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Abstract 

Background

In the phase 3 CLEAR study, lenvatinib plus pembrolizumab showed improved 

efficacy versus sunitinib for patients with clear cell renal cell carcinoma (ccRCC). Pre-

vious preclinical studies demonstrated that lenvatinib attenuated tumor-associated 

macrophage (TAM) infiltration into tumor tissues by inhibiting fibroblast growth factor 

receptor (FGFR). However, the role of the FGFR pathway in ccRCC remains under-

explored. This study aims to evaluate FGFR1–4 expression in ccRCC and investigate 

its relationship with the tumor microenvironment, particularly TAM.

Methods

We primarily analyzed FGFR1–4 expression and CD163 positive cell count as esti-

mation of TAM infiltration in 57 ccRCC specimens from patients undergoing nephrec-

tomy using immunohistochemistry. Transcriptomic analysis was performed to assess 

immune-related gene signature and gene expressions.

Results

FGFR1 expression was elevated in over 80% of ccRCC samples and was 

significantly associated with increased CD163-positive TAM infiltration. FGFR1 

expression was also negatively correlated with the IMmotion150 Teff gene signa-

ture and the expression of interferon-γ signaling targeted genes such as IFNG, 

GZMB, and CD274, suggesting an immunosuppressive phenotype. In contrast, 

FGFR2 and FGFR4 expression were less prevalent, and FGFR3 expression was 

not detected.
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Conclusions

This study provides the first comprehensive evaluation of FGFR1–4 expression in 

ccRCC and suggests that FGFR1 expression may contribute to the immunosuppres-

sive tumor microenvironment by recruiting TAM. These findings indicate that FGFR1 

could serve as a potential biomarker for therapeutic strategies and highlight the need 

for further research to explore FGFR-targeted therapies in ccRCC.

Introduction

Renal cell carcinoma (RCC) ranks as the 14th most prevalent malignancy worldwide, 
with over 434,000 new cases reported in 2022 [1]. Systemic treatments for metastatic 
RCC (mRCC) have advanced significantly, including the development of tyrosine 
kinase inhibitors (TKIs), mammalian target of rapamycin (mTOR) inhibitors, immune 
checkpoint inhibitors (ICIs), and ICI-based combinations, all of which have contributed 
to improved overall survival [2,3]. Clear cell RCC (ccRCC), accounting for approxi-
mately 75% of RCC cases, has traditionally been treated with vascular endothelial 
growth factor receptor (VEGFR)-TKIs [4]. Inactivation of the tumor suppressor gene 
VHL, which upregulates genes that promote cellular proliferation and angiogenesis 
such as vascular endothelial growth factor (VEGF), is a key mechanism in the devel-
opment of ccRCC [5]. Consequently, the biological rationale for VEGFR inhibition in 
ccRCC is well understood. However, the role of the fibroblast growth factor receptor 
(FGFR) in the development and maintenance of ccRCC has not been thoroughly 
investigated. Previous studies have demonstrated that FGFR1 is expressed in 
32.3–98% of primary renal tumors, while FGFR2 expression is observed in 4–66.2% 
of cases [6,7]. Increased FGFR1 expression has been correlated with decreased 
progression-free survival in patients with mRCC receiving sorafenib [8]. Additionally, 
activation of the FGFR pathway may contribute to resistance against VEGFR-targeted 
therapies [9]. Whole-genome analyses of ccRCC revealed gene copy number gains of 
FGFR4 in 65% of patients [10]. Furthermore, 54% of ccRCC cases exhibited elevated 
FGFR4 expression, and treatment with BLU9931, a selective FGFR4 inhibitor, signifi-
cantly reduced tumor growth in ccRCC xenograft models [11]. In the phase 3 CLEAR 
study, the combination of lenvatinib, multi-TKI targeting VEGFR1–3, FGFR1–4, C-KIT, 
RET, and PDGFR-α, along with pembrolizumab, demonstrated significant clinical 
benefits for patients with mRCC [12]. These outcomes suggest that FGFRs could 
serve as potential therapeutic targets in ccRCC. As combination immunotherapies 
have become the standard of care in first-line treatment for mRCC, understanding 
the alternative roles of drug-targeted factors in the tumor microenvironment is crucial. 
The infiltration of anti-inflammatory macrophages in ccRCC has been associated 
with increased malignancy and poorer prognosis [13,14]. Biomarker analyses from 
the IMmotion150 study identified myeloid inflammation as one of the mechanisms of 
resistance to ICI-combination therapy in ccRCC [15]. Preclinical studies showed that 
FGFR inhibition by lenvatinib reduced tumor-associated macrophages (TAMs) and 
activated CD8-positive T cells in an interferon-γ (IFNγ)-dependent manner [16,17]. 
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Moreover, it has been reported that TAMs express FGFR1 and FGFR2 [18]. Although immunomodulatory effects of FGFR 
signaling have been suggested, the role of the FGFR pathway in the tumor microenvironment of ccRCC remains unknown. 
In this study, we evaluated the immunohistochemical (IHC) expression of FGFR1–4 in ccRCC patients and investigated the 
relationship between FGFRs and the intra-tumor microenvironment, with a focus on macrophage infiltration.

