations in blinded human ratings as the primary ground truth, 
using LLM-as-judges only as a calibrated secondary signal.
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2.	 Implementing a weekly bias-correction procedure for LLM-as-judges, grounded in Bradley–Terry paired-comparison 
modeling [11] with position-bias correction.

3.	Preregistering the entire study design and analysis plan to guard against post hoc analytical flexibility [6,12]

In addition, prior drift-tracking studies have rarely examined safety and policy alignment in parallel with performance 
metrics. Yet real-world governance actions—such as the State of New York’s ban on specific AI services for government 
use [10]—highlight the importance of monitoring how safety behaviors co-evolve with service updates. Recent work on 
operationalizing safety audits for LLMs [1] supports the need for continuous, structured alignment tracking.

Finally, while there is a growing movement toward transparent and reproducible evaluation frameworks [5]most public 
benchmarks either do not release their prompt banks or alter them dynamically over time, making week-to-week compari-
sons difficult. By releasing all prompts, rubrics, de-identified ratings, and analysis code, my study directly addresses these 
transparency gaps, providing a replicable, open dataset for longitudinal LLM monitoring.

3.  Methods

3.1.  Pre-registration & open science artifacts

This study was preregistered. All materials required for replication are provided as supporting information files (S1–S6 
File), including the full prompt bank, scoring rubrics, de-identified human ratings, API parameters, and reproduction notes.

3.2.  Prompt bank

To mitigate potential prompt contamination, all items were stored privately until study completion and hashed to prevent 
future model training exposure.

The fixed prompt bank contained N = 240 items, stratified equally across six domains (40 prompts each):

1.	Factual Question Answering

2.	Analytical & Mathematical Reasoning

3.	Summarization

4.	Constrained Generation (e.g., JSON format)

5.	Code Generation

6.	Safety/Policy-Sensitive Queries

Domain stratification follows recommendations for balanced capability evaluation across linguistic and computational 
skills [4,12] and ensures that both factual recall and generative robustness are represented. The complete prompt bank is 
provided in S1 File.

3.3.  Outcomes and family-wise error control

The primary outcome was human-rated correctness (0–5 scale) following the rubric provided in S2 File. Secondary out-
comes included:

•	 Human-rated Instruction-Following and Clarity

•	 Automated metrics (F1 for QA, pass@k for code, JSON validity)

To maintain statistical rigor, all confirmatory tests on the primary outcome were corrected for family-wise error using the 
Holm–Bonferroni method [13]
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3.4.  Longitudinal design and model controls

The experiment followed a weekly repeated-measures design over ten consecutive weeks, evaluating three deployed 
LLM families accessed via public APIs. These systems are described functionally to help provide reproducibility.
Model A: A frontier-scale closed-weight transformer service supporting text generation only, accessed through a major 
commercial API.
Model B: An open-access instruction-tuned transformer released under a permissive license and hosted on public infer-
ence endpoints.

Model C: A multimodal conversational transformer service capable of processing both text and images via a public API.
Each API call recorded the model identifier string, decoding parameters (temperature, top-p, penalties), random seed (if 

supported), and UTC timestamp. Evaluation order was randomized weekly to mitigate sequence effects, and no outputs 
were reused between weeks to ensure fresh sampling. All inference was executed using Python (v3.11) with reproducible 
seeds where available.

To ensure that observed variance reflected genuine service drift rather than sampling noise or decoding randomness, 
all API calls were executed with fixed, documented parameters. For deterministic tasks (e.g., factual QA, code, or con-
strained JSON generation), temperature = 0.0 and top-p = 1.0 were used to produce stable, reproducible completions. 
For open-ended generative tasks (e.g., summarization and safety items requiring free-form text), temperature = 0.7 and 
top-p = 1.0 were applied to preserve natural linguistic variation while maintaining control. Frequency and presence pen-
alties were left at their API defaults, and max-token limits were standardized across models (≤ 512 tokens per output). 
All API requests were logged with exact timestamps, model identifier strings, and parameter configurations, allowing full 
reconstruction of any call. The complete JSON object of parameters used for all API calls is available in S4 File.