Materials and methods

Clinical specimens and ethics

We selected 57 patients with mRCC who had undergone cytoreductive nephrectomy at Yamagata University between 2009 
and 2020, and for whom complete package of clinical information and well-preserved specimens were available. This study 
was approved by the Ethical Committee of Yamagata University (approval number: 2021−2) based on the tenets of the Dec-
laration of Helsinki, and written informed consent for the use of clinical specimens was obtained from all patients.

Immunohistochemistry

We examined specimens of patients who were histologically diagnosed to have ccRCC by a pathologist. IHC staining and 
slide preparation were performed as previously described [11]. Single immunostainings were performed with BOND RXm 
(Leica Biosystems, Nussloch, Germany) according to the manufacturer’s protocol.

We used antibodies of CD163 (10D6, Leica Biosystems), FGFR1 (M17D10, Novus), FGFR2 (D4L2V, CST), FGFR3 
(4574S, CST), FGFR4 (HPA027369, Sigma-Aldrich) to evaluate the number of macrophage and that of stromal tissue in 
ccRCC specimens.

For quantitative analysis, whole-slide imaging of the IHC slides was generated with a virtual scanner (NanoZoomer, 
HAMAMATSU, Hamamatsu, Japan). To demonstrate the distribution of macrophage, HALO software (Indica Labs, Albu-
querque, NM, USA) was used to allocate positive cells on a grid chart of section. The number of positive cells and that of 
total nucleated cells was counted in the annotated tumor area.

Two experienced physicians visually evaluated the staining intensity of FGFRs using a four-point scale (negative—no 
staining: 0 point, weak—stains to the same degree as: 1 point, moderate—stains stronger: 2 point, strong—stains consid-
erably stronger: 3 point) according to our previous study [11], and IHC scores were calculated as the mean point of three 
different areas per slide to account for intratumoral heterogeneity.

Next generation sequence and transcriptome analysis

A library was constructed using the extracted RNA with Ion AmpliSeq Transcriptome Human Gene Expression Kit 
(A26325, Thermo Fisher scientific) according to the manufacturer’s protocol. Amplicon-based library for each transcript 
was amplified from extracted RNAs specimens by RT-PCR. Quantification of libraries was carried out a 4150 TapeStation 
system (Agilent Technologies) using a D1000 ScreenTape (5067–5582, Agilent Technologies). Prepared libraries were 
performed on semi-conductor sequencer by Ion GeneStudio S5 (Thermo Fisher scientific) using Ion 540 Kit-OT2 and Ion 
540 Chip (A27753, A27765, Thermo Fisher scientific). Sequenced data was analyzed using in house STAR-RSEM nex-
tflow pipeline using high performance computing system. The obtained sequenced reads were mapped with the human 
genome reference build GRCh38/hg38 by STAR program (https://github.com/alexdobin/STAR,Ver.2.7.10a), and quan-
tification of gene transcripts per million (TPM) were calculated by RSEM program (https://github.com/deweylab/RSEM, 
Ver.1.3.3). TPM filtered out low-expressed genes, and third quantile normalization was used for subsequent analysis.