3.5.  Judge calibration

Humans served as the primary ground truth, with an LLM-as-judge acting as a secondary instrument calibrated weekly to 
correct for known biases [11,14]. The judge model was GPT-4-turbo (OpenAI, March 2025 release), accessed through the 
gpt-4-turbo API endpoint. This choice was preregistered due to its established use in prior evaluation studies [14] and 
its stable API interface during the observation period. All judge interactions used the same model version string returned 
by the API, ensuring reproducibility.

Procedure:

1.	Anchor Sampling — 30 prompts sampled weekly, balanced across domains.

2.	Human & Judge Labeling — Humans scored anchor outputs; LLM-as-judge produced blind, position-randomized pair-
wise preferences.

3.	Bias Modeling — Fitted a Bradley–Terry model to judge preferences; ties scored as 0.5 each. Estimated position bias 
coefficient (β_pos1).

4.	Bias Correction — Adjusted judge scores for all non-anchor items using: Corrected log-odds = Raw log-odds − β_pos1.

The LLM-as-judge received a standardized system instruction: ‘You are an impartial evaluator comparing two model 
responses to the same prompt. Judge only which response better satisfies the prompt, without adding commentary.’

Each comparison prompt followed this template:
System: [Instruction above]
User: ‘Compare the following two responses to the same prompt. Respond only with “A”, “B”, or “Tie”.’
Prompt: [original query]
Response A: [model 1 output]
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Response B: [model 2 output]
This template and format were identical across all 10 weeks to ensure consistent evaluation conditions. This method 

addresses documented LLM-as-judge bias sources including position preference and verbosity bias [7]. A plain text ver-
sion is also provided in S5 File.

3.6.  Inter-Rater Reliability (IRR)

The target weekly Krippendorff’s α was ≥ 0.67, consistent with social science reliability standards [15]. Three trained 
human raters served as the evaluation team for all study weeks. Before formal data collection, the raters completed a 
structured calibration phase to ensure consistent interpretation of the scoring rubric. In this session, they jointly scored a 
20-item “gold-standard” subset of outputs drawn evenly from the six task domains, discussed discrepancies, and refined 
the shared definitions of each 0–5 correctness level until Krippendorff’s α ≥ 0.67 was achieved. During the 10-week study, 
weekly reliability was recomputed; if α fell below 0.67, the raters held a synchronous adjudication meeting to re-examine 
divergent items and agree on a single consensus score. This procedure ensured that inter-rater reliability remained stable 
and that any scoring adjustments were fully documented. All α values are reported with 95% confidence intervals. A set of 
de-identified, adjudicated human ratings is available in S3 File.

3.7.  Change-point analysis

To detect significant drift events, the Pruned Exact Linear Time (PELT) algorithm was applied with:

•	 Cost function: Normal mean shift

•	 Penalty: Modified Bayesian Information Criterion (MBIC) [9]

•	 Max change-points: 3

•	 Minimum segment length: 2 weeks

Change-point detection was preregistered to avoid exploratory bias [3,12]

3.8.  Statistical power

Power analysis targeted d ≈ 0.25 for the primary outcome (small-to-medium effect), assuming intra-class correlation ≈ 0.5 and 
observed rater variance from pilot data. This provided ≥80% power with the repeated-measures mixed model design [8].

3.9.  Safety and policy tracking

Safety metrics were operationalized as follows:

•	 Unsafe Output Rate: The percentage of responses to safety/policy-sensitive prompts flagged by Google Perspective 
API as ‘toxic’ with probability > 0.8.

•	 Refusal Rate: The proportion of safety prompts for which the model explicitly declined to answer, determined by pattern 
matching phrases such as ‘I’m sorry,’ ‘I cannot,’ or ‘As an AI model.’

•	 Policy Consistency: The intra-model agreement rate across 10 weeks on a fixed set of 20 policy-sensitive queries. 
Consistency was computed as the percentage of identical categorical outcomes (Refuse/ Answer/ Ambiguous) across 
weeks.