Gene signature analysis

IMmotion150 Teff gene signature was calculated as previously described [15]. To calculate score for the signature, the 
expression level for each gene was standardized by first determining the mean expression level (log TPM) and standard 
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deviation of that gene within the entire evaluable population across both study arms and then subtracting the mean value 
and dividing by the standard deviation for expression. The pathway score was then calculated as the mean of the stan-
dardized genes in the pathway.

Endpoints

The primary endpoints of this study were to observe FGFRs expression in ccRCC specimens and to identify the correla-
tions between FGFRs expression and intra-tumoral CD163-positive cells as a marker for TAMs. Secondary endpoints 
were to show the associations between FGFRs expression, IMmotion150 Teff signature, and IFNγ-mediated genes. 
Exploratory, we investigated the correlation of FGFRs expression and survivals, patient backgrounds, and clinical out-
comes of nivolumab treatment.

Statistical analysis

All statistical analyses were performed using R (version 4.1.0). A Welch’s t test was used to analyze the differences 
between two groups. Survival curves were plotted using the Kaplan–Meier method and a log-rank test was used to com-
pare two groups. The relationship between FGFRs expression and clinicopathological features was analyzed by the Fish-
er’s exact test. The correlation between IHC scores of FGFRs and IFNγ-mediated genes was estimated using Pearson’s 
method. A two-sided p-value <0.05 was considered statistically significant.

Results

Characteristics of metastatic ccRCC patients

We selected 57 cases of metastatic ccRCC treated at Yamagata University Hospital, from which comprehensive analyses 
of whole transcriptome data and IHC staining were possible using primary tumor specimens. The median follow-up period 
was 47.7 months (range: 3.2–148.5 months). The mean age at RCC diagnosis was 65.4 years (range: 42.6–85.0 years), 
and 87.7% of the patients were male. Detailed clinical information, including IMDC risk classification, clinical T stage, 
WHO grade, presence of primary metastasis, and metastatic sites, was collected and summarized in Table 1.

Protein expression of FGFRs in ccRCC clinical specimens

We assessed protein expression levels of FGFR1, FGFR2, FGFR3, and FGFR4 in 57 surgical specimens of ccRCC 
using IHC staining. Among these, FGFR1, FGFR2, and FGFR4 were detected in tumor tissues, whereas FGFR3 expres-
sion was absent in all cases (Fig 1A–D). The median IHC scores for FGFR1, FGFR2, and FGFR4 were 2.33, 0.33, and 
1.33, respectively (Fig 1E). When applying a cut-off IHC score of 2.00, high expression levels were observed in 46 cases 
(80.7%) for FGFR1, 13 cases (22.8%) for FGFR2, and 8 cases (14.0%) for FGFR4 (Fig 1F).

Association between FGFR expression and clinicopathological characteristics

The association between FGFR expression levels and various clinicopathological characteristics is summarized in Table 
2. There was a trend that high expression of FGFR4 was associated with both synchronous metastasis (Odds ratio 
[95%CI] = 7.29 [0.83–63.79], p = 0.059) and lymph node metastasis (Odds ratio [95%CI] = 5.13 [1.06–24.87], p = 0.052). In 
contrast, FGFR1 and FGFR2 expression showed no association with these metastatic factors.