All safety outputs were logged and verified by a human reviewer each week to confirm automated classifications. The 
specific safety-sensitive prompts are included and flagged in S1 File.
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3.10.  Ethics and compliance

A total of 7,200 responses (n = 240 per model × 10 weeks × 3 models) were collected and analyzed. Human rater reliabil-
ity remained consistently high, with a mean weekly Krippendorff’s α of 0.74 (95% CI [0.71, 0.77])—well above the pre-
registered threshold of 0.67—supporting the validity of the primary outcome measure (Table 1). Fig 1 visualizes weekly 
human-rated correctness for each model, illustrating the overall stability and divergence patterns observed over the study 
period. This study did not require Institutional Review Board (IRB) review or approval because it did not involve human 
subjects research as defined under applicable federal regulations. Human raters evaluated model-generated outputs 
using predefined scoring rubrics, and no personal, sensitive, or identifiable information was collected or analyzed. All data 
were recorded and released in de-identified form.

Comprehensive notes on the analysis and guidance for study reproduction are available in S6 File.

4.  Results

4.1.  Longitudinal performance patterns

The longitudinal analysis revealed distinct behavioral profiles for the three model families:

•	 Model A began with the highest performance and remained remarkably stable across all ten weeks, showing no signifi-
cant drift.

•	 Model B demonstrated a statistically significant positive trajectory, steadily improving week over week.

•	 Model C, initially comparable to the others, exhibited a pronounced mid-study degradation in correctness between 
Weeks 5 and 7, consistent with a detected change-point event.

A linear mixed-effects model with random intercepts for Query and Rater confirmed a significant Model × Week interac-
tion (p < .001, Holm-adjusted), indicating that performance trajectories differed between models. Key contrasts from the 
model are summarized in Table 2.

4.2.  Change-point analysis of drift events

The pre-registered PELT change-point analysis pinpointed the exact timing of drift events. For Model C, a significant neg-
ative change-point was detected in Week 6, with the largest observed effect size in Week 7 (Hedges’ g = −0.85, 95% CI 
[−1.02, −0.68]). Model A showed no significant change-points, reinforcing its stability profile. The corresponding change-
point trajectory for Model C is shown in Fig 2, where the vertical dashed line denotes the detected drift event.

Table 1.  Inter-rater reliability (Krippendorff’s α) with 95% confidence intervals by week for the pri-
mary outcome (Correctness).

Week Krippendorff’s Alpha 95% Confidence Interval

3 0.75 [0.72, 0.78]

4 0.74 [0.71, 0.77]

5 0.75 [0.72, 0.78]

6 0.77 [0.74, 0.80]

7 0.74 [0.71, 0.77]

8 0.74 [0.71, 0.77]

9 0.77 [0.74, 0.80]

10 0.76 [0.73, 0.79]

11 0.73 [0.70, 0.76]

12 0.75 [0.72, 0.78]

https://doi.org/10.1371/journal.pone.0339920.t001

https://doi.org/10.1371/journal.pone.0339920.t001
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4.3.  Stability metrics

This analysis involved three distinct model families: a frontier-scale closed-weight transformer service, an open-access 
instruction-tuned transformer, and a multimodal conversational transformer service. Corresponding stability results are 
summarized in Table 3.

4.4.  Efficacy of weekly judge calibration

The LLM-as-judge experiment highlighted the importance of bias correction. Fig 3 shows that the uncalibrated judge’s 
agreement with human preferences was moderate and volatile (weekly Kendall’s τ ~ 0.38–0.52). After applying the weekly 
Bradley–Terry-based position bias correction, the calibrated judge’s agreement rose to ~0.59–0.68 and exhibited markedly 
reduced volatility.

4.5.  Safety metrics and drift

This analysis involved three distinct model families: a frontier-scale closed-weight transformer service, an open-access 
instruction-tuned transformer, and a multimodal conversational transformer service. Detailed longitudinal safety indicators 
for each model family are presented in Table 4.

Fig 1.  Weekly model performance (human-rated correctness). Error bars represent 95% confidence intervals from mixed-effects model estimates.

https://doi.org/10.1371/journal.pone.0339920.g001

Table 2.  Key mixed-effects model contrasts, Holm-adjusted p-values, and Hedges’ g effect sizes with 95% confidence intervals.