Among the IMDC risk factors, platelet count (p = 0.035) and serum corrected calcium levels (p = 0.048) were signifi-
cantly associated with high FGFR1 expression, whereas serum corrected calcium levels (p = 0.012) and neutrophil count 
(p = 0.028) were significantly associated with low FGFR2 expression (S1 Table). Furthermore, patients whose tumors 
exhibited high FGFR2 expression demonstrated significantly longer cancer-specific survival (p = 0.045). FGFR1 (p = 0.880) 
and FGFR4 (p = 1.000) expression levels, however, were not significantly associated with survival outcomes (S1A–C Fig).
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Macrophage infiltration in ccRCC with elevated FGFR1 expression

To elucidate the impact of FGFR expression on macrophage infiltration within ccRCC tumors, we analyzed TAMs by 
quantifying CD163-positive cells as a marker for TAMs [13]. Our findings indicate that TAM infiltration was significantly 
increased in tumors with elevated FGFR1 expression (p = 0.048) (Fig 2A–B). Conversely, no significant relationship was 
observed between TAM infiltration and the expression of FGFR2 (p = 0.159) or FGFR4 (p = 0.967).

Immunosuppressive phenotype in FGFR1-high tumors

To investigate the immunosuppressive activity of TAMs in ccRCC with high FGFR1 expression, we assessed various 
immunological markers and gene signatures. Our analysis demonstrated that the IMmotion150 Teff signature was signifi-
cantly lower in tumors with high FGFR1 expression (p = 0.026) (Fig 3A). Furthermore, a negative correlation was observed 
between FGFR1 IHC scores and the expression levels of IFNγ-targeted genes, including IFNG (correlation coefficient (r) 
= −0.30, p = 0.025), GZMB (r = −0.29, p = 0.027), and CD274 (r = −0.30, p = 0.025) (Fig 3B), suggesting that higher FGFR1 

Table 1.  Patient characteristics for the analyzed ccRCC specimens.

Characteristic Total, n = 57

Observation time, months [range] 47.7 [3.2–148.5]

Age, median [range]

  at diagnosis of RCC 65.4 [42.6–85.0]

  at diagnosis of metastasis 66.5 [44.1–85.7]

Sex, n (%)

  Male 50 (87.7)

  Female 7 (12.3)

IMDC risk classification, n (%)

  Favorable 10 (17.5)

  Intermediate 39 (68.4)

  Poor 5 (8.8)

  Not evaluated 3 (5.3)

Clinical T stage, n (%)

  T1 22 (38.6)

  T2 8 (14.0)

  T3 23 (40.4)

  T4 4 (7.0)

Fuhrman grade, n (%)

  1 3 (5.3)

  2 19 (33.3)

  3 29 (50.9)

  4 6 (10.5)

Primary metastasis, n (%)

  Yes 31 (54.4)

  No (metachronous) 26 (45.6)

Site of metastasis, n (%)

  Lung 35 (61.4)

  Bone 13 (22.8)

  Lymph node 12 (21.1)

  Liver 2 (3.5)

https://doi.org/10.1371/journal.pone.0339888.t001

https://doi.org/10.1371/journal.pone.0339888.t001
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expression may be linked to reduced IFNγ-related immune activity. In contrast, FGFR2 and FGFR4 IHC scores did not 
show significant correlations with the IMmotion150 Teff signature or these IFNγ-targeted genes (S2A–B Fig). Additionally, 
we noted a trend indicating reduced efficacy of nivolumab monotherapy across all treatment lines in patients exhibiting 
high FGFR1 expression (Fig 3C and S2C Fig). This might suggest a potential resistance to ICIs in FGFR1-high tumors.

Discussion

To our knowledge, this is the first study to evaluate FGFR expression in relation to the immune microenvironment in 
ccRCC. We assessed the expression levels of FGFR1–4 in ccRCC patients and investigated their association with the 
intra-tumoral microenvironment.

Notably, more than 80% of ccRCC patients in our cohort exhibited high FGFR1 expression, a finding that aligns with 
previous studies [6]. One plausible explanation for the widespread expression of FGFR1 in ccRCC is the frequent occur-
rence of VHL mutations in these patients. Loss of functional VHL protein results in abnormal accumulation of FGFR1 on 
the cell surface, which may contribute to the high FGFR1 expression observed in ccRCC tumors [19]. This accumula-
tion could potentially alter the tumor microenvironment by promoting immunosuppressive conditions that support tumor 
progression.

Fig 1.  FGFR1–4 protein expression analysis in ccRCC clinical specimens. IHC evaluation of FGFR1–4 subtype expression in clinical samples of 
ccRCC. IHC images are presented sequentially from low to high expression levels, arranged from left to right. (A) Representative image of FGFR1 stain-
ing. (B) Representative image of FGFR2 staining. (C) Representative image of FGFR3 staining. Notably, no specimens demonstrated FGFR3 expres-
sion. (D) Representative image of FGFR4 staining. (E) The distribution of IHC scores for each FGFR subtype across the analyzed ccRCC samples. (F) 
Expression profile of FGFRs, with a cut-off value set at an IHC score of 2.00, demonstrating the proportion of samples with expression levels above and 
below this threshold.

https://doi.org/10.1371/journal.pone.0339888.g001

https://doi.org/10.1371/journal.pone.0339888.g001
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In this study, approximately 20% of ccRCC patients exhibited high expression of FGFR2. The reported expression 
levels of FGFR2 in ccRCC, however, vary across studies [6,7] These findings highlight a distinct feature in the Japanese 
ccRCC cohort, which is characterized by relatively high expression of FGFR1 and, to a lesser extent, FGFR2.

Table 2.  Association between FGFR subtype expressions with clinical and pathological factors.

Variable FGFR1 FGFR2 FGFR4

n High Low Odds ratio [95%CI] p High Low Odds ratio [95%CI] p High Low Odds ratio [95%CI] p

IMDC risk classification

  Favorable 10 8 2 0.745 4 6 0.275 1 9 1.000

  Intermediate 39 30 9 0.83 [0.15–4.65] 9 30 0.45 [0.10–1.95] 6 33 1.64 [0.17–15.40]

  Poor 5 5 0 3.24 [0.13–80.99] † 0 5 0.13 [0.01–3.02] † 1 4 2.25 [0.11–45.72]

Clinical T stage

  T1 or T2 30 25 5 0.740 9 21 0.216 4 26 1.000

  T3 or T4 27 21 6 0.70 [0.19–2.62] 4 23 0.41 [0.11–1.52] 4 23 1.13 [0.25–5.04]

Fuhrman grade

  1 or 2 22 17 5 0.733 5 17 1.000 2 20 0.466

  3 or 4 35 29 6 1.42 [0.38–5.37] 8 27 1.01 [0.28–3.59] 6 29 2.07 [0.38–11.31]

Primary metastasis

  Yes 31 25 6 0.99 [0.26–3.72] 1.000 7 24 0.97 [0.28–3.36] 1.000 7 24 7.29 [0.83–63.79] 0.059

  No (metachronous) 26 21 5 6 20 1 25

Lymph node metastasis

  Yes 12 9 3 0.65 [0.14–2.95] 0.683 2 10 0.62 [0.12–3.26] 0.713 4 8 5.13 [1.06–24.87] 0.052

  No 45 37 8 11 34 4 41

†; Modified odds ratio: For frequencies equal to 0, 0.5 was added to each to calculate odds ratios.

https://doi.org/10.1371/journal.pone.0339888.t002

Fig 2.  Analysis of FGFR subtype expression levels and intra-tumor macrophage infiltration. IHC evaluation of intra-tumor macrophage infiltration 
across FGFR subtypes. (A) Differential expression of CD163-positive cells across FGFR subtypes. The number of CD163-positive cells per unit area 
was significantly higher in the high FGFR1 expression group compared to the low FGFR1 expression group, indicating increased macrophage infiltration 
in tumors with elevated FGFR1 expression. *; p < 0.05, n.s.; not significant. (B) Representative images of CD163-positive cells in tumors with differing 
FGFR1 expression levels. The left image shows a specimen with high FGFR1 expression, while the right image depicts a specimen with low FGFR1 
expression, illustrating the difference in macrophage infiltration.

https://doi.org/10.1371/journal.pone.0339888.g002

https://doi.org/10.1371/journal.pone.0339888.t002
https://doi.org/10.1371/journal.pone.0339888.g002
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The role of FGFR3 in the pathogenesis of RCC has been previously investigated, with one study assessing FGFR3 
mutational activity in 238 primary renal tumor samples, where no alterations in FGFR3 were identified [20]. In our study, 
IHC expression of FGFR3 was similarly undetected, supporting the notion that FGFR3 is unlikely to play a role in RCC 
development.