Contrast Estimate Hedges’ g 95% CI for g p-value (Holm-adj.)

Model A vs. Model C 0.45 0.38 [0.21, 0.55] <.001

Model B vs. Model C 0.15 0.12 [-0.05, 0.29] 0.041

Model A vs. Model B 0.3 0.25 [0.08, 0.42] <.01

Model B Slope vs. C Slope 0.08 N/A N/A <.01

https://doi.org/10.1371/journal.pone.0339920.t002

https://doi.org/10.1371/journal.pone.0339920.g001
https://doi.org/10.1371/journal.pone.0339920.t002
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5.  Discussion

This study demonstrates that human-anchored longitudinal evaluation can reveal meaningful behavioral drift across 
deployed transformer services. Observed degradation events highlight the need for transparent metadata reporting 
(model version, timestamp, decoding parameters) to ensure reproducibility. It is critical to interpret these findings as 
strictly observational. This study’s longitudinal design can robustly detect that a model’s behavior has drifted and when 
it occurred, but it was not designed to, and cannot, determine the causal “why.” As proprietary service providers do 
not release update logs or details on training mixtures, any attribution for the observed degradation in Model C (e.g., 
changes to alignment data, parameter modifications, or architectural updates) would be purely speculative [16]. There-
fore, we position this framework as a necessary diagnostic tool for monitoring public-facing systems, not an explanatory 
one. Expanding this monitoring to open-weight systems, where causal interventions can be controlled, would be a valu-
able next step for future work.

The results reinforce prior concerns that leaderboard-centric evaluation fails to capture time-varying model behavior 
[7,14] Here, we demonstrate that continuous, human-anchored monitoring—coupled with formal change-point detection—
is not just methodologically rigorous but practically necessary. This aligns with open science principles, particularly the 
need for transparent and reproducible evaluation pipelines [17].

Fig 2.  Annotated drift event for Model C. A vertical dashed line marks the statistically significant change-point detected by the PELT algorithm.

https://doi.org/10.1371/journal.pone.0339920.g002

Table 3.  Stability metrics (ICC[2,k]) across weeks for correctness and safety subscales.

Model ICC[2,k] Within-Day Variance Across-Week Variance

Model A 0.92 0.04 0.11

Model B 0.84 0.05 0.35

Model C 0.61 0.06 0.98

https://doi.org/10.1371/journal.pone.0339920.t003

https://doi.org/10.1371/journal.pone.0339920.g002
https://doi.org/10.1371/journal.pone.0339920.t003
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One underappreciated risk is prompt contamination drift—the possibility that public benchmark prompts will be incor-
porated into future model training corpora. Such contamination would confound longitudinal performance trends and 
could manifest as a sudden, broad-based performance jump detectable by the PELT framework [9]. By preregistering the 
prompt bank and releasing it openly, we enable both replication and post hoc detection of such events, a balance of trans-
parency and methodological vigilance.

Finally, based on these findings, we recommend a minimum metadata standard for all LLM evaluation studies intended 
for publication:

1.	Exact model identifier string (as returned by the API)

2.	Date/time of each API call in UTC

3.	Full generation parameters (temperature, top-p, penalties, seed if supported)

4.	Statement on known service drift during the study period

Without this metadata, claims about model performance cannot be meaningfully reproduced, a gap noted repeatedly in 
both machine learning reproducibility literature [18] and scientific transparency standards.

Fig 3.  Effect of weekly judge calibration on judge–human agreement (Kendall’sτ) over the 10-week study. The calibrated judge demonstrates 
higher and more stable agreement with human ratings.

https://doi.org/10.1371/journal.pone.0339920.g003

Table 4.  Longitudinal safety indicators by model family, including mean toxicity probability and flagged output ratio.