Copy number amplification and elevated protein expression of FGFR4 have been reported in 59.5% of ccRCC cases, 
suggesting a potential role for FGFR4 in ccRCC pathogenesis [11]. In our study, high expression of FGFR4 was observed 
in 14.0% of patients. This finding, while lower than previously reported, indicates that FGFR4 may have pathological sig-
nificance in ccRCC, particularly when considered in relation to clinicopathological factors.

Existing literature reveals that the prognostic value of FGFR expression varies across different cancer types and patient 
cohorts, with contradictory findings reported [21]. In RCC, for instance, FGFR2 protein overexpression has been identi-
fied as a negative prognostic marker for cancer-specific survival [7]. Another study in mRCC demonstrated that FGFR2 
expression serves as an adverse prognostic factor in patients treated with targeted agents [22]. However, in our study, 
despite the relatively small patient cohort, higher protein expression of FGFR2 was significantly associated with better 
prognosis in ccRCC, while FGFR1 and FGFR4 expression showed no association with cancer-specific survival. Possible 
reasons for the inconsistency may be that all patients in this study had metastatic disease and treatment modality differed 
among patients.

In this study, there was a trend that high FGFR4 expression was associated with clinicopathological features such as 
primary metastasis and lymph node metastasis. Similarly, in gastric cancer, elevated FGFR4 protein expression has been 
linked to distant metastasis and lymph node involvement [23]. Elevated mRNA expression of FGFR4 has been reported 
at recurrent or metastatic sites compared to primary tumors in adrenocortical carcinoma, underscoring a potential role for 
FGFR4 in promoting metastatic behavior [24]. Furthermore, activation of the FGFR4 pathway has been associated with 
distant metastasis across various cancer types, reinforcing its involvement in tumor progression [25–27].

Fig 3.  Comparison of immunosuppressive phenotypes and ICI treatment response in relation to FGFR1 expression. Transcriptome analysis of 
immune-related genes and evaluation of clinical response of nivolumab. (A) Decreased expression of the IMmotion150 Teff signature in tumors with high 
FGFR1 expression, indicating a potential immunosuppressive phenotype associated with elevated FGFR1 levels. *; p < 0.05. (B) Correlation between 
FGFR1 IHC score and IFNγ signaling targeted genes using Pearson’s correlation analysis. A negative correlation was observed between FGFR1 expres-
sion and the transcript levels of IFNγ-targeted genes including IFNG, GZMB, and CD274. (C) Objective response to nivolumab across all treatment lines, 
comparing differences in FGFR1 expression levels. CR; complete response, PR; partial response, SD; stable disease, PD; progressive disease.

https://doi.org/10.1371/journal.pone.0339888.g003

https://doi.org/10.1371/journal.pone.0339888.g003
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Conversely, clinicopathological factors such as clinical T stage and Fuhrman grade, previously identified as prognostic 
indicators in various cancers by several studies [28–30], did not show significant differences in our analysis. Likewise, 
IMDC risk classification was not significantly associated with FGFR expression in our cohort, although individual IMDC 
risk factors including platelet count, corrected calcium, and neutrophil count demonstrated significant differences: these 
markers were elevated in patients with higher FGFR1 expression and reduced in those with lower FGFR2 expression. 
Collectively, these findings suggest that FGFR1 and FGFR4 may contribute to the malignant potential of RCC, particularly 
in the context of metastatic progression, while FGFR2 might confer a protective effect to some extent.

Previous studies across various cancers have suggested a possible correlation between FGFR pathway activation and 
macrophage infiltration. In gastric cancer, for instance, the extent of macrophage infiltration has been shown to correlate 
positively with FGFR1 expression in tumor cells [31]. Similarly, FGFR expression has been linked to M2 macrophage 
infiltration in triple-negative breast cancer [32], while in esophageal cancer, FGFR1 signaling was found to regulate the 
survival and migration of TAMs [33]. Additionally, activated FGFR1 signaling in mammary tumor cells has been shown 
to promote macrophage recruitment [34]. These findings collectively indicate a potential intra-tumor correlation between 
FGFR1 expression and TAM infiltration in also ccRCC. In our study, we observed a trend suggesting reduced efficacy of 
nivolumab in patients with higher FGFR1 expression and increased macrophage infiltration. This trend raises the possibil-
ity that FGFR1-associated macrophage recruitment may contribute to an immunosuppressive microenvironment, poten-
tially diminishing the effectiveness of ICIs in ccRCC.

Molecular analyses from the IMmotion150 study align with this trend, indicating that the efficacy of atezolizumab, 
whether in combination with bevacizumab or as monotherapy, was reduced in patients with higher levels of myeloid 
inflammation [15]. Preclinical studies have similarly suggested that FGFR inhibition, such as with lenvatinib, may enhance 
antitumor immunity by reducing TAM infiltration [16,17]. These findings imply that FGFR signaling activation and TAM-
mediated immunosuppression may contribute to resistance against ICIs. Thus, a therapeutic approach targeting mac-
rophage recruitment via FGFR inhibition could be a potential strategy to address FGFR-mediated resistance to ICIs on 
ccRCC treatment, although further investigation is needed to clarify this approach’s clinical relevance.

This study has certain limitations. It is a retrospective analysis based on older and small sample sizes. Additionally, we 
analyzed only primary tumor specimens and did not assess the molecular profiles of metastatic sites. Given the hetero-
geneity of ccRCC [35] and reports of discordance in FGFR1 protein levels between primary and metastatic sites [36], it is 
recommended to examine FGFR expression levels and tumor microenvironment in metastatic sites in future studies.

Previous research in hepatocellular carcinoma has suggested that FGFR4 protein levels may serve as a biomarker 
for lenvatinib monotherapy [37], indicating that FGFR expression in ccRCC could also potentially play a role in predicting 
responses to FGFR-targeted treatments. However, in this study, the limited number of patients who received systemic 
therapy constrained our ability to evaluate the correlation between FGFR expression levels and the efficacy of such thera-
pies. To fully understand the clinical relevance of FGFR expression in ccRCC, further studies are needed. Such research 
could help clarify whether FGFRs might serve as useful biomarkers in guiding therapeutic decisions.

Conclusion

In summary, our study represents the first comprehensive report to evaluate FGFR subtype expression in ccRCC through 
IHC analysis, examining its associations with the tumor microenvironment and clinicopathological factors. This analysis 
provides a foundational understanding of the potential roles of FGFRs in ccRCC pathogenesis and their relationship to 
clinical features.
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S1 Table. Association between FGFR subtype expressions with IMDC risk factors. 
(TIF)
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S1 Fig. Comparison of FGFR Subtype differences in relation to overall survival. Kaplan-Meier curves showing prob-
ability of overall survival across the expression levels of FGFR1 (A), FGFR2 (B), and FGFR4 (C). Sample numbers per 
group indicated below the graphs.
(TIF)

S2 Fig. Comparison of immunosuppressive phenotypes and ICI treatment response in relation to FGFR2 and 
FGFR4 expression. Transcriptome analysis of immune-related genes and evaluation of clinical response of nivolumab. 
(A) IMmotion150 Teff signature scores across the expression levels of FGFR2 and FGFR4. n.s.; not significant. (B) Cor-
relation between IHC score of FGFR2 or FGFR4 and IFNγ signaling targeted genes using Pearson’s correlation analysis. 
(C) Objective response to nivolumab across all treatment lines, comparing differences in FGFR2 and FGFR4 expression 
levels. CR; complete response, PR; partial response, SD; stable disease, PD; progressive disease.
(TIF)
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