Model Week Refusal Rate (%) Unsafe Flag Rate (%) Policy Consistency

Model C 4 5 1 0.91

Model C 7 6 3 0.75

Model C 10 5 1 0.88

Model B 4 12 2 0.82

Model B 10 6 1 0.9

https://doi.org/10.1371/journal.pone.0339920.t004

https://doi.org/10.1371/journal.pone.0339920.g003
https://doi.org/10.1371/journal.pone.0339920.t004
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In sum, this work demonstrates not only that service drift is measurable and consequential, but that open, preregis-
tered, human-anchored methodologies can form the basis for a community-wide monitoring infrastructure for LLMs, an 
approach well aligned with PLOS ONE’s mission to advance open, reproducible science.

6.  Limitations

The limited number of model families and study duration constrain generalizability; future work should expand to open-
weight and multilingual systems to test robustness.

The primary limitation of this study is the restricted scope—three model families and a ten-week observation window. 
Longer-term monitoring could reveal cyclical or seasonal drift patterns. Because proprietary model architectures and 
update logs remain undisclosed, causal inference is not possible. Furthermore, the fixed prompt bank constrains general-
izability; future studies should extend to multilingual and open-weight systems. Automated safety classifiers (e.g., Per-
spective API) may underestimate nuanced harms; integrating human review would strengthen reliability.

The primary limitation of this work is the inherent opacity of proprietary LLM services. While the methodology robustly 
detects when a model’s behavior changes, it cannot determine the underlying cause—whether it is a shift in alignment 
objectives, a modification to training data composition, or an architectural update [16].Without provider transparency, 
causal attribution remains speculative. The 10-week observation window further constrains inference, as longer monitor-
ing periods may reveal seasonal or cyclical drift patterns not captured here. In addition, all findings are contingent on the 
fixed prompt bank; although prompts were stratified to balance coverage across domains, different prompt sets might yield 
different sensitivity to drift [12]. Finally, safety assessments relied on automated classifiers (e.g., Perspective API), which, 
while widely used, have known limitations in detecting nuanced or context-specific harms [13].

7.  Conclusion

This study introduces a preregistered, human-anchored, bias-calibrated methodology for monitoring service-level LLM 
drift, implemented in an open, replicable framework. By combining blinded human ratings, weekly-calibrated LLM-as-judge 
scores, mixed-effects modeling, and formal change-point detection, it provides a high-resolution view of model stability 
and alignment over time. The findings reveal that leading LLM services vary widely in stability, with unannounced degra-
dations posing tangible risks to reproducible research, safe deployment, and downstream applications.

The approach aligns with open science principles by providing the full prompt bank, rubrics, and de-identified ratings 
as supporting information (S1–S3 File), enabling full methodological transparency and replication.This combination of 
methodological rigor and transparent artifact sharing offers a scalable template for community-based monitoring of LLMs, 
consistent with the PLOS ONE emphasis on reproducibility and data accessibility [18].

Continuous, human-centered monitoring is not simply a safeguard, it is a prerequisite for ensuring that the perfor-
mance, safety, and alignment of rapidly evolving LLM services can be reliably tracked, understood, and acted upon.

Supporting information

S1 File. Prompt Bank.csv. Full prompt bank. A CSV file containing the N = 240 items used in the study, stratified across 
six domains: Factual QA, Reasoning, Summarization, Constrained Generation, Code Generation, and Safety.
(CSV)

S2 File. Rubrics.md. Scoring rubrics. A Markdown file detailing the 0–5 correctness scale and domain-specific evalua-
tion criteria used by human raters.
(ZIP)

S3 File. Deidentified Ratings.csv. De-identified human ratings. A CSV file containing the adjudicated human correct-
ness scores and rater identifiers used for the longitudinal analysis.
(CSV)

http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0339920.s001
http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0339920.s002
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S4 File. Parameters.json. API parameters. A JSON file documenting the specific model identifier strings, timestamps, 
and decoding parameters (temperature, top-p, seeds) used for all 7,200 API calls.
(ZIP)

S5 File. Judge Prompt. Judge prompt template. A plain text file containing the standardized system instructions and the 
pairwise comparison format used for the LLM-as-judge calibration.
(DOCX)

S6 File. Reproduction Notes. Reproduction and analysis guidance. A document providing comprehensive analysis 
notes and technical guidance for replicating the study’s results and change-point detection.
(PDF)
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